Formulation development of a recombinant Streptokinase suppository for hemorrhoids treatment

Ana Aguilera1, Yilian Bermudez1, Eduardo Martínez1, Maria A Marrero2, Lazara Muñoz1, Rolando Páez1, Beatriz Tamargo1, Luciano F Hernández1, Oscar García4

1 Departamento de Desarrollo de Formulaciones, Centro de Ingeniería Genética y Biotecnología, CIGB Ave. 31 e/ 158 y 190, Cubanacan, Playa, CP 11600, La Habana, Cuba
2 Centro Nacional Coordinador de Ensayos Clínicos, Cencec, Cuba
3 Instituto de Farmacia y Alimentos, Universidad de La Habana, Cuba
4 Laboratorio Farmacéutico Roberto Escudero, La Habana, Cuba

ABSTRACT

Recombinant Streptokinase (rSK) is a protein of bacterial origin currently used in the treatment of acute myocardial infarction. Its thrombolytic and anti-inflammatory action makes it attractive for the treatment of hemorrhoids. In this work the influence of absorption enhancer, preservative and emulsiﬁers on rSK stability was accessed by determining its biological activity under stress conditions. According to the results obtained, were selected as excipients for the formulation: Sodium salicylate as enhancer and anti-inﬂammatory agent, thimersal as preservative, Span 60 as emulsiﬁer and Witepsol W25 as suppository base and 100 000 IU per gram of suppository for stability study. Afterwards, three lots at pilot scale were manufactured, packed in aluminum blister shell and stored at 5 ± 3 ºC. Immediately after preparation, the samples were evaluated at months 0, 3, 6, 9, 12 and 18 having into account the physical, chemical and biological properties. The stability study demonstrated that the formulation containing rSK as active pharmaceutical ingredient was stable during 18 months under refrigerated conditions.

Keywords: streptokinase, suppository, hemorrhoids, formulations development, rectal administration, thrombolytic, long term stability

Desarrollo de una formulación en supositorio con estreptoquinasa recombinante para el tratamiento de las hemorroides. La estreptoquinasa recombinante (SKr) es una proteína de origen bacteriano que se utiliza para el tratamiento del infarto agudo de miocardio. Su acción trombolítica y antiinflamatoria la hace atractiva para el tratamiento de las hemorroides. Se evaluó la inﬂuencia de promotores de la absorción, preservantes y tensioactivos sobre la estabilidad de la SKr, mediante la determinación de su actividad biológica bajo condiciones de estrés. De acuerdo con los resultados, se seleccionaron el salicilato de sodio como promotor de la absorción y agente antiinflamatorio, el tiomersal como preservante, el Span 60 como tensioactivo y el Witepsol W25 como base del supositorio, y 100 000 UI de SKr por gramo de supositorio para el estudio de la estabilidad. Posteriormente se prepararon tres lotes a escala piloto y se almacenaron en blister de aluminio a 5 ± 3 ºC. Inmediatamente después de la preparación, se evaluaron las muestras a los 0; 3; 6; 9; 12 y 18 meses, teniendo en cuenta las propiedades físicas, químicas y biológicas. El estudio de estabilidad demostró que la formulación en forma de supositorio es estable durante 18 meses bajo condiciones de refrigeración.

Palabras clave: estreptoquinasa, supositorio, hemorroides, formulaciones desarrollo, administración rectal, trombolítico, estabilidad en tiempo real

Introduction

The delivery of therapeutics and proteins remains a priority for many pharmaceutical companies, being a huge challenge the need to find non-parenteral routes for their administration [1, 2]. The rectal route is one of them. The rectum has been an accepted site for drug delivery, and used for systemic and local action with potential for the delivery of peptides. Many studies have been focused in the bioavailability of a variety of peptides such as calcitonin [3], insulin [4, 5], Beta interferon [6] and also Streptokinase [9] among others.

Streptokinase is a high molecular weight protein which nowadays is used for the treatment of acute myocardial infarction, deep vein thrombosis, permanent vascular access thrombosis and other diseases with thrombotic origin. In this sense, it is presented in different pharmaceutical forms like lyophilized for parenteral use [6, 7]. It has also been used for mucosal administration, in orally administered pills VARIDASE®, for edema relief of inﬂammatory process [8]. It has also been reported its rectal administration with the main objective of systemic action for the treatment of hematomata re-absorption or just for comparing its concentration in the blood after rectal and oral administration [9]. However, its local administration at the rectum remained to be studied.

