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ABSTRACT/RESUMEN 
This paper addresses the problem of optimal predefined-time stability. Predefined-time stable systems are a class of fixed-
time stable dynamical systems for which a bound of the settling-time function can be defined a priori as an explicit 
parameter of the system. Sufficient conditions for a controller to solve the optimal predefined-time stabilization problem for 
a given nonlinear system are provided. Furthermore, for nonlinear affine systems and a specific performance index, a family 
of inverse optimal predefined-time stabilizing controllers is derived. This class of controllers is applied to the inverse 
predefined-time optimization of the sliding manifold reaching phase in linear systems, jointly with the idea of integral 
sliding mode control to ensure robustness. Finally, as a study case, the developed methods are applied to an uncertain 
satellite system, and numerical simulations are carried out to show their behavior. 
Key words: Hamilton-Jacobi-Bellman Equation, Lyapunov Functions, Optimal Control, Predefined-Time Stability. 
Este trabajo trata el problema de estabilidad óptima en tiempo predefinido. Los sistemas estables en tiempo predefinido 
son una clase de sistemas  que presentan la propiedad  de estabilidad en tiempo fijo y, además, una cota de la función de 
tiempo de convergencia puede ser definida a priori como un parámetro explícito del sistema. En el trabajo se 
proporcionan condiciones suficientes para que el problema de estabilización optima en tiempo predefinido sea soluble 
dado un sistema no lineal. Además, para sistemas no lineales afines al control y un índice de desempeño específico, se 
deriva una familia de controladores estabilizantes en tiempo predefinido. Esta clase de controladores se aplica a la 
optimización inversa en tiempo predefinido de la fase de alcance de variedades deslizantes en sistemas lineales, junto con 
la idea de modos deslizantes integrales para brindar robustez. Finalmente, como caso de estudio, los métodos 
desarrollados se aplican a un sistema de satélite con incertidumnre, y se llevan a cabo simulaciones numéricas para 
validar su comportamiento. 
Palabras Claves: Ecuación de Hamilton-Jacobi-Bellman, Funciones de Lyapunov, Control Óptimo, Estabilidad de 
tiempo predefinido 
Estabilización de tiempo predefinido óptima para una clase de sistemas lineales 

1.- INTRODUCTION 

Finite-time stable dynamical systems provide solutions to applications which require hard time response constraints. 
Important works involving the definition and application of finite-time stability have been carried out in [1-5] Nevertheless, 
this finite stabilization time is often an unbounded function of the initial conditions of the system. Making this function 
bounded to ensure the settling time is less than a certain quantity for any initial condition may be convenient, for instance, 
for optimization and state estimation tasks. With this purpose, a stronger form of stability, in which the convergence time 
presents a class of uniformity with respect to the initial conditions, called fixed-time stability was introduced [6-9]. When 
fixed-time stable dynamical systems are applied to control or observation, it may be difficult to find a direct relationship 
between the gains of the system and the upper bound of the convergence time; thus, tuning the system in order to achieve a 
desired maximum stabilization time is not a trivial task. 
In this sense, another class of dynamical systems which exhibit the property of predefined-time stability, have been studied 
[10,11]. For these systems, an upper bound of the convergence time appears explicitly in their dynamical equations; in 
particular, it equals the reciprocal of the system gain. Moreover, for unperturbed systems, this bound is not a conservative 
estimation but truly the minimum value that is greater than all the possible exact settling times.  
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On the other hand, the infinite-horizon, nonlinear non-quadratic optimal asymptotic stabilization problem was addressed in 
[12]. The main idea of the results are based on the condition that a Lyapunov function for the nonlinear system is at the 
same time the solution of the steady-state Hamilton-Jacobi-Bellman equation, guaranteeing both asymptotic stability and 
optimality. Nevertheless, returning to the first paragraph idea, the finite-time stability is a desired property in some 
applications, but optimal finite-time controllers obtained using the maximum principle do not generally yield feedback 
controllers. In this sense, the optimal finite-time stabilization is studied in [13], as an extension of [12]. Since the results are 
based on the framework developed in [12], the controllers obtained are feedback controllers. 
Consequently, as an extension of the ideas presented in [11-14], this paper addresses the problem of optimal predefined-time 
stabilization, namely the problem of finding a state-feedback control that minimizes certain performance measure, 
guaranteeing at the same time predefined-time stability of the closed-loop system. In particular, sufficient conditions for a 
controller to solve the optimal predefined-time stabilization problem for a given system are provided. These conditions 
involve a Lyapunov function that satisfy both a certain differential inequality for guaranteeing predefined-time stability and 
the steady-state Hamilton-Jacobi-Bellman equation for ensuring optimality. Furthermore, this result is applied to the 
predefined-time optimization of the sliding manifold reaching phase in linear systems, jointly with the integral sliding mode 
control idea to provide robustness. Finally, as a study case, the predefined-time optimization of the sliding manifold 
reaching phase in an uncertain satellite system is performed using the developed methods, and numerical simulations are 
carried out to show their behavior. 
 

