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ABSTRACT / RESUMEN 
With the rise in the use of renewable energies, solar panels have proven to be reliable and have a favorable cost-benefit 
ratio, producing energy free of noise and air pollution. Solar panels are subject to considerable variations in working 
conditions due to changes in solar irradiation levels and temperature that affect its semiconductor properties. To be able to 
profit as much as possible from this source of energy, control of the modules and perturbation rejection is very important to 
obtain the highest viable amount of electrical power. This work is concerned with the on-line identification and control of a 
photovoltaic system using neural networks with the Kalman Filter as training algorithm. Having on-line identification and 
control allows the system to be more adaptable to changes in weather and other variations than with common off-line 
methods. 
Keywords:   Photovoltaic systems, solar energy, high order neural networks, Kalman filter, maximum power point tracking.  
Dado el aumento en el uso de energía renovable, los paneles solares han demostrado ser de confianza y tener una 
proporción costo-beneficio favorable, produciendo energía libre de ruido y contaminación del aire. Los paneles solares 
están sujetos a variaciones considerables en sus condiciones de trabajo debido a cambios en niveles de irradiación solar 
y en temperatura, esto afecta sus propiedades como semiconductor. Para poder aprovechar lo más posible esta fuente de 
energía, control de los módulos y rechazo a perturbaciones es muy importante para obtener la máxima cantidad 
disponible de poder eléctrico. Este trabajo está centrado en la identificación y el control en-línea de un sistema 
fotovoltaico, usando redes neuronales con el filtro de Kalman como algoritmo de entrenamiento. Al tener identificación 
y control en-línea, el sistema se vuelve más adaptable a cambios en el clima y a otras variaciones en comparación con 
métodos fuera de línea que son más comunes. 
Palabras Claves: Sistemas fotovoltaicos, energía solar, redes neuronales de alto orden, filtro de Kalman, seguimiento del 
punto de máxima potencia. 
Control Neuronal para el Seguimiento del Máximo Punto de Potencia de un Panel Fotovoltaico. 

1.- INTRODUCTION 

This work is concerned with the application of recurrent high order neural networks to design a robust photovoltaic panel 
model and to control the output voltage of the panel (𝑉𝑃𝑉) to obtain the maximum power available. 
It is important to understand the impact that different uncertainties and parameter variations have on the mathematical 
model of solar panels, since their efficiency depends greatly on environmental conditions (temperature, solar irradiance…). 
In the field of neural networks there are several studies that focus on the characterization and modeling of solar panels based 
on artificial intelligence [1].  Another popular use of artificial neural networks is that of designing maximum power point 
trackers for solar photovoltaic (SPV) modules, as can be observed in [2-4]. The methods usually applied are fuzzy logic 
controllers, genetic algorithms, and radial basis functions; and most of the time they are off-line methods. 
In order to solve the problem of time-varying parameters and uncertainties, in this paper the on-line identification and 
control is proposed. The maximum power point tracker (MPPT) is obtained by means of a searching algorithm; the system 
is  controlled  to  track  the  maximum  power  point  using  a neural  network  to  identify  the  model  on-line. Afterwards, a  
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controller which regulates the switching frequency of an insulated-gate bipolar transistor (IGBT) in the DC-DC buck 
converter, based on the identified model, is developed. 
 
The advantage of this method is that the model is not greatly affected by the high frequency noise created by the IGBT and 
other perturbations, and so it is possible to reduce the use of filters. A conventional perturb and observe maximum power 
point tracker is used to find the output voltage of the solar panel (𝑉𝑃𝑉) necessary to have the maximum electrical power [5, 
6].  
This paper is organized as follows. In section 2, mathematical preliminaries are given, including a review of photovoltaic 
systems, neural networks and the Kalman filter.  In section 3, the neural control is presented, starting with the model of the 
DC-DC buck converter, and continuing with the identification and control design. In section 4, the results are validated 
using Simulink's Simscape Power Systems Blocks1, and a comparison of the neural controller developed with a discrete 
sliding modes controller is shown.  Finally, in section 5, the conclusions are presented. 

