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ABSTRACT 

The rapid growth of wireless technology demands to employ the available spectrum efficiently. In this work, an Energy 

Detector is designed to be used in a Cognitive Radio scenario using a platform based on Software Defined Radio principles. 

The design of this detector is developed by using Simulink and Xilinx System Generator MATLAB software to be 

implemented on a Field Programmable Gate Array (FPGA) device. To sense the spectrum, the energy detector (ED) is the 

most used approach due to its low computational complexity. Furthermore, ED offers the ability to identify spectrum holes 

without prior knowledge regarding transmission characteristics of primary users. However, setting a threshold for energy 

detection requires to estimate noise power, which can be established by appropriate estimation methods. In this regard, a 

new method is proposed and implemented on FPGA to establish a threshold and detect properly the available spectrum. 

Results obtained reveal a proper performance of the proposed detector given by 𝑃𝑑 >  0.9 and 𝑃𝑓𝑎 =  0.1, respectively, in 

the SNR range [−8, 15] dB. On the other hand, Digital Television in Cuba requires a robust and efficient automatic signal 

detection method to identify Television white spaces. Cognitive radio users would use these spectral holes to increase 

bandwidth and improve connectivity for wireless communications applications. To this end, this work is aimed to detect 

white spaces of the Digital Television spectrum using energy detector method. Simulation results show that the detector 

performs correctly on this scenario. 

Key words: Spectrum Sensing, Cognitive Radio, Energy Detector, Noise Estimation, FPGA, Digital Television. 

RESUMEN 

El rápido crecimiento de la tecnología inalámbrica demanda emplear eficientemente el espectro disponible. En este trabajo 

se diseña un detector de energía para ser usado en un escenario de Radio Cognitivo utilizando una plataforma de Radio 

Definido por Software. El diseño de este detector es desarrollado empleando los softwares: Simulink y Xilinx System 

Generator de MATLAB para ser implementado en un dispositivo de tipo Arreglo de Compuertas Programables por Campo 

(FPGA). Para sensar el espectro, la detección de energía es el método de sensado más utilizado debido a su baja 

complejidad computacional. Además, el detector de energía ofrece la capacidad de identificar espacios disponibles en el 

espectro sin requerir un conocimiento previo de las características de transmisión de los usuarios primarios. Sin embargo, 

establecer un umbral para la detección de energía requiere el conocimiento de la potencia de ruido del canal, que puede 

ser establecida por métodos de estimación apropiados. En este sentido, un nuevo método es propuesto e implementado en 

FPGA para establecer el umbral y detectar correctamente la presencia de señales en el espectro. Los resultados obtenidos 

revelan el satisfactorio desempeño del detector propuesto dado por 𝑃𝑑 >  0.9 y 𝑃𝑓𝑎 =  0.1 para relaciones señal a ruido 

bajas en el rango [−8,15] dB. Por otro lado, en el caso de la televisión digital en Cuba se requiere un método robusto y 

eficiente de detección automático de señales que permita identificar los espacios en blanco de las bandas de televisión. Los 

usuarios cognitivos pueden utilizar estos espacios en blanco para aumentar y mejorar la conectividad en aplicaciones de 

comunicaciones inalámbricas. Con este fin, este trabajo tiene como objetivo detectar los espacios en blanco en el espectro 

de Televisión Digital usando la técnica de detección de energía. Los resultados de simulación demuestran que el detector 

propuesto posee un correcto comportamiento para este escenario. 

Palabras claves: Sensado de Espectro, Radio Cognitivo, Detector de Energía, Estimación de Ruido, FPGA, Televisión 

Digital. 
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1. -INTRODUCTION 

The rapid grow in demand of new telecommunication services, supported by the miniaturization of computing devices, have 

intensely increased spectrum demand for wireless communications technologies. Wireless communications have several 

applications in modern life, as they allow users to access data networks, television services and videoconferences on real 

time. In this regard, users are to experience mobile communications at any place, any time as demanded on 5G (1). On the 

other hand, radio spectrum is a limited resource and therefore it is necessary to be used in an efficient manner. This is due to 

the shortage presented on available frequencies to insert new services and to extend the existing ones (2).  

Recently, it have been reported that some frequency bands remain free most of the time, while others exhibits high 

congestion (3). In this sense, the static allocation of frequency bands represents an inefficient employment of the spectrum. 

Thus, Cognitive Radio (CR) emerges as an alternative to improve the use of the radio spectrum using dynamic assignment 

policy (4). CR paradigm allows secondary users to reuse unused bands of primary users. In this case, the available spectrum 

can be used by a variety of systems such as Cellular and Smart Electrical Networks where higher response rates are 

demanded in real time environments (5). 