2.- MATHEMATICAL PRELIMINARES: PREDEFINED-TIME STABILITY 
Consider the system 
 �̇�(𝑡) = 𝑓(𝑥(𝑡); 𝜌), 𝑥(0) = 𝑥0, (1) 

where 𝑥 ∈ ℝ𝑛 is the system state, 𝜌 ∈ ℝ𝑏 stands for the system parameters and 𝑓:ℝ𝑛 → ℝ𝑛 is a function such that 𝑓(0) =
0, i.e. the origin 𝑥 = 0 is an equilibrium point of (1). 
Definition 1.1. [8] The origin of (1) is globally finite-time stable if it is globally asymptotically stable and any solution 
𝑥(𝑡, 𝑥0) of (1) reaches the equilibrium point at some finite time moment, i.e., 
∀𝑡 ≥ 𝑇(𝑥0): 𝑥(𝑡, 𝑥0) = 0, where 𝑇:ℝ𝑛 → ℝ+ ∪ {0}. 
Remark 1.1. The settling-time function 𝑇(𝑥0) for systems with a finite-time stable equilibrium point is usually an 
unbounded function of the system initial condition. 
Definition 1.2. [8] The origin of the system (1) is fixed-time stable if it is globally finite-time stable and the settling-time 
function is bounded, i.e. ∃𝑇max > 0:∀ 𝑥0 ∈ ℝ𝑛:𝑇(𝑥0) ≤  𝑇max. 
Remark 1.3. Note that there are several choices for 𝑇max. For instance, if the settling-time function is bounded by 𝑇m, it is 
also bounded by 𝜆𝑇m for all 𝜆 ≥ 1. This motivates the following definition. 
Definition 1.3. [11] Assume that the origin of the system (1) is fixed-time stable. Let 𝒯 be the set of all the bounds of the 
settling-time function for the system (1), i.e., 
 𝒯 = {𝑇max > 0:∀𝑥0 ∈ ℝ𝑛:𝑇(𝑥0) ≤  𝑇max}. (2) 

Then, the minimum bound of the settling-time function 𝑇𝑓, is defined as 

 𝑇𝑓 = min𝒯 = sup
𝑥0∈ℝ𝑛

𝑇(𝑥0) . (3) 

Remark 1.2. The time 𝑇𝑓 in the above definition can be considered as the true fixed-time in which the system (1) is 
stabilized. 
Definition 1.4. [11] For the case of fixed-time stability when the system (1) parameters 𝜌 can be expressed in terms of  𝑇max 
or 𝑇𝑓 (a bound or the least upper bound of the settling-time function), it is said that the origin of the system (1) is 
predefined-time stable. 
With the above definition, the following lemma provides a Lyapunov-like condition for predefined-time stability of the 
origin: 
Lemma 1.1. [10] Assume there exist a continuous radially unbounded function 𝑉:ℝ𝑛 → ℝ+ ∪ {0}, and real numbers 𝑇𝑐 > 0 
and 0 < 𝑝 ≤ 1, such that the system (1) parameters 𝜌 can be expressed as a function of 𝑇𝑐 > 0, and 
 𝑉(0) = 0 (4) 
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 𝑉(𝑥) > 0, ∀𝑥 ≠ 0, (5) 
and the time derivative of 𝑉 along the trajectories of the system (1) satisfies the differential inequality 
 �̇� ≤ −

1
𝑇𝑐𝑝

exp(𝑉𝑝)𝑉1−𝑝 . (6) 

Then, the origin of the system (1) is predefined-time stable with 𝑇(𝑥0) ≤ 𝑇𝑐. 
Remark 1.3. Lemma 1.1 characterizes fixed-time stability in a very practical way since the condition (6) directly involves a 
bound on the convergence time. However, this condition is not sufficient for 𝑇𝑐 to be the least upper bound of the settling-
time function 𝑇(𝑥0). A sufficient condition is provided in the following corollary of Lemma 1.1. 
Corollary 1.1. Under the same conditions of Lemma 1.1, if the time derivative of 𝑉 along the trajectories of the system (1) 
satisfies differential equation 
 �̇� = −

1
𝑇𝑐𝑝

exp(𝑉𝑝)𝑉1−𝑝 , (7) 

then, the origin of the system (1) is predefined-time stable with sup𝑥0∈ℝ𝑛 𝑇(𝑥0) = 𝑇𝑐. 

Remark 1.4. Note that the equality condition (7) is more restrictive than the inequality (6), in the sense that to obtain the 
equality in (7) no uncertainty in the system model is allowed. 
Definition 1.5. [11] For 𝑥 ∈ ℝ𝑛, 0 < 𝑝 ≤ 1 and 𝑇𝑐 > 0, the predefined-time stabilizing function is defined as 
 Φ𝑝(𝑥;𝑇𝑐) =

1
𝑇𝑐𝑝

exp(‖𝑥‖𝑝)
𝑥

‖𝑥‖𝑝
. (8) 

Remark 1.5. The function Φ𝑝(𝑥;𝑇𝑐) is continuous and non-Lipschitz for 0 < 𝑝 < 1, and discontinuous for 𝑝 = 1. 

The following two lemmas give meaning to the name “predefined-time stabilizing function”. 
Lemma 1.2. [11] For every initial condition 𝑥0, the origin of the system 
 �̇�(𝑡) = −Φ𝑝(𝑥(𝑡);𝑇𝑐), 𝑥(0) = 𝑥0, (9) 

with 𝑇𝑐 > 0, and 0 < 𝑝 ≤ 1 is predefined-time stable with sup𝑥0∈ℝ𝑛 𝑇(𝑥0) = 𝑇𝑐. 

The previous results have been applied to design a robust predefined-time controller for the perturbed system 
 �̇�(𝑡) = Δ(𝑡, 𝑥) + 𝑢(𝑡), 𝑥(0) = 𝑥0, (10) 

with 𝑥,𝑢 ∈ ℝ𝑛 and Δ:ℝ+ × ℝ𝑛 → ℝ𝑛.  The objective is to drive the system (10) state to the point 𝑥 = 0 in a predefined 
time, in spite of the unknown perturbation Δ(𝑡, 𝑥). 
Lemma 1.3. [11] Let the function Δ(𝑡, 𝑥) be considered as an unknown non-vanishing perturbation bounded by |𝛥(𝑡, 𝑥)| ≤
𝛿, with 0 < 𝛿 < ∞. Then, selecting the control input as 
 𝑢 = −𝑘

𝑥
‖𝑥‖

 −Φ𝑝(𝑥;𝑇𝑐) (11) 

with 𝑇𝑐 > 0, 0 < 𝑝 < 1 and 𝑘 ≥ 𝛿, ensures  the  closed-loop system  (10)-(11) origin is predefined-time stable with 
𝑇(𝑥0) ≤ 𝑇𝑐. 
 