2.- MATHEMATICAL PRELIMINARIES 

2.1.- MPPT ALGORITHM APPLIED TO PHOTOVOLTAIC SYSTEMS 

Photovoltaic systems use solar cells to capture solar energy and convert it into electricity. These systems are generally made 
from modified silicon and other semiconductor materials, they are usually long lasting (25 to 30 years); with the advance of 
technology there has been a rise in variety of manufacturers and models available, for a lower price.  
Solar panels can be modeled using an equivalent circuit which consists of a current source 𝐼𝐶𝐶  (whose value in amperes 
depends on the irradiance at the moment of measurement),  a diode for discharge, and two resistors; one of them represents 
losses due to bad connections (𝑅𝑠) and the other represents the leakage current from the capacitor (𝑅𝑠ℎ).  The equation that 
defines the behavior of said equivalent model is [7]: 

                                 

𝐼𝑃𝑉 = 𝐼𝐶𝐶 − 𝐼𝑂 �𝑒
𝑞�𝑉𝑃𝑉+𝐼𝑃𝑉𝑅𝑆�

𝑛𝑘𝑇 − 1� − 𝑉𝑃𝑉+𝐼𝑃𝑉𝑅𝑆
𝑅𝑠ℎ

                                                         (1) 

 
where 𝑘 is the Boltzman constant, 𝑇 is the absolute temperature in the photovoltaic panel, 𝐼𝑜 is the inverse saturation current 
of the diode, 𝑞 is the charge of the electron, and 𝑛 is the ideality factor of the diode.  
From (1), it is clear that there exists a relationship between the voltage and the current in the photovoltaic panel. This 
relationship can be observed in Fig. 1, which shows the existence of a unique maximum power point 𝑃𝑀𝑃𝑃 , for each solar 
panel depending on the temperature and irradiance at the moment of measurement.  

 
Figure 1 

VI graph of solar panel. 
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1 Simulink/Simscape Power Systems are trademarks of The MathWorks, Inc.                               
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To be able to successfully follow the maximum power point of the solar panel, it is necessary to have a reference voltage 
which corresponds to that point, and to design a controller to track that reference voltage; this is commonly known as a 
maximum power point tracker (MPPT). In the literature, there are several algorithms that have been developed for this 
purpose, based on neural networks, incremental conductance, fuzzy logic, etc., [8]. In this paper, the MPPT algorithm used 
is known as the perturb and observe method which can be implemented in real-time, and it is one of the algorithms most 
commonly used for this purpose. This algorithm is based on the following criterion: the voltage of the solar panel is 
perturbed and if for this new value the power obtained has been incremented, then a change in that direction will be spurred; 
if on the contrary, the new power value has decreased, a new perturbation will be realized in the opposite direction. 
The next step is to manipulate the voltage of the panel (𝑉𝑃𝑉) to track the voltage generated by the algorithm (𝑉𝑀𝑃𝑃), this is 
accomplished by using a DC-DC Buck converter, discussed in section the third section, which forces the electrical output 
power of the solar panel to reach the desired value. 

2.2.- RECURRENT HIGH ORDER NEURAL NETWORKS (RHONN) 
In the field of neural networks, usually 𝑘 denotes a sampling step, where 𝑘 ∈ 0 ∪ ℤ+. Also considering the traditional 
definitions of | ∙ | as the absolute value and || ∙ || as an adequate norm for a vector or matrix. Considering a MIMO nonlinear 
system [9]: 

𝑥𝑘+1 = 𝐹(𝑥𝑘 ,𝑢𝑘)                                                                                 (2) 
𝑦𝑘 = ℎ(𝑥𝑘)                                                                                      (3) 

where 𝑥 ∈ ℝ𝑛 ,𝑢 ∈ ℝ𝑛 × ℝ𝑚 → ℝ𝑛 is a nonlinear map.  For (2),  𝑢 is the input vector, it is chosen as a state feedback 
function of the state:   

𝑢𝑘 = ℎ(𝑥𝑘) 
Substituting this in (2) to obtain an unforced system: 

𝑥𝑘+1 = 𝐹�𝑥𝑘 , ℎ(𝑥𝑘)� = 𝐹�(𝑥𝑘)                                                                      (4) 
Defining a discrete-time recurrent high order neural network [10]: 