Rectal Streptokinase administration using a suppository formulation is possible in order to achieve the elimination of the thrombus in hemorroidal disease, with the consequent decrease of the inﬂammation and pain in the affected zone, without systemic thrombolytic effects. Hemorroids treatments are often divided between non-operative management, office
procedures and surgical management. Topical agents using astringents, analgesics, and steroids help on providing relief in an acute setting, but there is no evidence showing their benefit for prevention or long-term treatment of hemorrhoidal disease [10]. The use of rSK in hemorrhoidal disease could allow solving the pathology locally, in a neither painful nor invasive ways. Additionally, it would not require specialized personnel or equipment for its application and it makes possible the treatment of the acute hemorrhoidal disease in a non-surgical way, avoiding the inconvenience inherent to this kind of treatment. Thus, the purpose of our study was to develop a formulation and to determine the biological, physical-chemical stability of streptokinase in a suppository formulation during 18 months in order to verify de viability of the product.

Materials and methods

Materials

Recombinant Streptokinase was obtained from the Center of Genetic Engineering and Biotechnology (CIGB, Havana, Cuba). Ethylenediamine tetraacetic acid salt dehydrate (EDTA) was purchased from Merck (Darmstadt, Germany). Benzalkonium chloride, thimerosal, Tween-20, Tween-80, Span 20, Span 60 were obtained from Merck-Schuchardt, Hohenbrunn, Germany. Suppository base (Witepsol W25) was provided by Sasol (Witten, Germany). Methyl paraben, propyl paraben, sodium salicylate and sodium deoxycholate were obtained from Sigma-Aldrich (USA).

Excipient selection for a rSK suppository formulation

Selection of the absorption enhancer

rSK was diluted at 100 000 IU/mL and mixed with three different enhancers: Sodium salicylate, sodium deoxycholate and EDTA, each at 0.5 %. The biological activity was tested 0, 3, 7 and 15 days later. During the study the solutions were stored at 37 ± 2 ºC.

Selection of the preservative

rSK was diluted at 100 000 IU/mL and the solution was mixed with different preservatives: 0.01 % Benzalkonium chloride, 0.18 % methyl paraben, 0.02 % propyl paraben or 0.001 % thimerosal) and stored at 28 ± 3 ºC. Biological activity and organoleptic characteristics were tested 0, 3, 7 and 30 days later.

Selection of the emulsifiers

The following non ionic tensioactives were used to elaborate suppository formulations: (Tween-20, Tween-80, Span 20 and Span 60 at 1, 2, 4 %). Then, the physical characteristics were evaluated.

Suppository preparation

Three consecutive, independent batches of suppository formulations were produced to investigate their long term stability. Suppositories were prepared, by melting the suppository base in a water bath at 54 ºC. Thimerosal at 0.001 % and sodium salicylate at 0.5 % were added continuously at constant stirring until a homogenous dispersion was reached. The dispersion was cooled down up to 36 ºC and, subsequently, rSK (100 000 IU/g of suppository) was incorporated with constant agitation. The mixture was then spilled in cold suppository molds of 2 g. Suppositories were left to solidify and the excess was removed until final ejection. Then they were refrigerated at 5 ± 3 ºC and periodically analyzed.

Drug extraction

The content of Streptokinase in a suppository was extracted after one unit was melted in 4 mL of water at 37 ºC. The dilution was mixed for 1 minute in a Vortex-type mixer and then centrifuged at 8000 rcf for 2 minutes. The solutions were stored at 5 ± 3 ºC until its analysis.

Determination of Recombinant Streptokinase by substrate chromogenic

This test is based on the formation of an activating complex mol/mol between the Streptokinase and the plasminogen, that is capable of activating the free plasminogen in the plasma or plasmin. It is measured quantitatively for the liberation of a colored molecule that is directly proportional to the units of Streptokinase used [11].