2.1.- MATHEMATICAL PRELIMINARES: OPTIMAL CONTROL THEORY 

Consider the controlled nonlinear system 

 �̇�(𝑡) = 𝑓�𝑥(𝑡),𝑢(𝑡)�, 𝑥(0) = 𝑥0, (12) 

where 𝑥 ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ𝑚 is the system control input, which is restricted to belong to a certain set 𝒰 ⊂ ℝ𝑚 
of the admissible controls, and 𝑓:ℝ𝑛 × ℝ𝑚 → ℝ𝑛 is a nonlinear function with 𝑓(0,0) = 0. 
The control objective is to design a control law for the system (12) such that the following performance measure 
𝐽�𝑥0,𝑢(⋅)� = ∫ 𝐿�𝑥(𝑡),𝑢(𝑡)�𝑑𝑡𝑡𝑓

0  is minimized. Here, 𝐿:ℝ𝑛 × ℝ𝑚 → ℝ is a continuous function, assumed to be convex in 
𝑢. 
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Define the minimum cost function 𝐽∗(𝑥(𝑡), 𝑡) as 

 𝐽∗(𝑥(𝑡), 𝑡) = min
𝑢∈𝒰

�� 𝐿�𝑥(𝜏),𝑢(𝜏)�𝑑𝜏
𝑡𝑓

𝑡
�. (13) 

Then, defining the Hamiltonian, for 𝑝 ∈ ℝ𝑛 (usually called the costate), ℋ(𝑥,𝑢, 𝑝) = 𝐿(𝑥,𝑢) + 𝑝𝑇𝑓(𝑥,𝑢), the Hamilton-
Jacobi-Bellman (HJB) equation can be written as 

 0 = min
𝑢∈𝒰

�ℋ �𝑥,𝑢,
𝜕𝐽∗(𝑥, 𝑡)
𝜕𝑥

𝑇

��  +
𝜕𝐽∗(𝑥, 𝑡)

𝜕𝑡
, (14) 

that provides a sufficient condition for optimality. 
For infinite-horizon problems (limit as 𝑡𝑓 → ∞), the cost does not depend on 𝑡 anymore and the partial differential equation 
(14) reduces to the steady-state HJB equation 

 0 = min
𝑢∈𝒰

�ℋ �𝑥,𝑢,
𝜕𝐽∗(𝑥)
𝜕𝑥

𝑇

�� (15) 

which will be used in foregoing. 
 

3.- OPTIMAL PREDEFINED-TIME STABILIZATION 
Definition 3.1. Consider the optimal control problem for the system (12) 

 min
𝑢∈𝒰(𝑇𝑐)

𝐽�𝑥0,𝑢(⋅)� = � 𝐿�𝑥(𝑡),𝑢(𝑡)�𝑑𝑡
∞

0
 (16) 

where 𝒰(𝑇𝑐) = {𝑢(⋅):𝑢(⋅) stabilizes (12) in a predefined time 𝑇𝑐}. This problem is called as the optimal predefined-time 
stabilization problem for the system (12). 
The following theorem gives sufficient conditions for a controller to solve this problem. 
Theorem 3.1. Assume there exist a 𝐶1 radially unbounded function 𝑉:ℝ𝑛 → ℝ+ ∪ {0}, real numbers 𝑇𝑐 > 0 and 0 < 𝑝 <
 1, and a control law 𝜙∗ ∶ ℝ𝑛 → ℝ𝑚 such that 
 𝑉(0) = 0                                                      (17) 
 𝑉(𝑥) > 0, ∀𝑥 ≠ 0,                              (18) 
 𝜙∗(0) = 0                                                     (19) 
 𝜕𝑉

𝜕𝑥
𝑓�𝑥,𝜙∗(𝑥)� ≤ −

1
𝑇𝑐𝑝

exp(𝑉𝑝)𝑉1−𝑝 (20) 

 
ℋ�𝑥,𝜙∗(𝑥),

𝜕𝑉
𝜕𝑥

𝑇

� = 0                             (21) 

 
ℋ�𝑥,𝑢,

𝜕𝑉
𝜕𝑥

𝑇

� ≥ 0, ∀ 𝑢 ∈ 𝒰(𝑇𝑐).    (22) 

Then, with the feedback control 
 

𝑢∗(⋅) = 𝜙∗�𝑥(⋅)� = arg min
𝑢∈𝒰(𝑇𝑐)

ℋ�𝑥,𝑢,
𝜕𝑉
𝜕𝑥

𝑇

� , (23) 

the origin 𝑥 = 0 of the closed-loop system 
 �̇�(𝑡) = 𝑓 �𝑥(𝑡),𝜙∗�𝑥(𝑡)�� , (24) 

is predefined-time stable with 𝑇(𝑥0) ≤ 𝑇𝑐. Moreover, the feedback control law (23) minimizes 𝐽�𝑥0,𝑢(⋅)� (18) in the sense 
that 
 𝐽 �𝑥0,𝜙∗�𝑥(⋅)�� = min

𝑢∈𝒰(𝑇𝑐)
𝐽�𝑥0,𝑢(⋅)� 

         = 𝑉(𝑥0), 
(25) 

  93 



Esteban Jiménez-Rodríguez, Juan Diego Sánchez-Torres, Alexander G. Loukianov 
RIELAC, Vol. XXXVIII 1/2017 p. 90-101 Enero - Abril ISSN: 1815-5928 

Proof. Applying Lemma 1.1 to the closed-loop system (24), predefined-time stability with predefined time 𝑇𝑐 follows 
directly from the conditions (17)-(20). 
To prove (25), let 𝑥(𝑡) be a solution of the system (24). Then, 

 �̇��𝑥(𝑡)� =
𝜕𝑉
𝜕𝑥

𝑓 �𝑥(𝑡),𝜙∗�𝑥(𝑡)��.  