𝑥�𝑘+1𝑖 = (𝑤𝑖)𝑇𝑧𝑖(𝑥�𝑘 ,𝑢𝑘), 𝑖 = 1, … ,𝑛                                                                  (5) 
where 𝑥�𝑖 is the sate of the i-th neuron, 𝑛 is the state dimension, 𝑤𝑖  is the respective on-line adapted weight vector, and 
𝑧𝑖(𝑥�𝑘 ,𝑢𝑘) is given by: 

𝑧𝑖(𝑥�𝑘 ,𝑢𝑘) = [𝑧𝑖1 … 𝑧𝑖𝐿𝑖]𝑇 = [∏ 𝜓𝑖𝑗
𝑑𝑖𝑗(1)

𝑗∈𝐼1 …∏ 𝜓𝑖𝑗
𝑑𝑖𝑗(𝐿1)

𝑗∈𝐼𝐿1 ]𝑇                                               (6) 

where 𝐿𝑖 is the respective number of high order connections, 𝐼1, 𝐼2, … , 𝐼𝐿1  is a collection of non-ordered subsets of 1,2, . . ,𝑛, 
and 𝜓𝑖  is given by: 

𝜓𝑖 = [𝑆(𝑥�1) … 𝑆(𝑥�𝑛)𝑢1 … 𝑢𝑚]𝑇                                                                      (7) 
where 𝑆(∙) is defined as a logistic function.  
Assuming that the system (2) is observable, it is approximated by the discrete time RHONN parallel representation [11]: 

𝑥𝑘+1𝑖 = (𝑤𝑖∗)𝑇𝑧𝑖(𝑥𝑘 ,𝑢𝑘) + 𝜖𝑧𝑖                                                                     (8) 
where 𝑥𝑖 is the i-th plant state, 𝜖𝑧𝑖 is a bounded approximation error, which can be reduced by increasing the number of 
adjustable weights. 
Assuming that there exists an ideal weight vector 𝑤𝑖∗ such that the norm of the approximation error can be minimized on a 
compact set Ω𝑧𝑖  ⊂ ℝ𝐿𝑖  . The ideal weight vector 𝑤𝑖∗ is used only for analysis, assuming that it exists and is an unknown 
constant [11].  Defining the estimate of the weight as 𝑤𝑖  and the estimation error as: 

𝑤�𝑘𝑖 = 𝑤𝑖∗ − 𝑤𝑘𝑖                                                                                   (9) 
Since 𝑤𝑖∗ is assumed to be a constant, the next expression is true: 

𝑤�𝑘+1𝑖 − 𝑤�𝑘𝑖 = 𝑤𝑘𝑖 − 𝑤𝑘+1𝑖                                                                          (10) 
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2.3.- KALMAN FILTER 
The Kalman filter (KF) estimates the state of a linear system with additive state and output white noises [12-14]. For KF-
based neural network training, the network weights become the states to be estimated. The error between the neural network 
output and the measured plant output is considered to be additive white noise. Since the neural network mapping is 
nonlinear, an extended Kalman filter (EKF) is applied [10]. The goal of the training is to find the optimal weight values that 
minimize the prediction errors. In this paper, an EKF-based training algorithm is used, described by: 

𝑤𝑘+1𝑖 = 𝑤𝑘𝑖 + 𝜂𝑖𝐾𝑘𝑖𝑒𝑘, 𝑖 = 1, … ,𝑛 

𝐾𝑘𝑖 = 𝑃𝑘𝑖𝐻𝑘𝑖𝑀𝑘
𝑖                                                                                  (11) 

