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ABSTRACT
The use of Bacillus thuringiensis in biological pest control and to obtain insect resistant transgenic plants commonly 
rely on basic studies of the action mechanism of Cry toxins in the target insects. These studies are combined with 
toxin insecticide bioassays in Brush Border Membrane Vesicles (BBMVs) obtained from the insects’ epithelial gut 
tissues. One of the toxins, Cry3Aa from B. thuringiensis ssp. tenebrionis, has shown activity against sweet potato 
weevil (Cylas formicarius ssp. elegantulus Fabricius), the main pest for this crop. Here is described for the first time 
the binding capacity of Cry3Aa to BBMVs vesicles obtained from the midgut of second-third instar larvae of this 
insect. BBMVs were purified and insecticide protein labelling and binding assays performed according to standard 
procedures. Four proteins (approximately 20, 30, 50 and 85 kDa, respectively) were detected as mediating bind-
ing of the CryAa toxin to the insect gut, as putative receptors. Peptides from these proteins were sequenced and 
aligned for homology detection against database sequences, leading to their identification as previously unreported 
proteins with this function. Additionally, storage roots from transgenic sweet potato plants expressing high levels of 
the Cry3Aa toxin were used in an in vivo bioassay to test insect control under lab conditions. The results suggested 
that the toxic activity of Cry3Aa from B. thuringiensis ssp. tenebrionis against sweet potato weevil could involve the 
toxin binding to some of the detected proteins in the insect gut.

Keywords: sweet potato, Bacillus thuringiensis ssp. tenebrionis, Sweet potato weevil, Cry3Aa toxin, binding assays

Biotecnología Aplicada 2015;32:2231-8

RESUMEN
Identificación de proteínas de membrana intestinal de Cylas formicarius ssp. elegantulus con función receptora 
para la toxina Cry3Aa de Bacillus thuringiensis ssp. tenebrionis. El uso de Bacillus thuringiensis como control bioló-
gico y para la obtención de plantas transgénicas resistentes a insectos se basa en estudios del mecanismo de acción 
de las toxinas Cry sobre insectos blanco. En este trabajo se describe por primera vez la unión de la toxina Cry3Aa a 
vesículas de membrana de borde en cepillo del epitelio intestinal del tetuán del boniato (C. formicarius sp. elegantulus 
Fabricius), la principal plaga de ese cultivo. Para esto se desarrollaron bioensayos con la toxina previamente marcada. 
Se confirmó la presencia de cuatro proteínas (alrededor de 20, 30, 50 y 85 kDa) en el intestino del insecto mediante 
Western Blot, presuntamente con función efectora. Péptidos de estas proteínas se secuenciaron y sus secuencias se 
compararon con las reportadas en bases de datos, lo que permitió su confirmación como proteínas no reportadas 
con esa función. Además, se evaluó la actividad insecticida de la toxina Cry3Aa en tubérculos de plantas transgénicas 
de boniato con la expresión a altos niveles de la toxina, en un bioensayo in vivo bajo condiciones de laboratorio. 
Los resultados sugieren que la toxicidad de la toxina Cry3Aa de B. thuringiensis ssp. tenebrionis contra el tetuán del 
boniato pudiera estar mediada por su unión a algunas de las proteínas identificadas en el intestino del insecto.
Palabras clave: boniato, Bacillus thuringiensis ssp. tenebrionis, tetuán del boniato, toxina Cry3Aa, ensayos de unión

Introduction
Insect infestations cause approximately 15 % of the 
global economic losses in relevant crops [1], with 
more than 9000 species affecting commercial crops 
[2]. Chemical insecticides have certainly helped, 
but they are very expensive [3], pose serious treats 
to the environment and induce insecticide resistance 
[4]. Among the alternatives, biological control agents 

have become a priority for agriculture, particularly 
the use of Bacillus thuringiensis toxins (Bt) [5-8]. 
Their use has dramatically reduced the application of 
conventional chemical insecticides [8].

More than 350 Bt toxins have been identified so 
far, and classified into 72 groups of Cry proteins [9]. 
Some reported toxins with activity against coleopteran  
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are Cry7Aa obtained from BTS137J which belongs to 
the serovar H5 galleriae [10, 11] and Cry8Ca from 
B. thuringiensis japonensis [12, 13]. Particularly, 
Cry3A, Cry3B and Cry3C groups, produced by B. 
thuringiensis tenebrionis (Btt) [14], san diego, mor-
risoni, tolworthi and  galleriae, [15-17] show specific 
activity against this insects’ order. 