From the above and (21) it follows 

 𝐿 �𝑥(𝑡),𝜙∗�𝑥(𝑡)�� = 𝐿 �𝑥(𝑡),𝜙∗�𝑥(𝑡)�� +
𝜕𝑉
𝜕𝑥

𝑓 �𝑥(𝑡),𝜙∗�𝑥(𝑡)�� − �̇��𝑥(𝑡)�  

 
                          = ℋ�𝑥(𝑡),𝜙∗�𝑥(𝑡)�,

𝜕𝑉
𝜕𝑥

𝑇

� − �̇��𝑥(𝑡)� = −�̇��𝑥(𝑡)�. 
 

Hence, 

 𝐽 �𝑥0,𝜙∗�𝑥(⋅)�� = � −�̇��𝑥(𝑡)�𝑑𝑡
∞

0
  

                                                               = − lim
𝑡→∞

𝑉�𝑥(𝑡)� + 𝑉(𝑥0) = 𝑉(𝑥0)  

Now, let 𝑢(⋅) ∈ 𝒰(𝑇𝑐) and let 𝑥(𝑡) be the solution of (12), so that 

 �̇��𝑥(𝑡)� =
𝜕𝑉
𝜕𝑥

𝑓�𝑥(𝑡),𝑢(𝑡)�.  

Then, 

 𝐿�𝑥(𝑡),𝑢(𝑡)� = 𝐿�𝑥(𝑡),𝑢(𝑡)� +
𝜕𝑉
𝜕𝑥

𝑓�𝑥(𝑡),𝑢(𝑡)� − �̇��𝑥(𝑡)�  

 
  = ℋ�𝑥(𝑡),𝑢(𝑡),

𝜕𝑉
𝜕𝑥

𝑇

� − �̇��𝑥(𝑡)� 
 

Since 𝑢(⋅) stabilizes (12) in predefined time 𝑇𝑐, using (21) and (22) we have 

 𝐽�𝑥0,𝑢(⋅)� = � �ℋ �𝑥(𝑡),𝑢(𝑡),
𝜕𝑉
𝜕𝑥

𝑇

� − �̇��𝑥(𝑡)�� 𝑑𝑡
∞

0
  

 
                                              = − lim

𝑡→∞
𝑉�𝑥(𝑡)� + 𝑉(𝑥0) + � ℋ�𝑥(𝑡),𝑢(𝑡),

𝜕𝑉
𝜕𝑥

𝑇

� 𝑑𝑡
∞

0
 

 

 ≥ 𝑉(𝑥0) = 𝐽 �𝑥0,𝜙∗�𝑥(⋅)��         

 
Remark 3.1. It is important that the optimal predefined-time stabilizing controller 𝑢∗ = 𝜙∗(𝑥) characterized by Theorem 3.1 
is a feedback controller. 
Remark 3.2. Note that the conditions (17)-(22) involve a 𝐶1 predefined-time Lyapunov function (see Lemma 1.1) that is 
also a solution of the steady state Hamilton-Jacobi-Bellman equation (15). As usual in optimal control theory, these 
existence conditions are quite restrictive. However, these conditions are very useful to obtain an inverse optimal predefined-
time stabilizing controller, for instance, for a class nonlinear affine control systems with relative degree one.  This is a 
typical case in sliding mode control design, and it will be considered in foregoing. 
To derive a closed-form expression for the controller, the result of Theorem 3.1 is specialized to nonlinear affine control 
systems of the form  
 �̇�(𝑡) = 𝑓�𝑥(𝑡)� + 𝐵�𝑥(𝑡)�𝑢(𝑡), 𝑥(0) = 𝑥0, (26) 

where 𝑥 ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ𝑚 is the system control input, 𝑓:ℝ𝑛 → ℝ𝑛 is a nonlinear function with 𝑓(0) = 0 
and 𝐵:ℝ𝑛 → ℝ𝑛×𝑚.  
The performance integrand is also specialized to 
 𝐿(𝑥,𝑢) = 𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢 (27) 

where 𝐿1:ℝ𝑛 → ℝ, 𝐿2:ℝ𝑛 → ℝ1×𝑚 and 𝑅2:ℝ𝑛 → ℝ𝑚×𝑚 is a positive definite matrix function. 
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Theorem 3.2. Assume there exist a 𝐶^1 radially unbounded function 𝑉:ℝ𝑛 → ℝ+ ∪ {0}, and real numbers 𝑇𝑐 > 0 and 
0 < 𝑝 <  1 such that 
 𝑉(0) = 0 (28) 
 𝑉(𝑥) > 0, ∀𝑥 ≠ 0, (29) 
 𝜕𝑉

𝜕𝑥
�𝑓(𝑥) + 𝐵(𝑥) �−

1
2
𝑅2−1(𝑥) �𝐿2(𝑥) +

𝜕𝑉
𝜕𝑥

𝐵(𝑥)�
𝑇

�� ≤ −
1
𝑇𝑐𝑝

exp(𝑉𝑝)𝑉1−𝑝 (30) 

 𝐿2(0) = 0 (31) 
 