𝑃𝑘+1𝑖 = 𝑃𝑘𝑖 − 𝐾𝑘𝑖�𝐻𝑘𝑖 �
𝑇𝑃𝑘𝑖 + 𝑄𝑖  

with  

𝑀𝑘
𝑖 = [𝑅𝑖 + (𝐻𝑖)𝑇𝑃𝑘𝑖𝐻𝑘𝑖 ]−1 

𝑒𝑘 = 𝑦𝑘 − 𝑦�𝑘 

where 𝑒𝑘 ∈ ℝ𝑝 is the observation error and 𝑃𝑘𝑖 ∈ ℝ𝐿𝑖×𝐿𝑖  is the weight estimation error covariance matrix at step 𝑘, 𝑤𝑖 ∈ ℝ𝐿𝑖 
is the weight vector, 𝐿𝑖 is the respective number of neural network weights, p is the number of outputs, 𝑦� ∈ ℝ𝑝 is the neural 
network output, 𝑦 ∈ ℝ𝑝 is the plant output, 𝑛 is the number of states, 𝐾𝑖 ∈ ℝ𝐿𝑖×𝑝 is the Kalman gain matrix, 𝑄𝑖 ∈ ℝ𝐿𝑖×𝐿𝑖 is 
the NN weight estimation noise covariance matrix, 𝑅𝑖 ∈ ℝ𝑝×𝑝 is the error noise covariance, and finally, 𝐻𝑖 ∈ ℝ𝐿𝑖×𝑝 is a 
matrix, in which each entry is the derivative of the i-th neural output with respect to ij-th NN weight, given as: 

𝐻𝑘
𝑖𝑗 = � 𝜕𝑦�𝑘

𝜕𝑤𝑘
𝑖𝑗�

𝑇

                                                                                 (12) 

where 𝑗 = 1, … , 𝐿𝑖 and 𝑖 = 1, … ,𝑛. Usually, 𝑃𝑖  and 𝑄𝑖  are initialized as diagonal matrices. 
The use of EKF algorithms allows for an accurate parameter identification performed on-line. On-line identification with 
artificial neural networks (ANN) using the Kalman filter has been used in [15] where all necessary signals for the ANN 
controller are obtained with a Kalman filter algorithm. In [16] the EKF training algorithm is compared with the maximum 
likelihood estimation (MLE) and the mean square error algorithms for neural network modeling of a nonlinear system and it 
was found that EKF is the fastest to converge and has good performance compared to the other algorithms. A similar 
scheme as the one presented in this paper for identifying a recurrent high order neural network can be seen in [17] where it 
is used with neural inverse optimal control for trajectory tracking of a three-phase induction motor. In [18] the states of a 
doubly fed induction generator connected to a complex power system are estimated using noisy phasor measurement unit 
measurements, this is performed using the unscented Kalman filter with a bad data detection scheme; a comparison with the 
EKF is also discussed. 
 

3.- NEURAL CONTROL DESIGN 

3.1.- BUCK CONVERTER MODEL 
The buck converter circuit used has a capacitor at the connection point with the solar panel, as can be seen in Fig. 2, to be 
able to take 𝑉𝑃𝑉 as a state. 

 
Figure 2 

Buck model. 
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Three states are taken into account in the model, which are: the voltage given by the solar panel 𝑉𝑃𝑉, the voltage at the 
output load resistor 𝑉𝑂 and the current flowing through the inductor 𝑖𝐿. 

𝑥1 = 𝑉𝑃𝑉 
𝑥2 = 𝑉𝑜 
𝑥3 = 𝑖𝐿  

 
Two models are obtained depending on the state of the IGBT control input 𝑢; afterwards, these are combined into a single 
state space model, which will be used for the identification.  
When the IGBT is in conduction mode (𝑢 = 1), the equivalent circuit can be seen in Fig.3. The corresponding state space is 
defined as: 

�̇�1 = −
𝑥3
𝐶1

+
𝑖𝑃𝑉
𝐶1

 

�̇�2 = − 𝑥2
𝐶2𝑅

+ 𝑥3
𝐶2

                                                                                 (13) 

�̇�3 =
𝑥1
𝐿
−
𝑥2
𝐿

 

 
Figure 3 

Buck equivalent circuit with u=1. 
 