One of the main components of cognitive systems is provided by Spectrum Sensing (SS) techniques. This component 

enables to sense the activity on the radio spectrum where CR operates. Several detection methods have been developed 

depending on the available prior information, complexity and precision (6). Reported main methods for SS are: energy 

detection (ED) (7), matched filter (8) and cyclostationary features detection (9). These methods are reported to be used in a 

variety of applications such as Radio, Digital and Analog Television Systems (5). 

ED technique represents the most common solution for heterogeneous wireless communication systems. In this approach, 

the wireless device estimates the radio frequency energy on the input signal to determine channel availability. This method 

offers major advantages in terms of low complexity and ease of implementation. ED does not need prior knowledge on the 

signal parameters, however, to establish a decision threshold it is necessary to estimate channel noise variance (10).  

On the other hand, a variety of noise variance estimation techniques are reported, those available to integrate with the 

energy detector. For instance, the Rank Order Filtering (ROF) (11), Maximum Likelihood (ML) (12), Non Data Aided 

(NDA) Signal-to-Noise Ratio SNR estimator (13), Finite Difference Operator (14) and Maximize Geometric Mean (MGM) 

(15). Some of these estimation techniques demand for prior knowledge on main signal parameters, thus limiting their use on 

blind scenarios. This is the case of ML, NDA and Finite Difference Operator techniques. MGM and ROF solutions are 

difficult to implement due to prohibitive hardware complexity when a digital design is considered. 

Currently, some developments have been conducted on spectrum sensing solutions for Digital Television (DTV) bands. In 

this regard, spectrum detection methods based on Pseudo Noise random sequence Autocorrelation (PNAC) on frame 

headers is proposed on (16). Although this method is simple to be implemented, has limited performance on low SNR 

regions. Report (17) proposes detection methods based on Cross-Correlation of the Pseudo-random sequence (PNCC) to 

improve probability of detection. Nevertheless, PNCC suffers from poor performance on channels of multiple-path fading. 

DTV might provide large area coverage and represents a popular candidate for CR applications (18). DTV can be 

implemented according to various standards, among which are Advanced Television Systems Committee (ATSC), Digital 

Video Broadcasting-Terrestrial (DVB-T), Integrated Services Digital Broadcasting-Terrestrial (ISDB-T) and Digital 

Terrestrial Multimedia Broadcast (DTMB). Among these standards, DTMB is used in Cuba to provide DTV services.  

Since the migration of Digital Television service has not been finished in Cuba, Analogue Television will coexist with 

Digital Television on the next few years. To efficiently reuse television white spaces (TVWS), it is necessary to implement 

digital and analog signal detection prototypes (18). Access to these TVWS benefits the deployment of wireless services. To 

this end, this work is aimed to detect TVWS on Digital Television spectrum using the ED. The proposal is based on its low 

complexity and ease of implementation. To this end, the current article addresses the design of ED method together with a 

novel noise estimation technique on FPGA. 

The organization of the paper is as follows. In Section 2, the ED fundamentals are described and the proposed method to 

estimate channel noise power is explained in Section 3. FPGA implementation of the proposed method is addressed in 

Section 4 and performance of the proposed spectrum sensing method is demonstrated via MATLAB simulations in Section 

5. Finally, our conclusions are presented in Section 6. 
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2- ENERGY DETECTOR 
Energy detector (ED) has been vastly analyzed, and its performance has been evaluated under multiple communication 

channels (2). Improvements to this Spectrum Sensing method have also been reported for both local and cooperative 

sensing (19,20). Its major advantage is to allow broadband detection achieved by a low cost computational methods (21). 

Depending on the occupied or inactive state of primary user, on a noisy channel, the detection of the signal of interest can 

be modeled by a binary hypothesis. The hypothesis 𝐻0 is assumed when there is only noise in the channel, while the 

hypothesis 𝐻1 is assumed when signal is corrupted by noise: 

    𝑟[𝑛] = {
𝑤[𝑛]

𝑠[𝑛] + 𝑤[𝑛]
    

: 𝐻0

: 𝐻1
                                                                            (1) 

where 𝑟[𝑛] is the received signal, 𝑠[𝑛] represents the signal of interest transmitted by primary users and 𝑤[𝑛] symbolizes 

the Additive White Gaussian Noise (AWGN) with zero mean and variance 𝑁0 2⁄ . 

Fig. 1 shows the conventional energy detector block diagram. The signal is squared to obtain energy measurements. Then an 

average procedure is performed in time, where the output is called the test statistic 𝑌. This output Y is then compared to the 

energy threshold. When the test statistic value 𝑌 is greater than the threshold 𝜆, the presence of the primary user is declared, 

otherwise the primary user is considered to be absent. 