𝐿1(𝑥) +
𝜕𝑉
𝜕𝑥

𝑓(𝑥) −
1
4
�𝐿2(𝑥) +

𝜕𝑉
𝜕𝑥

𝐵(𝑥)� 𝑅2−1(𝑥) �𝐿2(𝑥) +
𝜕𝑉
𝜕𝑥

𝐵(𝑥)�
𝑇

= 0. (32) 

Then, with the feedback control 
 

𝑢∗ = 𝜙∗ (𝑥) = −
1
2
𝑅2−1(𝑥) �𝐿2(𝑥) +

𝜕𝑉
𝜕𝑥

𝐵(𝑥)�
𝑇

, (33) 

the origin of the closed loop system  
 �̇�(𝑡) = 𝑓�𝑥(𝑡)� + 𝐵�𝑥(𝑡)�𝜙∗�𝑥(𝑡)�, (34) 

is predefined-time stable with 𝑇(𝑥0) ≤ 𝑇𝑐. Moreover, the performance measure 𝐽�𝑥0,𝑢(⋅)� is minimized in the sense of (25) 
and 
 𝐽 �𝑥0,𝜙∗�𝑥(⋅)�� = 𝑉(𝑥0). (35) 

Proof. Under these conditions the hypotheses of Theorem 3.1 are satisfied. In fact, the control law (33) is obtained solving 
𝜕
𝜕𝑢
�ℋ �𝑥,𝑢, 𝜕𝑉

𝜕𝑥
�� = 0 with 𝐿(𝑥,𝑢) specialized to (27). Then, setting 𝑢∗ = 𝜙∗(𝑥) as in (33), the conditions (28), (29) and 

(30) become the hypotheses (17), (18) and (20), respectively. 

On the other hand, since the function 𝑉 is 𝐶1, and by (28)-(29) 𝑉 has a local minimum at the origin, then 𝜕𝑉
𝜕𝑥
�
𝑥=0

= 0. 

Consequently, the hypothesis (19) follows from (31) and the fact that 𝜕𝑉
𝜕𝑥
�
𝑥=0

= 0. 

Since 𝜙∗(𝑥) satisfies 𝜕
𝜕𝑢
�ℋ �𝑥,𝑢, 𝜕𝑉

𝜕𝑥
��
𝑢=𝜙∗(𝑥)

= 0, and noticing that (23) can be rewritten in terms of 𝜙∗(𝑥) as 

 
𝐿1(𝑥) +

𝜕𝑉
𝜕𝑥

𝑓(𝑥) − 𝜙∗𝑇(𝑥)𝑅2(𝑥)𝜙∗(𝑥) = 0 (36) 

then the hypothesis (21) is directly verified. 
Finally, from (21), (33) and the positive definiteness of 𝑅2(𝑥) it follows 
 

ℋ�𝑥,𝑢,
𝜕𝑉
𝜕𝑥
� = 𝐿(𝑥,𝑢) +

𝜕𝑉
𝜕𝑥

[𝑓(𝑥) + 𝐵(𝑥)𝑢]                                                                                                        
 

 
= 𝐿(𝑥,𝑢) +

𝜕𝑉
𝜕𝑥

[𝑓(𝑥) + 𝐵(𝑥)𝑢] − 𝐿�𝑥,𝜙∗ (𝑥)� −
𝜕𝑉
𝜕𝑥

[𝑓(𝑥) + 𝐵(𝑥)𝜙∗(𝑥)] 
 

 
= �𝐿2(𝑥) +

𝜕𝑉
𝜕𝑥

𝐵(𝑥)� �𝑢 − 𝜙∗(𝑥)� + 𝑢𝑇𝑅2(𝑥)𝑢 − 𝜙∗𝑇(𝑥)𝑅2(𝑥)𝜙∗(𝑥)         
 

 = −2𝜙∗𝑇(𝑥)𝑅2(𝑥)�𝑢 − 𝜙∗(𝑥)� + 𝑢𝑇𝑅2(𝑥)𝑢 − 𝜙∗𝑇(𝑥)𝑅2(𝑥)𝜙∗(𝑥)               

 = [𝑢 − 𝜙∗(𝑥)]𝑇𝑅2(𝑥)[𝑢 − 𝜙∗(𝑥)] ≥ 0                                                                    
which is the hypothesis (22). Applying Theorem 3.1, the result is obtained. 
 
Remark 3.4. The expression (33) provided by Theorem 3.2 can be used to construct an inverse optimal controller, in the 
following sense: instead of solving the steady-state HJB equation directly to minimize some given performance measure, 
one can flexibly specify 𝐿2(𝑥) and 𝑅2(𝑥), while from (36) 𝐿1(𝑥) is parameterized as in (36). 
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Remark 3.5. As in Theorem 3.1, it is not always easy to satisfy the hypotheses (28)-(32) of Theorem 3.2. However, for 
affine systems with relative degree one, the functions 𝐿2(𝑥) and 𝑅2(𝑥) can be chosen such that the conditions (28)-(32) are 
fulfilled. 
 

4.- INVERSE OPTIMAL PREDEFINED-TIME SLIDING MANIFOLD 
REACHING IN LINEAR SYSTEMS. 