When the IGBT is in non-conduction mode (𝑢 = 0), the equivalent circuit can be seen in Fig.4. This way, the state space is 
defined as: 

�̇�1 = −
𝑖𝑃𝑉
𝐶1

 

�̇�2 = − 𝑥2
𝑅𝐶2

+ 𝑥3
𝐶2

                                                                                 (14) 

�̇�3 = −
𝑥2
𝐿

 

From the state spaces (13) and (14), a new state space model can be obtained: 

�̇�1 =
𝑖𝑃𝑉
𝐶1

+ 𝛼13𝑥3𝑢 

�̇�2 = 𝛼22𝑥2 + 𝛼23𝑥3                                                                            (15) 
�̇�2 = 𝛼32𝑥2 + 𝛼31𝑥1𝑢 

 
where, 

𝛼13 = − 1
𝐶1

, 𝛼22 = − 1
𝑅𝐶2

, 𝛼23 = − 1
𝐶2

, 𝛼31 = 1
𝐿
 , 𝛼32 = −1

𝐿
. 
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Figure 4 

Buck equivalent circuit with u=0. 
 
The model (15) can also be written as: 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢                                                                              (16) 
 

where, 𝑓(𝑥) = �

𝑖𝑃𝑉
𝐶1

𝛼22𝑥2 + 𝛼23𝑥3
𝛼32𝑥2

�, 𝑔(𝑥) = �
𝛼13𝑥3

0
𝛼31𝑥1

�. 

In order to obtain a discrete-time model, the Euler discretization method is used: 
𝑥𝑘+11 = 𝑥𝑘1 + 𝛼𝑘1 + 𝛼2𝑥𝑘3𝑢𝑘 
𝑥𝑘+12 = 𝑥𝑘2 + 𝛼3𝑥𝑘2 + 𝛼4𝑥𝑘3 
𝑥𝑘+13 = 𝑥𝑘3 + 𝛼3𝑥𝑘2 + 𝛼6𝑥𝑘1𝑢𝑘                                                                    (17) 

𝑦(𝑘) = 𝑥𝑘1 
with, 

𝛼𝑘1 = 𝑡𝑠𝑖𝑃𝑉𝑘
𝐶1

, 𝛼2 = − 𝑡𝑠
𝐶1

, 𝛼3 = − 𝑡𝑠
𝑅𝐶2

, 𝛼4 = 𝑡𝑠
𝐶2

, 𝛼5 = − 𝑡𝑠
𝐿

, 𝛼6 = 𝑡𝑠
𝐿

. 

 

3.2.- IDENTIFICATION 
Based on the structure of (17), the RHONN proposed for the DC-DC Buck converter is defined as follows: 

𝑥�𝑘+11 = 𝑤𝑘11𝑥�𝑘1 + 𝑤𝑘12𝑆(𝑥�𝑘3) + 𝑤𝑘13𝑆(𝑖𝑃𝑉𝑘) + 0.01𝑢𝑘 
𝑥�𝑘+12 = 𝑤𝑘21𝑥�𝑘2 

𝑥�𝑘+13 = 𝑤𝑘31𝑥�𝑘3 + 𝑤𝑘32𝑥�𝑘2 + 𝑤𝑘33𝑢𝑘                                                                 (18) 
𝑦�𝑘 = 𝑥�𝑘1 

where, 𝑆(∙) is a logistic function, as was seen in the mathematical preliminaries. The second and third equations in (18) 
correspond to the internal dynamics of the system. The second equation describes the dynamics of the voltage at the load 
resistor of the buck converter; due to the nature of the converter, this voltage will always be lower than 𝑉𝑃𝑉. The third 
equation represents the dynamics of the current through the inductor. The weight vectors are updated online using the 
extended Kalman filter (EKF), the estimation error is defined by: 

𝑥�𝑘 = 𝑥𝑘 − 𝑥�𝑘                                                                                  (19) 
It is worth to note that the states need to be measurable.  

3.3.- CONTROL DESIGN 
The control is based on the identification described in the previous subsection, its objective is that the voltage at the output 
of the solar panel reaches the trajectory, 𝑥1

𝑟𝑒𝑓 given by the MPPT, and then the tracking error is defined as: 

𝑒𝑘 = 𝑥�𝑘1 − 𝑥𝑘
1𝑟𝑒𝑓                                                                                (20) 
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The dynamic error is obtained evaluating (20) at step 𝑘 + 1, as follows: 