SDS-PAGE analysis

The samples were analyzed by SDS/PAGE as described by Laemmlli [12]. The gels were scanned and densitometrically analyzed after Coomassie blue staining. A reference standard of rSK provided by the Quality Control Division of CIGB was used as the positive control.

Other determinations to suppository stability

Softening time, weight, organoleptic characteristics, microbiological tests were all determined in compliance with acceptance levels criteria (USP) [13].

Long term stability studies

Suppositories with the best excipient formulation were assessed for rSK stability after storage at 5 ± 3 ºC. Suppositories were tested for weight, organoleptic properties, softening time, microbiology, and preservative effectiveness (Table 1), and also for biological activity and purity. The long-term stability assay was designed in agreement with the principles of the International Conference on Harmonisation guideline “Q1A Stability Testing of New Drug Substances and Products” to propose a retest period or shelf life for registration of pharmaceuticals for human use ICH harmonized tripartite guideline evaluation for stability data Q1E current step 4 version dated 6 February, 2003. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1E/Step4/Q1E_Guideline.pdf

Results and discussion

The preformulation strategy plays a vital role to obtain a proper and stable formulation dosage form. It involves the application of biopharmaceutical principles to the physicochemical parameters of the drug. This approach helps the formulator to reduce preparing unnecessary formulations, leading to reduced costs and time effectiveness. In order to obtain a safe and efficacious suppository formulation, different excipients were evaluated.
The passage of drug molecules through the skin could be an important and rather troublesome stage in percutaneous drug delivery. Most molecules penetrate through skin via intercellular microroute and, therefore, require disrupting or bypassing its molecular structure [16]. Chemical substances temporarily diminishing the barrier of the skin and known as absorption promoters can enhance drug flux. Many classes of chemical permeation enhancers have been used including sulfoxides, fatty acids, surfactants, chelating agents and others [17].

In this study, the effects of different promoter enhancers (sodium deoxycholate, sodium salicylate and EDTA) on rSK biological activity were evaluated. According to the values obtained in the biological activity of the rSK diluted with the absorption enhancers tested, the protein was stable for 15 days at 37 °C.

No statistical differences were obtained during that time or when the biological activity was compared to different absorption promoters (p > 0.05) (Figure 1).

Some studies have reported that bile salts and its derivatives as sodium deoxycholate affect the intestinal glyocalyx structure and decrease gastric and intestinal mucosa [18]. However, the use of sodium deoxycholate as enhancer was eliminated from the study, because it is reported certain damage caused by bile salts on the mucosa and the possible carcinogenic effects of its rectal administration [19].

Sodium salicylate and EDTA were selected in this study, because they are chelating agents that form complexes with calcium and magnesium ions present between intestinal epithelial cells and ultimately lead to the opening of tight junctions, and thereby increase permeability for exogenous substances [18].

Due to the good stability of rSK formulated with sodium salicylate and EDTA as enhancers, they were used in an animal model of hemorrhoidal thrombosis. One suppository containing 100 000 IU/g rSK was administered to rabbits, the best results obtained with sodium salicylate as enhancer to develop the suppository formulation.

The effects of methyl and propyl parabens, benzalkonium chloride and thimerosal on rSK and suppository formulation were evaluated. Methyl and propyl parabens, benzalkonium chloride and thimerosal on rSK biological activity were evaluated. According to these results, sodium salicylate was selected as enhancer to develop the suppository formulation.

Figure 1. Effect of different absorption enhancers on recovery percent of biological activity of the Recombinant Streptokinase, after 15 days of storage at 37 °C. Biological activity was determined by the S-2251 chromogenic-substrate method.
characteristics for the formulation due to phase separation. The procedure resulted in undesired organoleptic characteristics. Also, the rSK biological activity was evaluated in an antigens test, nasal and ophthalmic preparations and skin microorganisms in immunoglobulin preparations, skin cavities were observed (Figure 3). The final formula selected for the stability study was 100 000 IU/g of rSK, 0.5 % sodium salicylate, 0.001 % thimerosal, 1 % Span 60 and Witexsol W25 up to 100 %.