Definition 4.1. [15] Let 𝜎:ℝ𝑛 → ℝ𝑚 be a smooth function, and define the manifold  
 𝒮 = {𝑥 ∈ ℝ𝑛:𝜎(𝑥) = 0}. (37) 

If for an initial condition 𝑥0 ∈ 𝒮, the solution of (1) 𝑥(𝑡, 𝑥0) ∈ 𝒮 for all 𝑡, the manifold 𝒮 is called an integral manifold. 
Definition 4.2. [15] If there is a nonempty set 𝒩 ⊂ ℝ𝑛 − 𝒮 such that for every initial condition 𝑥0 ∈ 𝒩, there is a finite 
time 𝑡𝑠 > 0 in which the state of the system (1) reaches the manifold 𝒮 (39), then the manifold 𝒮 is called an sliding mode 
manifold. 
Consider the following linear time-invariant system subject to perturbation: 
 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + Δ(𝑡, 𝑥), 𝑥(0) = 𝑥0, (38) 

where 𝑥 ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ𝑚, with 𝑚 ≤ 𝑛, is the system control input, Δ:ℝ+ × ℝ𝑛 → ℝ𝑛 is the system 
perturbation, 𝐴 ∈ ℝ𝑛×𝑛, and 𝐵 ∈ ℝ𝑛×𝑚 has full rank. 
Moreover, consider the function 𝜎:ℝ𝑛 → ℝ𝑚 as a linear combination of the states 
 𝜎(𝑥) = 𝑆𝑥  

where 𝑆 ∈ ℝ𝑚×𝑛 is full rank. 
With the above definitions, the main objective of the controller is to optimally drive the trajectories of the system (38) to the 
set 𝒮 = {𝑥 ∈ ℝ𝑛: 𝑆𝑥 = 0} (7) in a predefined time in spite of the unknown perturbation Δ(𝑡, 𝑥). The matrix 𝑆 is selected so 
that the motion of the system (38) restricted to the sliding manifold 𝜎(𝑥) = 𝑆𝑥 = 0 has a desired behavior. 
The dynamics of 𝜎 are described by 
 �̇�(𝑡) = 𝑆𝐴𝑥(𝑡) + 𝑆𝐵𝑢(𝑡) + 𝑆Δ(𝑡, 𝑥), 𝜎�𝑥(0)� = 𝜎0. (39) 

It is assumed that the matrix 𝑆 is selected such that the square matrix 𝑆𝐵 ∈ ℝ𝑚×𝑚 is nonsingular, i.e., such that the system 
(39) has relative degree one. This can be easily accomplished since 𝐵 is full rank. 

Unperturbed case 
Consider the case when Δ(𝑡, 𝑥) = 0. The following result gives an explicit form of the functions 𝑉, 𝑅2 and 𝐿2 which 
characterize the optimal predefined-time stabilizing feedback controller (33). 
Corollary 4.1. Consider the system (39) in absence of the perturbation term, i.e., Δ(𝑡, 𝑥) = 0. The feedback controller (33) 
with the functions 𝑉, 𝑅2 and 𝐿2 selected as 
 

𝑉(𝜎) = 𝑐
1

𝑝+1(𝜎𝑇𝜎)
1

𝑝+1 (40) 

 𝑅2(𝑥) =
𝑇𝑐𝑝

2
exp �−𝑉𝑝�𝜎(𝑥)�� [(𝑆𝐵)𝑇(𝑆𝐵)] (41) 

 𝐿2(𝑥) = 2(𝑆𝐴𝑥)𝑇[(𝑆𝐵)−1]𝑇𝑅2(𝑥) (42) 
with 𝑇𝑐 > 0, 0 < 𝑝 < 1 and 4𝑐 = (𝑝 + 1)2, stabilizes the system (39) in predefined time with sup𝑇(𝜎0) = 𝑇_𝑐. Moreover, 
this controller solves the optimal predefined-time stabilization problem (16) for the system (39) with the performance 
integrand 𝐿(𝑥,𝑢) = 𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢, where 𝐿2 and 𝑅2 are given by (42) and (41), respectively, and 𝐿1 is given 
by (36). 
Proof. It is easy to see that all the conditions of Theorem 3.2 are satisfied. Indeed, note that the function 𝑉 in (40) is 𝐶1, and 
satisfies the hypotheses (28) and (29). In the same manner, the function 𝐿2 in (42) satisfies the hypothesis (31), and defining 
the function 𝐿1 as in (36), the hypothesis (32) is also satisfied. 

On the other hand, the derivative of 𝑉 along �̇� = 𝑆𝐴𝑥 + 𝑆𝐵𝜙∗ is calculated as (note that �𝜕𝑉
𝜕𝜎
�
2

= 𝑉1−𝑝) 
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�̇� =
𝜕𝑉
𝜕𝜎

[𝑆𝐴𝑥 + 𝑆𝐵𝜙∗(𝑥)]                                                                          

 
=
𝜕𝑉
𝜕𝜎

�𝑆𝐴𝑥 + 𝑆𝐵 �−
1
2
𝑅2−1(𝑥)𝐿2𝑇(𝑥) −

1
2
𝑅2−1(𝑥)(𝑆𝐵)𝑇

𝜕𝑉
𝜕𝜎

𝑇

�� 
 

 
= −

1
𝑇𝑐𝑝

exp(𝑉𝑝)�
𝜕𝑉
𝜕𝜎
�
2

                                                                     
 

 = −
1
𝑇𝑐𝑝

exp(𝑉𝑝)𝑉1−𝑝                                                                         

Thus, the hypothesis (30) is satisfied. Then, the result is obtained by direct application of Theorem 3.2. 
 