𝑒𝑘+1 = 𝑥�𝑘+11 − 𝑥𝑘+1
1𝑟𝑒𝑓 = 𝑤𝑘11𝑥�𝑘1 + 𝑤𝑘12𝑆(𝑥�𝑘3) + 𝑤𝑘13𝑆(𝑖𝑃𝑉𝑘) + 0.01𝑢𝑘 − 𝑥𝑘+1

1𝑟𝑒𝑓.                               (21) 

The desired dynamic error is 𝑒𝑘+1 = 𝑘1𝑒𝑘, which implies a control law as: 

𝑢𝑒𝑞 = − 1
0.01

�−𝑘1𝑒𝑘 − 𝑥𝑘+1
1𝑟𝑒𝑓 + 𝑤𝑘11𝑥�𝑘1 + 𝑤𝑘12𝑆(𝑥�𝑘3) + 𝑤𝑘13𝑆(𝑖𝑃𝑉𝑘)�                                        (22) 

where, 0 <  𝑘1 ≤ 1 is a control design constant to minimize the error asymptotically. 

 
4.- SIMULATION RESULTS 
 
In order to test the performance of the proposed neural controller, a simulation is developed implementing the DC-DC Buck 
converter and the solar panel by means of the Simscape Power Systems2 blocks, which includes the models of the electrical 
components, allowing to investigate to some degree the real-time performance of the proposed design and this way have a 
better idea of the necessary considerations for real-time implementation.  
 
For the realized test, the PV array simulated is the Soltech 1STH-215-P, with parameters described in Table 1. The 
simulation scheme is shown in Fig. 5, where it can be seen that the temperature in the cells is considered constant at 25°C. 
At the beginning a 0 𝑊/𝑚2 irradiance is applied, then at 1.5 seconds it is increased to 500 𝑊/𝑚2, finally at 3 and 4.5 
seconds the irradiance is changed to 1000 𝑊/𝑚2 and 3000 𝑊/𝑚2 respectively. At the beginning of the simulation the 
plant is left in open-loop, having as input a linear swept-frequency cosine signal, this time is used to identify the states. At 
0.2 seconds the loop is closed and the controller starts to operate. The objective of the controller is to allow the solar panel 
to function at the highest efficiency possible, which means producing the maximum amount of power according to its 
characteristics and environmental conditions at each moment. In Fig. 6, the theoretical maximum power level given by (1) 
for the particular solar panel chosen and applying the previously described irradiance values, is shown in the red dotted line. 
The blue line represents the power obtained at the output of the solar panel, controlled by the proposed controller as it 
follows the referenced given by the MPPT algorithm. At the beginning, without solar irradiance, the theoretical maximum 
power and the actual power obtained are both obviously zero. When irradiance is applied, it can be seen that the actual 
power quickly converges to the theoretical maximum power with acceptable tracking error. The biggest error is seen at the 
final irradiance change, this error can be attributed to the dissipation of power from the various components of the converter 
and the error in the reference given by the MPPT algorithm. As the demand of power increases, the difference between the 
theoretical maximum power and the reference given by the MPPT algorithm increases as well, reaching an error of up to 7% 
from the theoretical maximum power.   
 
 

Table 1 
PV model characteristics. 

Cells per module: 
60 

Light-generated current (A): 
7.8649 

Open circuit voltage (V): 
36.3 

Diode saturation current (A): 
2.9258e-10 

Temperature coefficient of Voc 
(%/dec.C): 

-0.36988 

Diode ideality factor: 
0.98117 

Temperature coefficient of Isc 
(%/deg.C): 

0.102 

Shunt resistance (ohms): 
313.3991 

Short-circuit current (A): 
7.84 

Series resistance (ohms): 
0.39383 
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Figure 5 

Simulation Scheme 
 

 
Figure 6 

Photovoltaic power at different irradiance values. 
 