In fact, Cry3Aa was the first δ-endotoxin discov-
ered with coleopterocide activity [14], its gene being 
cloned and characterized [17]. Besides, the Cry3Aa 
crystal structure was the first ever elucidated for a Bt 
toxin [18]. Its simpler structure, as compared with 
those of other Cry toxins, makes it a useful model 
to explore the structure-function relationship of the 
toxin ligand-insect membrane receptor molecular 
complex [19]. That interaction in involved in the 
triggering events mediating the insect intoxication 
process [20]. Hence, the Cry3Aa action mechanism 
(crystal solubilisation, toxin activation and receptor 
binding) was investigated in coleopteran species, be-
ing described particularly in Leptinotarsa decemlin-
iata [21].

But basic research is required on Bt toxins mecha-
nisms of action for its potential use against the given 
target insects [22] as well as to identify their species’ 
specific target receptors. Some mechanistic models 
have been developed using various methodologies 
including in vitro testing in Brush Border Membrane 
Vesicles (BBMVs). These are vesicles derived from 
insects’ intestinal epithelial cells, which correspond to 
the plasma microvilli membranes of the lumen. They 
have been used to study the electric and chemical ion 
transport and binding of toxins to the receptor proteins 
[23], and are among the most widely used techniques 
for studying the toxin-receptor binding [24] and to de-
termine its specificity [25]. 

Notoriously, the interactions Cry toxins-receptors 
and their downstream effects have been more ex-
tensively studied in lepidopteran [26-28]. Many Cry 
toxin binding models have been proposed [27]. Most 
of them involve three types of binding proteins as 
receptors: a cadherin-like protein, a glycosylphos-
phatidylinositol anchored aminopeptidase-N (APN) 
and an alkaline phosphatase (AP) [29]. In the case of 
Cry3Aa toxin, it has been found binding to the midgut 
receptors of several coleopteran insects such as Lepti-
notarsa  decemlineata [21, 30-35], Diabrotica unde-
cempunctata [35], Tenebrio molitor [32, 36], Premno-
trypes vorax [22], Diabrotica virgifera virgifera [37], 
Hypothenemus hampei [2], Cylas puncticolis [38] and 
Anthonomus grandis [39]. 

A modular transmembrane protein (ADAM metal-
loprotease) was also identified in Leptinotarsa  de-
cemlineata as a Cry3Aa binding receptor [29].

However, in the case of the major sweet potato 
pest, the sweet potato weevil (SPW; Cylas for-
micarius ssp. elegantulus), no studies have been 
conducted resulting in an effective pest control by 
using Cry toxins. In fact, increasing the produc-
tion of sweet potato is highly limited by the se-
rious, difficult to avoid damages caused by this 
phytophagous insect due to its cryptic feeding be-
havior, with more than 40 % crop losses [40]. More-
over, no Bt-based coleopteran control products 
have been used because around 90 % of emerging  

pest larvae’ life cycle occurs inside the tubers,  
limiting the efficacy of the biological control. For 
these reasons, the expression of Cry proteins specific 
against SPW in transgenic plants could provide an 
alternative strategy to control this pest [38].

Noteworthy, a correspondence between toxin ex-
pression and insecticide activity against SPW was 
observed [41], in spite of the low Cry3Aa toxin ex-
pression levels in sweet potato plants transgenic for 
the bacterial gene [42] or an optimized synthetic 
plant-like version [43]. In vitro binding assays using  
BBMVs from SPW and a highly purified Cry3Aa 
were standardized [44]. In vivo biological activity as-
says with transgenic tubers against SPW adults were 
performed after useless attempts with artificial diets 
in larval stages [41].

Since the elucidation of the Cry3Aa mechanism of 
action is paramount for establishing a successful pest 
control strategy, this work was aimed to identify the 
putative Cry3Aa receptor proteins at SPW gut level. 
The correspondence of the in vitro binding assays with 
the toxicity to insects in transgenic Cry3Aa sweet po-
tato plants was also addressed. As far as we know, 
these binding assays were not previously tested for 
this particular weevil. Potential advantages includes 
assessing Bt proteins with different receptor binding 
properties, Bt toxins combinations by gene stacking 
or pyramiding in transgenic plants for increasing their 
toxicity or to delay the development of insect resis-
tance to toxins.

Materials and methods

Insects and sweet potato tubers
C. formicarius ssp. elegantulus adults and larvae were 
collected from infected sweet potato tubers, harvested 
at the Experimental Station of the National Research 
Institute of Tropical Crops (INIVIT), Camagüey, 
Cuba, as well as all the vegetable material used in 
bioassays. Both adults and larvae were directly taken 
from the tubers at the time of experimentation.