Perturbed case 
Now, consider the case when Δ(𝑡, 𝑥) is a matched non-vanishing perturbation. Under the idea of integral sliding mode 
control [16-17], the following result provides a controller that rejects the perturbation term Δ(𝑡, 𝑥) in predefined-time and, 
once the perturbation term is rejected, this controller optimally stabilizes the system (39) in predefined-time.  
Corollary 4.2. Consider the system (39) and let the function Δ(𝑡, 𝑥) be a matched and non-vanishing perturbation term, i.e. 
there exists a function Δ�(𝑡, 𝑥) such that Δ(𝑡, 𝑥) = 𝐵Δ�(𝑡, 𝑥) and ‖Δ�(𝑡, 𝑥)‖ ≤ 𝛿, with 0 < 𝛿 < ∞ a known constant. Then, 
splitting the control function $u$ into two parts, 𝑢 = 𝑢0 + 𝑢1, and selecting 

(i) 𝑢0 as the optimal predefined-time stabilizing feedback controller (33), with the functions 𝑉, 𝑅2 and 𝐿2 as in 
Corollary 4.1 with parameters 𝑇𝑐2 > 0 and 0 < 𝑝2 < 1, and 

(ii) 𝑢1 = −(𝑆𝐵)−1 �𝑘‖𝑆𝐵‖ 𝑠
‖𝑠‖

+ Φ𝑝1�𝑠;𝑇𝑐1��, with 𝑇𝑐1 > 0, 0 < 𝑝1 < 1, 𝑘 ≥ 𝛿, and the auxiliary sliding variable 
𝑠 = 𝜎 + 𝑧, where 𝑧 is an integral variable, solution of �̇� = −𝑆𝐴𝑥 − 𝑆𝐵𝑢0, 

the system perturbation term Δ�(𝑡, 𝑥) is rejected in predefined time 𝑇𝑐1  and, once the perturbation term is rejected, the system 
(39) is optimally predefined-time stabilized with predefined time 𝑇(𝜎0) ≤ 𝑇𝑐2 , with respect to the performance 𝐿(𝑥,𝑢) =
𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢, where 𝐿2 and 𝑅2 are given by (42) and (41), respectively, and 𝐿1 is given by (36). 
Proof. By the definition of 𝑠, 𝜎, 𝑧 and 𝑢1, the dynamics of 𝑠 are obtained as 
 �̇� = �̇� + �̇�                                                                 
 = 𝑆𝐴𝑥 + 𝑆𝐵(𝑢0 + 𝑢1 + Δ�) + �̇�                   
 = 𝑆𝐵(𝑢1 + Δ�)                                                  
 = −�𝑘‖𝑆𝐵‖

𝑠
‖𝑠‖

+ Φ𝑝1�𝑠;𝑇𝑐1�� + 𝑆𝐵Δ�.  

By direct application of Lemma 1.3, 𝑠 = 0 for 𝑡 > 𝑇𝑐1. Once the dynamics of (39) are constrained to the manifold 𝑠 = 0, 
then, from �̇� = 0, the equivalent control (3) value of 𝑢1 is 𝑢eq1 = −Δ�. Therefore, the sliding mode dynamics of 𝜎, �̇� =
𝑆𝐴𝑥 + 𝑆𝐵𝑢0, are invariant with respect to the perturbation. By the definition of 𝑢0 a direct application of Corollary 4.1 
yields the desired result. 
 

5.- EXAMPLE 

Consider a satellite system as presented in [18], subject to external disturbances 
 𝐼1�̇�1 = (𝐼2 − 𝐼3)𝜔2𝜔3 + �2 3⁄ 𝛾 sin(𝑡) + 𝑢1 

𝐼2�̇�2 = (𝐼3 − 𝐼1)𝜔3𝜔1 + �2 3⁄ 𝛾 sin �𝑡 +
2𝜋
3
� + 𝑢2 

𝐼3�̇�3 = (𝐼1 − 𝐼2)𝜔1𝜔2 + �2 3⁄ 𝛾 sin �𝑡 −
2𝜋
3
� + 𝑢3, 

(43) 

where, for 𝑖 = 1,2,3,  𝜔𝑖 are the angular velocities of the satellite around the principal axes, 𝑢𝑖 are the control input torques, 
and 𝐼𝑖  represent the moments of inertia. 
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Defining 𝑥𝑖 = 𝜔𝑖 for 𝑖 = 1,2,3, 𝑥 = [𝑥1  𝑥2  𝑥3]𝑇, and 𝑢 = [𝑢1  𝑢2  𝑢3]𝑇 , the system (43) can be represented as the linear 
perturbed system 
 �̇� = 𝐵𝑢 + Δ(𝑡, 𝑥),  

where Δ(𝑡, 𝑥) = 𝐵Δ�(𝑡, 𝑥) is a matched perturbation which represents the nonlinearities and uncertainties, with 𝐵 =
diag �1

𝐼1
, 1
𝐼2

, 1
𝐼3
�, and Δ�(𝑡, 𝑥) = �(𝐼2 − 𝐼3)𝑥2𝑥3 + �2 3⁄ 𝛾 sin(𝑡)   (𝐼3 − 𝐼1)𝑥3𝑥1 + �2 3⁄ 𝛾 sin �𝑡 + 2𝜋

3
�    (𝐼1 − 𝐼2)𝑥1𝑥2 +

�2 3⁄ 𝛾 sin �𝑡 − 2𝜋
3
��
𝑇
. Furthermore ‖Δ�(𝑥)‖ ≤ 𝛿 + 𝛾, with 𝛿: = 𝑟2�(𝐼2−𝐼3)2+(𝐼3−𝐼1)2+(𝐼1−𝐼2)2

2
 for ‖𝑥‖ ≤ 𝑟. 