 
In Fig. 7, the identification errors are shown. During the first instant the error is quite large because the states of the neural 
network start in random locations, but the error diminishes almost instantly. After the training or identification time of 0.2 
seconds, and while the irradiance remains null, the identification error of the all states is practically zero. When irradiance is 
first applied at 1.5 seconds, there is a peak of .1V and 0.01A in the error of the first and third states respectively; this doesn’t 
cause a significant problem for tracking the desired output power. It can be seen that the first state, which is the voltage at 
the output of the solar panel, is the one with the largest estimation error; nevertheless the errors remain within adequate 
bounds for the entire simulation. Some changes in the amplitude of the estimation error are noticeable every time the 
irradiance value changes.  
In order to compare the proposed neural algorithm with a different controller of the same class, an additional simulation is 
performed using a discrete sliding mode controller (DSM) based on [19]. Since one of the main advantages of using on-line 
identification and control is to be able to withstand parametric changes in the model caused by variations in the 
environment, in this simulation, parametric changes in the DC-DC Buck converter components (capacitors and inductors) 
are applied. To compare the proposed controller with the DSM controller, tracking error statistics of both are analyzed. 
Table 2, shows the mean and the standard deviation (SD) of the error with negative changes in capacitance and inductance 
values to different percentages, shown in the left column. The best values for each statistical measure are emphasized in 
bold. The least amount of standard deviation in the error is achieved with the neural controller when there are no parametric 
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Figure 7 

Identification errors. 
 
changes, and the lowest value for the error mean is achieved with the DSM controller with a 20% change in the parameter 
values. It is evident that the error mean is lower when using the DSM controller but the SD grows as the parametric changes 
increase, meanwhile the neural controller mean and SD remain mostly constant. The error in the mean of the neural 
controller can be attributed to the always existing identification errors, but this way it is shown that the same controller can 
be used for a completely different converter and very similar results as with the original will be obtained.  
 

Table 2 
Statistical comparison of controllers. 

 NN Controller DSM Controller 
 Mean SD Mean SD 

0% 0.4267 2.2182 -0.1681 2.8135 
10% 0.3131 2.2822 -0.1488 2.9877 
20% 0.4472 2.3697 -0.1284 3.322 
30% 0.4143 2.5501 -0.1388 3.5537 
40% 0.4639 2.4802 -0.168 4.0019 

 
5.- CONCLUSIONS 
 
This paper presents a novel application of the neural network on-line identification using the EKF as in [10] to achieve a 
photovoltaic panel MPP reference tracking under varying working conditions. The MPPT method used was the perturb and 
observe algorithm, which is the most common even though it may result in oscillations of the power output reference if a 
proper strategy is not adopted. Although the MPPT algorithm used has a slightly larger error from the theoretical maximum 
power as the demand of power increases, by choosing an appropriate step size it was shown that the theoretical maximum 
power point was reached with an error of less than 8% under all irradiance values applied in this work. The on-line method 
for identification applied provides robustness against parametric changes in the components, although it is important to note 
that the states must be measurable, which in this case would mean having voltage and current sensors for the DC-DC Buck 
converter, which is not considered to be an important impediment. The simulations were developed using the Simscape 
Power Systems blocks, which provide component libraries and analysis tools for modeling and simulating electrical power 
systems, and include the different component dynamics and the model of the photovoltaic array, establishing the basis for a 
real-time implementation. In the first simulation presented, irradiance values changed instantly at different points in time 
and with the presented controller the solar panel was able to produce the maximum amount of power according to its 
particular characteristics. Considering that in a real application irradiance values would not change instantly, but rather as a  
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smooth function, the controller is expected to function in a similar manner, and there would not be abrupt changes in the 
states. This would be an improvement that can be applied to the simulation to see how well it responds to ramp changes and 
smooth irradiance variations. In the following simulations, the same irradiance changes were applied and the performance 
of the proposed controller was validated compared to a DSM controller while applying different amounts of parametric 
change to the DC-DC Buck converter in each simulation. In these simulations it was shown that the proposed controller has 
high precision and small convergence time even when working with a converter that has changed significantly due to 
environmental factors, or even with a different converter. It is left as future work to implement changes in temperature as 
the irradiance varies, which would represent more closely the working conditions of a solar panel. This work represents the 
basis for the real-time implementation of the proposed controller, which would greatly improve the performance of solar 
panels under several conditions, especially those used in the private sector represented by citizens who invest in these 
systems. A different study would need to be realized to be able to determine the extent of utility of these results for the 
industrial sector. The results obtained in this work are important for photovoltaic system users to be able to obtain the 
highest efficiency from their solar panels and this way generate the highest revenue possible, regardless of the climate 
changes.  
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