Cry3Aa protoxin purification 
Cry3Aa was purified from the sporulated culture of a 
Bt-EG2158 strain (kindly donated from the Bt stock 
of the Center for Genetic Engineering and Biotech-
nology, Havana, Cuba [45]) following previously de-
scribed methods [46, 47]. The procedures included 
strain growing in SP medium (8 g/L Nutrient Broth, 
1 mM MgSO4/H2O, 13.4 mM KCl, 0.01 mM MnCl2, 
0.2 mM FeSO4·7 H2O, 0.5 mM CaCl2, pH 7.0) at  
30 ºC for 72 h to complete sporulation and autoly-
sis. Cells and crystals were harvested by centrifuga-
tion and washed with TET buffer (10 mM Tris-HCl,  
1 mM EDTA, 0.05 % Triton X-100, pH 7.5). Spores 
and crystals were suspended in TTN buffer (20 mM 
Tris-HCl, 300 mM NaCl, 0.1 % Triton X-100, pH 
7.2), disrupted by sonication and separated in dis-
continuous sucrose gradients. Crystals were solubi-
lized in carbonate buffer (50 mM Na2CO3, pH 10.2) 
plus 0.1 % β-mercaptoethanol at 37 ºC for 12 h. 
Purified protoxin was quantified using the Bradford 
protein assay (Bio-Rad) with bovine serum albumin 
(BSA) as standard. The protein purity was evaluated 
by densitometric analysis of the Coomassie stained 
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protoxin band with BSA reference resolved by So-
dium Dodecyl Sulfate-Polyacrylamide Gel Electro-
phoresis (SDS-PAGE) at 12.5 % [48]. 

Toxin activation
The toxin was activated by using the protocol de-
scribed by Bollag and Edelstein [49]. The optimal 
condition for soluble protoxin activation was trypsin 
(Sigma): protoxin molecular ratio 1:1 at 37 °C for  
60 min. This process was followed by centrifugation at 
13 000 g for 10 min. The supernatant was used as the 
active toxin preparation, quantified as abovementioned 
and checked by SDS-PAGE at 12.5 %. 

Toxin labelling
Toxins were biotinylated using a biotin labeling kit 
(Roche Applied Science) according to the manufac-
turer’s instructions, except for reactions being car-
ried out in a NaCO3 (pH 10) buffer, due to the limited 
solubility of the Cry3Aa toxin trypsinized form below  
pH 10 [33]. The non-reacted ester reagent was re-
moved by gel filtration on a Sephadex Q25 column, 
the sample eluted with phosphate buffer solution 
(PBS; pH 7.4) and collected in 500 µL aliquots. Pro-
tein integrity was checked by SDS-PAGE 12.5 %.

BBMVs purification
BBMVs were isolated starting from 20 g of second-
third instar SPW larvae using the differential mag-
nesium precipitation method, as developed by Wol-
fersberg et al. [50]. Total proteins were quantified as 
previously described for protoxin quantification.

The presence, integrity and purity of purified vesi-
cles were confirmed by SDS-PAGE at 12.5 %, scan-
ning transmission electron microscopy and enzymatic 
assays, respectively.

The main bands detected in SDS-PAGE reacting 
with the Cry3Aa toxin were dissected from the gel 
and stored at –70 °C for mass spectrometry analysis.

Samples of 20 µL of BBMVs preparations were fi-
xed in cooper grills, processed with uranyl acetate at  
2 % and observed under a transmission electron mi-
croscope (MET-JEOL JEM 1400).

The aminopeptidase (AP) activity was determined 
by the Leucine AP Sigma Assay in the BBMVs final 
preparations and in the initial homogenates according 
to Wu et al. [19]. The comparison between both AP 
values supported the evaluation of BBMVs prepara-
tions purity.

In-gel protein digestion
The Coomassie blue stained bands were excised from 
SDS-PAGE gels, washed with milli-Q water (5 min) 
and incubated at 37 ºC with 50 % acetonitrile in 1 % 
ammonium bicarbonate (pH 8.3) until they become 
colorless. Gels were additionally cut in small cubes, 
dried in a SpeedVac concentrator (Savant) and further 
rehydrated in 25 mM ammonium bicarbonate buffer 
containing sequencing-grade trypsin (Promega, USA) 
at 12.5 ng/mL. The in-gel digestion proceeded over-
night at 37 ºC. The resultant proteolytic peptides were 
eluted in 30 mL of ammonium bicarbonate at room 
temperature (30 min) and absorbed onto C18 ZipTip 
(Millipore, USA), previously equilibrated following 
the manufacturer instructions. The ZipTips were  

washed with formic acid solution (5 %, v/v), and elu-
ted in 3.0 µL of 60 % acetonitrile, 0.1 % formic acid. 
The eluate was loaded into gold-coated borosilicate 
nanotips (Micromass, UK) for protein identification 
by mass spectrometry.