The goal is to optimally stabilize the equilibrium point 𝑥 = 0 of the satellite (eliminate rotation movements around the 
principal axes) in predefined time. With this aim, choose 𝜎(𝑥) = 𝑆𝑥, with 𝑆 = diag(𝐼1, 𝐼2, 𝐼3) so that 𝑆𝐵 = 𝐼3×3. 
According to Corollary 4.2, 𝑢0 is implemented as in (33) with the functions 𝑉, 𝑅2 and 𝐿2 selected as  
 

𝑉(𝜎) = 𝑐
1

𝑝2+1(𝜎𝑇𝜎)
1

𝑝2+1 = 𝑐
1

𝑝2+1‖𝑆𝑥‖
2

𝑝2+1  

 
𝑅2(𝑥) =

𝑇𝑐2𝑝2
2

exp �−𝑐
𝑝2

𝑝2+1‖𝑆𝑥‖
2𝑝2
𝑝2+1� 𝐼3×3  

 𝐿2(𝑥) = 01×3.  
On the other hand, 𝑧 and 𝑢1 are chosen according to the part (ii) of Corollary 4.2. 
Simulations were conducted using the Euler integration method, with a fundamental step size of 1 × 10−4 s. The numerical 
values of the parameters are 𝐼1 = 1 kg ⋅ m2, 𝐼2 = 0.8 kg ⋅ m2, 𝐼3 = 0.4 kg ⋅ m2 and 𝛾 = 0.5. The initial conditions of the 
integrators were selected as: 𝑥(0) = [0.5 − 1  2]𝑇, and 𝑧(0) = [0  0  0]𝑇 . In addition, the controller gains were adjusted to: 
𝑇𝑐1 = 1, 𝑇𝑐2 = 1, 𝑘 = 3.9 𝑝1 = 1

3
 and 𝑝2 = 1

3
. 

Note that 𝑠(𝑡) = 0 for 𝑡 ≥ 0.148𝑠: = 𝑡𝑠=0 < 𝑇𝑐1 = 1 𝑠 (see Figure 1), and from that instant on, the equivalent control signal 
𝑢eq1  (approximated using the low-pass filter 𝜏�̇�eq1 + 𝑢eq1 = 𝑢1, with 𝜏 = 0.04, see [3]) cancels the perturbation term 

Δ�(𝑡, 𝑥) = �(𝐼2 − 𝐼3)𝑥2𝑥3 + �2 3⁄ 𝛾 sin(𝑡)   (𝐼3 − 𝐼1)𝑥3𝑥1 + �2 3⁄ 𝛾 sin �𝑡 + 2𝜋
3
�    (𝐼1 − 𝐼2)𝑥1𝑥2 + �2 3⁄ 𝛾 sin �𝑡 − 2𝜋

3
��
𝑇
 

(see Figure 2). 
Once the perturbation is canceled, the optimal predefined-time stabilization of the variable 𝜎(𝑡) takes place. It can be seen 
that 𝜎(𝑡) = 0 for 𝑡 ≥ 0.4561 𝑠 < 𝑇𝑐1 + 𝑇𝑐2 = 2 𝑠 (see Figure 3). It can be noticed that 𝜎(𝑥) = 𝑆𝑥 = 0, if and only if 𝑥 = 0 
since 𝑆 = diag(𝐼1, 𝐼2, 𝐼3) is invertible. Then, for 𝑡 ≥ 0.4561 𝑠 < 𝑇𝑐1 + 𝑇𝑐2 = 2 𝑠, the state 𝑥(𝑡) = 0 (see Figure 4). 

Figure 5 shows that the cost, as a function of time, grows quickly to a steady state value corresponding to $𝑉(𝜎(𝑡𝑠=0)). 
Finally, Figure 6 shows the first component of the control signal (torque) versus time. It is important to remark that this 
controller yields discontinuous signals in order to cancel the persistent perturbation Δ�(𝑡, 𝑥).  

 
                                         Figure 1       Figure 2 
Function �𝒔�𝒙(𝒕)��. Note that 𝒔�𝒙(𝒕)� = 𝟎 for 𝒕 ≥ 𝒕𝒔=𝟎 =              Perturbation cancellation (1st component). The equivalent 

𝟎.𝟏𝟒𝟖 < 𝑻𝒄𝟏 = 𝟏.      control was approximated with a low pass filter with a time 

                              constant of 𝝉 = 𝟎.𝟎𝟒. 
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Figure 1 

Function ‖𝝈(𝒙(𝒕))‖. Note that 𝝈(𝒙(𝒕)) = 𝟎 for 𝒕 ≥ 𝟎.𝟒𝟓𝟔𝟏 <
𝑻𝒄𝟏 + 𝑻𝒄𝟐 = 𝟐. 

 
Figure 2 

Evolution of the states 𝒙(𝒕). Note that 𝒙(𝒕) = 𝟎 for 𝒕 ≥
𝟎.𝟒𝟓𝟔𝟏 < 𝑻𝒄𝟏 + 𝑻𝒄𝟐. 

 
Figure 3 

Function 𝑱(𝒕) = ∫ 𝑳𝟏 + 𝑳𝟐𝒖𝟎 + 𝒖𝟎𝑻𝑹𝟐𝒖𝟎
𝒕
𝒕𝒔

𝒅𝝉. Note that 𝑱(𝒕) 
reachs its steady state value corresponding to 𝑽�𝝈(𝒕𝒔=𝟎)�. 

 
Figure 4 

Control input (1st component). 

 
6.- CONCLUSIONS 
In this paper, the problem of optimal predefined-time stability was investigated. Sufficient conditions for a controller to be 
optimal predefined-time stabilizing for a given nonlinear system were provided. Moreover, under the idea of inverse 
optimal control, and considering nonlinear affine systems and a certain class of performance integrand, the explicit form of 
the controller was also derived. This class of controllers was applied to the predefined-time optimization of the sliding 
manifold reaching phase in linear systems, considering both the unperturbed and the perturbed cases. For the unperturbed 
case, the developed result was applied directly, while for the perturbed case it was used jointly with the idea of integral 
sliding mode control to provide robustness. The developed control schemes were performed for the predefined-time 
optimization of the sliding manifold reaching phase in a satellite system model. Simulation results supported the expected 
results. 
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