Stability studies for long term of rSK suppository

The aforementioned results obtained during the pre-formation screening of the candidate stabilizing excipients allowed us to expect a long shelf life for this formulation. It has been recognized that these types of preformulation studies can only generally provide the basis for starting long term stability studies, but they may fail to reflect or predict the desired behavior of proteins. Three independent and consecutive batches were manufactured using rSK at 100 000 IU/g by suppository and real time stability studies at the purpose storage condition (5 ± 3 ºC) were undertaken (Table 2).

Influence of emulsifiers on the physical properties of the suppository

Emulsifiers derived from natural sources like non-ionic surfactants are expected to be safer than the synthetic ones. They are less toxic compared to ionic surface-active agents. The high and low hydrophilic and lipophilic balance (HLB), and subsequent hydrophilicity or hydrophobicity of surfactants are required for the immediate formation of oil-in-water (o/w) or water-in-oil (w/o) droplets, respectively, and/or rapid spreading of the formulation in the aqueous or oil environments, providing a good dispersing/self-emulsifying performance [27].

The emulsifiers tested to formulate the rSK suppository were: Tween-20, Tween-80, Span 20 and Span 60 at 1, 2 and 4 % all of them. All of these surfactants, being non-ionic, are much less damaging to the skin than other classes and could allow better permeation of rSK [28, 29].

When preparing the suppository formulation by adding Tween-20 or Tween-80, the preparation showed a flocky aspect and suppositories didn’t get the torpedo shape. The high HLB is necessary for the formation of o/w droplets of the formulation but the oleaginous phase in the suppository is bigger than the aqueous phase and with emulsifiers with low HLB better results were obtained.

Figure 2. Effect of thimerosal on the recovery percent of biological activity of Recombinant Streptokinase, after 30 days of storage at 28 ºC. Biological activity was determined by the S-2251 chromogenic-substrate method.

Figure 3. Suppository formulated with 1 % Span 60.
Prepared suppositories were randomly selected, visually inspected, cut longitudinally and their surfaces were examined with naked eye. The initial examination of the formulation indicated no physical change, such as color, odor, and the surface was flat and without cavities. Also determination of weight uniformity was measured and no suppositories were deviated from average weight by more than 10% of established weight.

The release of the active ingredient from the vehicle is related to the melting point of the vehicle and the solubility of the drug in the vehicle. Some studies have indicated that the release of drug is higher from bases with low melting range than from those of comparatively higher melting range [30]. In rSK suppository the time taken to melt them was measured when immersed in a water bath and maintained at a constant temperature of 37 ± 0.5 °C and it was no longer than 30 minutes in all suppositories tested, which complied with the limits established [31].

The current formulation was stable for 18 months at 5 ± 3 °C (Table 2). During this storage the biological activity of the active ingredient varied from 70 and 130% of its nominal value. The acceptance limit was measured and no suppositories were deviated from average weight by more than 10% of established weight.

<table>
<thead>
<tr>
<th>Months</th>
<th>Biological activity* (IU/suppository)</th>
<th>Purity by SDS-PAGE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batch 1</td>
<td>Batch 2</td>
</tr>
<tr>
<td>0</td>
<td>205737.78</td>
<td>201225.19</td>
</tr>
<tr>
<td>3</td>
<td>209551.11</td>
<td>254506.67</td>
</tr>
<tr>
<td>6</td>
<td>248348.89</td>
<td>206652.22</td>
</tr>
<tr>
<td>9</td>
<td>207904.00</td>
<td>201852.22</td>
</tr>
<tr>
<td>12</td>
<td>193354.44</td>
<td>183378.89</td>
</tr>
<tr>
<td>18</td>
<td>153580.08</td>
<td>153451.13</td>
</tr>
</tbody>
</table>

* Determination of the biological activity of the recombinant streptokinase by the S-2251 chromogenic-substrate method.

SDS-PAGE: sodium dodecyl sulphate/polyacrylamide gel electrophoresis.

Conclusions

A suppository with rSK as active pharmaceutical ingredient was developed. The excipients were selected according to the compatibility with rSK and the best quality properties of the suppository. Excipients included sodium salicylate as enhancer and anti-inflammatory agent, thimerosal as preservative, Span 60 as emulsifier and Witepsol W25 as base. This formulation was biologically, chemically, physically and microbiologically stable when stored for 18 months between 2 and 8 °C.

References