Mass spectrometry
The low energy ESI-MS and MS/MS spectra were 
acquired using a hybrid quadrupole orthogonal ac-
celeration tandem mass spectrometer Q-Tof 2 (Mi-
cromass; Manchester, UK) fitted with a Z-spray 
nanoflow electrospray ion source. Other measuring 
conditions and data processing were the same as re-
ported previously [51].

Cross-species protein identification
The most intense signals observed in the ESI-MS 
spectra were further analyzed by ESI-MSMS and 
these spectra were manually interpreted in order 
to obtain partial or complete sequence information 
of the analyzed peptides. The resultant sequences 
were directly loaded onto the MS BLAST program  
[52, 53] to perform the cross-species protein identi-
fication in the sequence database. For each analyzed 
band the sequences of all peptides were introduced 
into the MS BLAST program as a text file separa-
ted by hyphens, as suggested by Shevchenko et al. 
[52, 53]. Cross-species protein identifications were 
considered as correct when the alignment scores pro-
vided by the MS BLAST program were statistically 
significantly considered as positive hits. Sequence 
alignments were performed at http://dove.embl-
heidelberg.de/Blast2/ using the default parameters 
[52, 53].

Binding experiments on intact BBMVs from SPW
For binding experiments, seven BBMVs concen-
trations ranging from 5 to 35 µg were mixed each 
with 5, 10, 15 and 20 ng of biotin-labeled toxin in  
100 μL of PBS/Tween buffer (0.1 % Tween-20). 
After incubation for 1 h at room temperature, sam-
ples were centrifuged at 13 000 g for 30 min. The 
pellet was washed with 50 mM of NaCO3 buffer 
(pH 10), centrifuged again and suspended in 30 µL 
of same buffer. BBMVs proteins bound to labeled 
toxin were plotted on nitrocellulose membrane sli-
des (Hybond-C extra from Amersham Biosciences), 
slides further incubated overnight in blocking bu-
ffer solution (maleic acid 100 mM, 150 mM NaCl, 
1 % skim milk as blocking reagent, pH 7.5). The 
blocked membrane was washed, incubated for 1 h 
with streptavidin-peroxidase conjugate 1:1000 in  
PBS and developed with ECL reagent (ECL Wes-
tern blotting analysis system from Amersham Life 
Science). As control, sample vesicles without biotin-
labeled toxin incubation were used at the same con-
centration and processed in the same way as the test 
samples.

Separation of BBMVs proteins of SPW and 
Western blotting analysis
BBMVs were suspended at 5 mg/mL in a buffer con-
taining 20 mM Tris-HCl, 100 mM NaCl, 5 mM EDTA, 
pH 8.5 and stirred at 4 ºC overnight for solubilization. 
Insoluble material was removed by centrifugation at 
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13 000 g for 1 h at 4 ºC. The supernatant was five-fold 
diluted with 20 mM Tris-HCl, pH 8.5 and syringe- 
filtered through a 0.2 μm membrane. Filtered BBMVs 
(50 mg) were loaded on a Sephadex G-75 ultrafine 
column and eluted in a phosphate buffer at a flow rate 
of 2 mL/min for 2 h. Seven fractions were collected, 
Amicon concentrated and quantified as described in 
above sections. Then, 20 µg of BBMVs proteins from 
each fraction were mixed with SDS-PAGE sample 
buffer, heated for 5 min at 100 ºC and loaded onto a  
12.5 % polyacrylamide gel. After electrophoresis, 
separated proteins were transferred to nitrocellulose 
membrane according to Towbin et al. [54] (30 min 
at 20 V) and incubated overnight in a blocking buffer 
solution. The blocked membrane was washed, incu-
bated for 1 h with 50 ng of biotin-labelled Cry3Aa, 
washed again and incubated with streptavidin-pe-
roxidase conjugate 1:1000 in PBS. The signal was 
developed with ECL reagent (ECL Western blot-
ting analysis system from Amersham Life Science). 
Proteins in fractions reactive to Cry3Aa toxin were 
processed by mass spectrometry. Sequences of some 
peptides of these proteins were subjected to analysis 
by homology comparison in databases according to 
Altschul et al. [55].

Bioassays
Bioassays were carried out using storage roots of two 
lines of transgenic Cry3Aa sweet potato tubers, regar-
ded as high expression lines (with toxin levels ranging 
from 0.1-0.25 µg/g of fresh storage roots) and storage 
roots of the wild type as a control. Cry3Aa protein 
in storage roots was quantified using the commercial 
Agdia Cry3Aa DAS-ELISA test System (Agdia Inc., 
Elkhart, USA).

Four tubers were placed in plastic cages according 
to their sizes in a completely randomized design at  
25 ºC and 70 % of relative humidity, where they were 
infested with two adult couples of SPW per tuber, ac-
counting for eight females per cage. Sexing of weevils 
was conducted using the size of the antennal segment 
as reported by Cisneros and Alcazar [40]. After 48 h, 
adult couples were removed, expecting oviposition 
rates of 4.3 eggs per female [40]. Cages were then 
bunged and tubers were incubated until adult weevils 
emerged.

The toxic effect of transgenic storage roots on C. 
formicarius insects was evaluated by the number of 
emerged adults after 30 to 35 days of incubation. The 
bioassay was replicated three times. The average va-
lues of adults for each treatment and replicates were 
analyzed using a One way ANOVA assay and the di-
fferences were statistically compared using the F test. 
Data were processed by using Statgraphics Plus 5.1 
for Windows.

Results and discussion
Cry3Aa protoxin purification
In this study, BBMVs from C. formicarius ssp. ele-
gantulus were tested for the ability to bind the Cry3Aa 
from B. thuringiensis ssp. tenebrionis. Some BBMVs 
proteins were identified as putative receptors to this 
Cry toxin.

Cry3Aa crystals prepared from B. thuringiensis ssp. 
tenebrionis were composed of the expected 67 and  

73 kDa protoxin-sized proteins, this last predominant 
in the preparation. This result was in agreement with 
previous reports on the predominance of the 73 kDa 
form in inclusions when B. thuringiensis. ssp. tene-
brionis was grown in nutrient-rich broths, presumably 
due to a lower production of bacterial proteases under 
those conditions [56]. The trypsinized Cry3Aa toxin 
used in the binding assays migrated at 55 kDa (Fig-
ure 1), as expected [45]. The Cry3Aa was obtained at  
1.3 mg/mL with a purity of 96.7 %, its trypsinized 
form rendering 0.9 mg/mL.

The presence of the 67 kDa form can be explained 
by the proteolytic process of the highest protein to the 
fully toxic Cry3Aa N-terminus product, losing the  
49-57 residues segment during or after crystal forma-
tion. This modification has been extensively described 
[57-59], as well as the crystal protein being only 
soluble at pH values above 10 or below 4 [56]. The 
rich growing media and pH conditions tested could 
have also favored the preponderance of the 73 kDa  
form in the preparation. Moreover, the 55 kDa ob-
tained after trypsin digestion can be explained by a 
mechanism as mentioned in similar assays performed 
at pH 10.5 [57].

The labeled toxin integrity was confirmed by SDS-
PAGE 12.5 %. No degradation pattern was observed 
(data not shown).

Isolation and characterization of BBMVs  
from SPW
BBMVs yields, approximately 0.5 mg/mL, were very 
low considering the starting source of 20 g of entire 
larvae. This situation seems to be common for all Co-
leoptera spp., due to the small larval size [60]. The se-
cond-third instar SPW larvae used in the preparation 
reported in this work were between 4-6 mm long and 
0.5-1 mm in diameter in the cephalic region (Figure 
2). However, higher yields around 1.52-1.83 mg/mL 
have been obtained from the same starting material in 
small coleopteran larvae [61].

The vesicle preparation was considered as pure 
according to its aminopeptidase activity, which is a 
specific quality indicator to establish the purity of 
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Figure 1. Purification of Cry3Aa protoxin in SDS-PAGE 12.5 %. 
Lanes: 1, Molecular weight marker (MWM, Mid-range; Prome-
ga); 2, Cry3Aa protoxin; 3, Cry3Aa solubilized and trypsinated.
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BBMVs. Final AP values appear enriched almost 20 
times as compared with the initial homogenate deter-
mination. Similar values of aminopeptidase activity 
have been described for BBMVs isolated from whole 
third instar of C. scripta larvae and midguts of L. de-
cemliniata [19].

In BBMVs SDS-PAGE, seven major bands were 
observed at approximate sizes of 15, 20, 30, 50, 85, 
100 and 150 kDa, respectively, which were sliced 
from the gel for further characterization (Figure 3).

Coinciding with this wide size range, Martínez and 
Cerón [61] reported on proteins between 24 to 116 kDa  
in a similar preparation of BBMVs from Premnotrypes  
vorax, the most intense bands with sizes 45, 60, 75 
and 97 kDa. Only an equivalent  size could be estab-
lished for the 100 kDa band, while the rest are not 
perceptible in the preparation described in this work. 
Similar patterns were originally described in P. bras-
sicae [50] and later in A. aegypti [62].

There are other coincidences in the SDS-PAGE of 
the SPW BBMVs with previous reports on protein 
bands molecular sizes above 100 kDa. Proteins with 
molecular sizes of approximately 120 kDa were de-
scribed in Manduca sexta [63], 144 kDa in T. molitor 
[36], 148 kDa in Spodoptera fhigiperda and 103, 120 
and 155 kDa in Heliothis virescens and Heliothis zea, 
all of them identified as Cry toxins receptors [22]. 
Other proteins of 120-170 kDa have been identified 
in some Lepidoptera spp. [64-68].

The fact that some midgut membrane proteins ob-
tained, mainly those below 100 kDa, show no coinci-
dences with the previously informed sizes in literature 
for other insects could be conditioned by varied fac-
tors. A plausible explanation is the proteolytic degra-
dation of higher size proteins, rendering small signals. 
This situation could be present when higher-size puta-
tive receptors were proteolytically-degraded without 
affecting the toxin binding domain [69]. Though, the 
small bands could be binding proteins of such sizes. 
BBMVs presence and integrity was corroborated by 
transmission electron microscopy (Figure 4). Vesicles 
showed round shapes with sizes around 100 nm in di-
ameter, coinciding with previous images of BBMVs 
obtained from P. vorax larvae midgut [22].

Binding experiments of the Cry3Aa toxin to 
intact SPW BBMVs
The binding assays with trypsinated-biotinylated 
Cry3Aa toxin confirmed its capacity to recognize 
BBMVs from C. formicarius ssp. elegantulus. Che-
moluminescent signal detected in the immune-dot 
blot assay proportionally increased as the protein 
amount attached to the nitrocellulose membrane, in-
dicating the affinity between the Cry3Aa toxin and 
certain proteins present in the purified vesicles from 
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Figure 2. Sweet potato weevil (Cylas formicarius ssp. elegantu-
lus Fabricius) larvae. A) Second-third instar larvae (20 g, appro-
ximately 350 larvae; Bar = 5 mm). B) Dissected single larvae. 
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Figure 3. Purification of brush border membrane vesicles 
(BBMVs) from the sweet potato weevil (Cylas formicarius ssp. 
elegantulus Fabricius) larvae. MWM: Molecular Weight Marker 
(Mid-range; Promega). 
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Figure 4. Trasmission electron microscopy micrographs of 
brush border membrane vesicles (BBMVs) from the sweet po-
tato weevil (Cylas formicarius ssp. elegantulus Fabricius) larvae 
midgut. Arrows indicate the proper round-shaped vesicles. 
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C. formicarius ssp. elegantulus (Figure 5). This fact 
suggests a possible molecular interaction between the 
intestinal proteins and the toxin structure.

Even when Cry3Aa was the first δ-endotoxin dis-
covered with coleopterocide activity and its affin-
ity to coleopteran midgut proteins has been widely  
described, this work is the first report of the binding of 
the Cry3Aa toxin to C. formicarius BBMVs.

Remarking the relevance of BBMVs binding as-
says, several studies have shown the direct correspon-
dence between toxicity and toxin binding to a receptor 
for lepidopterans control [70]. Moreover, taking into 
account binding assays results, some products have 
been developed based on Bt and satisfactorily used in 
coleopteran pest control, such as: Trident®, M-One®, 
M-Trak® and Novodor®. Also, transgenic plants car-
rying Bt genes against coleopterans, like the trans-
genic Cry3Aa potato against Colorado Potato Beetle, 
commercialized since 1995 until 2000 were success-
fully introduced [71].

Western blot analysis
The binding of C. formicarius BBMVs to Cry3Aa was 
analyzed by Western blotting. From the seven major 
protein bands detected on SDS-PAGE gels, the four 
most intense corresponding to approximate molecular 
sizes of 20, 30, 50 and 85 kDa showed a recognition 
signal as indication of immunoaffinity reaction (Figu-
re 6). Except for the 30 kDa protein band, which was 
almost twice as intense, signal intensity was similar 
for the other three.

These results could indicate that all proteins are 
Cry3Aa putative receptors, but perhaps the 30 kDa 
protein could exhibit higher affinity or is present in 
amounts higher than the others. In Coleoptera ssp. 
there are some reports of receptor proteins at insect 
gut level. Belfiore et al. [36] informed on a 144-
kDa protein, present in the Yellow Meal Worm (T. 
molitor); Ochoa-Campuzano et al. [29] described 
for the first time Cry3Aa receptors of 30, 53, and  
70 kDa in Colorado Potato Beetle (Leptinotarsa dece-
mliniata); Martinez and Cerón [22] informed about a  

70-kDa Cry3Aa-binding protein obtained from a 
BBMVs preparation of Premnotrypes vorax.

Also, in a finding regarding the Cry toxin-aphid gut 
interactions, Li et al. [72] confirmed the specific bin-
ding of Cry3Aa to 25 and 37 kDa proteins in the pea 
aphid, Acyrthosiphon pisum, by ligand blot analysis 
and competition assays.

According to the mass spectrometry results of 
the four proteins detected as recognizing Cry3Aa in 
BBMVs of C. formicarius (Table 1), sequence homo-
logy derived from peptide analysis indicated that the 
30 kDa protein was identified as an annexin IX iso-
form like protein, which has a conserved motive in 
the annexin proteins family from the coleopteran Den-
droctonus ponderosae. In line with these results, there 
is a report regarding a 30.32 kDa peptide identified as 
a Cry3Aa receptor in BBMVs of Leptinotarsa dece-
mliniata, which corresponds to a Prohibitin-1 like pro-
tein from the coleopteran Tribolium castaneum [21].

The 20 kDa protein showed homology with a heat 
shock protein (HSP) Letal-2, comprising a motif con-
served in the HSP family, which is also from T. cas-
taneum.

Proteins of 60 and 85 kDa did not show similarity 
with any other reported proteins. The fact that C. for-
micarius genome is not sequenced could partially ex-
plain this situation. Nevertheless, it is interesting that 
in the case of the 85 kDa, Cry3Aa receptor proteins 
of 85.92 and 86.41 kDa found in BBMVs of Leptino-
tarsa decemliniata have been described as aconitase 
similar proteins from Tribolium castaneum [21].
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Figure 5. Recognition of Bacillus thuringiensis ssp tenebrionis 
Cry3Aa toxin by brush border membrane vesicles (BBMVs) 
proteins from the sweet potato weevil (Cylas formicarius ssp. 
elegantulus Fabricius) larvae midgut. Standard dotblot experi-
ments were run onto nitrocellulose membranes with mixtures 
of BBMVs and biotin-labelled Cry3Aa toxin.

Figure 6. Cry3Aa recognition of electrophoresis-separated 
proteins from brush border membrane vesicles (BBMVs) of 
Cylas formicarius by Western blot. Lanes 1 to 4 correspond to 
20, 30, 50 and 85 kDa proteins, respectively. MWM: Molecular 
weight marker (Mid-range; Promega). 
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Table 1. Peptide sequence of proteins of BBMVs from Cylas formicarius that bind Cry3Aa 
toxin of Bacillus thuringiensis ssp tenebrionis

Protein  
molecular mass

Score  
mascot

55

Sequenced peptide

L/ISSDGVL/ISLTAPL/IATL/ISL/IWAHK20 kDa

SAWEESL/IFNSL/IL/IL/ITR 5830 kDa

Description Species

Annexin IX

Heat Shock 
Protein Lethal-2

Dendroctonus 
ponderosae

Tribolium  
castaneum
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It is noticeable that our finding did not coincide 
with the majority of Cry reported receptors, which 
have been identified as cadherins and APN [31, 73]. 
A partial Diabrotica virgifera virgifera cadherin frag-
ment corresponding to cadherin repeat domains 8-10 
was reported to bind activated Cry3Aa and to enhan-
ce toxicity in several beetles, suggesting that cadherin 
plays a functional role in Bt intoxication [46]. The sy-
nergizing mode of action is described for the coleop-
teran lesser mealworm (Alphitobious diaperinus). It 
is generally reported as Cry receptor in the midgut of 
several lepidopteran, coleopteran and dipteran insects 
[74-76]. In the particular case of Aedes aegypti, the 
role of cadherin mediating the toxicity is described, 
however is assured that it is not the main receptor 
[77]. A peptide containing the predicted toxin bin-
ding region from T. molitor cadherin (TmCad) bound 
Cry3Aa specifically and promoted toxin oligomeriza-
tion in solution. Reduced levels of TmCad transcript 
in actively feeding larvae correlate with a reduction 
in toxicity [20]. Studies have demonstrated the invol-
vement of Cry3Aa1 domain II loop 1 as the binding 
site of CR12 cadherin repeat in this insect species 
[47]. Cadherin receptors for Cry3Aa in Leptinotarsa 
decemlineata were also identified [46].

On the other hand, APN are considered one of the 
most important Bt receptors, over 140 cDNAs have 
been cloned from more than 20 lepidopteran species 
[78, 79]. They are the most abundant enzymes in the 
intestinal microvilli membranes, constituting the 55 % 
of brush membrane intestinal epithelium proteins in co-
leopterans [80]. Nevertheless, in this order of insects 
there is no description of any APN as receptor of Bt 
Cry toxins [21]. Only two proteins of 62 and 65 kDa in 
BBMVs of Anthonomus grandis have shown activity in 
binding experiments with Cry1Ba6 [39].

Nevertheless, in spite of the abundance of APN 
as Cry toxins receptor, it has not been described as 
a coleopteran receptor, while cadherins are the most 
widely distributed and well-studied as Cry recep-
tors in coleopterans. The variability in the kind and 
abundance of the Cry receptors for different insects 
has been reported. The work of Oppert et al. using 
transcriptome profiling of the response of T. molitor to 
Cry3Aa revealed that only transcripts related to alka-
line phosphatase were induced, while the ones related 
to APN and cadherin had similar numbers of reads in 
control and intoxicated larvae [81].

Bioassays
Test for in vivo Cry3Aa-insects assays using either 
fresh tuber discs or artificial diets supplemented with 
toxin were useless. Weevil attracting terpenes could 
be lost during exposure of tuber slices and fungal 
contamination interfered data analysis. Natural con-
ditions in tuber slides are very difficult to achieve due 
to the cryptic feeding behaviour of this insect during 
larval stages to adults. However, bioassays were re-
ported as successfully conducted with sweet potato 
weevils C. puncticollis and C. brunneus in Africa [11, 
38, 82].

As an alternative, transgenic sweet potato tu-
bers carrying a cry3Aa plant-like gene and expres-
sing Cry3Aa toxin already obtained for plant-to-
insect resistance purposes [41] were used for in vivo  

insecticide activity evaluation against SPW under lab 
conditions, higher expressing clones being selected 
(Table 2).

New adult weevils began to emerge at 31-35 days 
post-infestation. Adult emergence was recorded at 40 
days, the observations in agreement with previous  
reports as evidencing that adult weevils fed in the 
same way either on transgenic or untransformed sto-
rage roots [11].

A smaller number of insects obtained from transge-
nic storage roots, with differences statistically signifi-
cant, probably indicates loses in the larvae and pupae 
stages due to the toxic effect of the Cry3Aa expressed 
in plants. Nevertheless, there was not a total control 
of the SPW because there were insects emerging from 
transgenic tubers.

It should be taken into account that transgenic li-
nes used of highest expression of the Cry toxin do 
not produce more than 0.25 µg/g of tuber tissue, 
which could be considered low according to similar  
reports [11].

Another plausible explanation, coinciding with 
this supposed insect resistance, could be that the 
chronology of Cry intoxication would be highly va-
riable depending on the target insect. Some larvae 
can demonstrate clear symptoms within hours after 
intoxication, but in the case of Cry3Aa and the co-
leopteran T. molitor, larvae can survive for weeks 
without obvious signs of paralysis, which ultimately 
occurs [81].

Nevertheless, similar amounts of Cry3Aa in trans-
genic sweet potato plants have been toxic for C. for-
micarius under field conditions [42]. Even when an 
inverse correspondence between tuber damages by 
insect feeding and toxin expression was detected, no 
totally resistant clones were obtained.

Conclusions
In summary, the direct relation observed in this work 
between toxicity and binding experiments indicates 
the presence of proteins at C. formicarius gut, acting 
as putative receptors for Cry3Aa toxin and proba-
bly mediating a toxic mechanism. This is the first 
report on the specific binding of a Cry toxin in C. 
formicarius, as well as the detection of new prote-
ins involved in such interaction. These results could 
help to characterize the mechanism of action of the  
Cry3Aa used in this work. Additionally, the same 
procedure could be used for some other Bt toxins 
with potential SPW control activity. The combination  
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Table 2. Sweet potato weevil (Cylas formicarius) adult 
insects emerged in bioassays with wild type or trans-
genic sweet potato plants expressing the Bacillus thu-
ringiensis ssp tenebrionis Cry3Aa toxin.

Sweet potato 
tubers

Cry3Aa toxin content  
(µg/g of fresh storage roots)

Without Cry3Aa toxinWild type

0.1 Transgenic 
clone 19

Adults  
emerged

69 a

29 b

Transgenic 
clone 24

0.25 31 b

* Data with different letters have statistically significant dif-
ferences (one-way Anova, Duncan test, p > 0.95)
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