 

Figure 1  

Block Diagram of Energy Detector 

 

The energy detector performance can be evaluated by two performance metrics: probability of false alarm 𝑃𝑓𝑎, and 

probability of detection 𝑃𝑑. False alarm happens when detector outputs 𝐻1 and the channels condition is on 𝐻0. In this 

scenario, the secondary user does not use the available spectrum and the opportunity to transmit is lost. Therefore, lower 

probabilities of false alarm give greater throughput of secondary users. The probability of false alarm is defined by (22): 

                             𝑃𝑓𝑎  =  𝑃𝑟(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 | 𝐻0)  = 𝑃𝑟(𝑌 >  𝜆 | 𝐻0)   =   ∫ 𝑓(𝑌 | 𝐻0) 𝑑𝑢
∞

𝜆
                    (2) 

where 𝑃𝑟(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 | 𝐻0)  is the probability to detect signal under the hypothesis 𝐻0, 𝜆 symbolizes the detection 

threshold and 𝑓(𝑌 | 𝐻0) represents the probability density function of the test statistic 𝑌 under the hypothesis 𝐻0. 

The probability of detection is defined as the probability to have the right decision when signals of interest is on the 

channel. In case of failure detection, the user starts unwanted secondary transmissions, causing interference to licensed user. 

This probability is defined by: 

 𝑃𝑑  =  𝑃𝑟(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 | 𝐻1)  = 𝑃𝑟(𝑌 >  𝜆 | 𝐻1)   =   ∫ 𝑓(𝑌| 𝐻1) 𝑑𝑢
∞

𝜆
                              (3) 

where 𝑃𝑟(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 | 𝐻1)  is the probability to detect signal under the hypothesis 𝐻1 and 𝑓(𝑌 | 𝐻1) represents the 

probability density function of the test statistic 𝑌 under the hypothesis 𝐻1. 

On both cases, the function 𝑓(𝑌 | 𝐻𝑖), 𝑖 = 0, 1 in (2) and (3) can be approximated by using the Central Limit Theorem 

(CLT) (23). In this work, received samples are normalized by noise variance, which in turn yields to following equations: 

𝑃𝑓𝑎  =  𝑄 (
𝜆−𝑁

√𝑁
)       (4) 

 

𝑃𝑑  =  𝑄 (
𝜆−𝑁(1+𝛾)

√𝑁(1+𝛾)
)      (5) 

where 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒

−𝑡2

2
∞

𝑥
𝑑𝑡 is the Gaussian complementary distribution function, 𝑁 is the number of samples observed in 

𝑇 seconds for a signal of bandwidth 𝑊, where 𝑁 = 𝑊𝑇 and 𝛾 = 𝜎𝑠
2 𝜎𝑤

2⁄  is the signal-to-noise ratio (SNR), where 𝜎𝑤
2  and 𝜎𝑠

2 

are the channel noise power and signal power, respectively. For a given false alarm probability 𝑃𝑓𝑎 the threshold can be 

calculated according to Neyman-Pearson criterion by using (24):  

𝜆 = √𝑁𝑄−1(𝑃𝑓𝑎) + 𝑁                            (6) 
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The energy detection decision metric is, in principle, the energy of the received signal: 𝑌 = ∑ |𝑟[𝑛]|2𝑁−1
𝑛=0 . However, there is 

a considerable ambiguity in the definition of the test statistic by this measurement method. Some reports on this direction 

are based on the normalized energy of the received samples: 𝑌 = ∑
|𝑟[𝑛]|2

𝑁
𝑁−1
𝑛=0  (25,26). Other investigations states the 

normalization by the noise variance as (27,28): 

𝑌 = ∑
|𝑟[𝑛]|2

𝜎𝑤
2

𝑁−1
𝑛=0        (7) 

where 𝜎𝑤
2  is the noise variance and 𝑟[𝑛] represents the input signal on the current development. 

Equation (7) above is the test statistic chosen on the current solution. This formula allows to establish a fixed threshold 

without considering noise power values. This is the most reported formula to implement ED. However, equation in (7) 

demands to estimate channel noise power (𝜎𝑤
2 ) to implement the decision block in Fig.1. Thus, in order to achieve 

automatic operation of the energy detector, it is necessary to implement a robust estimator of noise variance. Next Section is 

devoted to describe the proposed noise estimation technique. 

 

3- PROPOSED METHOD TO ESTIMATE CHANNEL NOISE POWER 
A variety of solutions is reported to estimate noise variance as described in [11-14]. Most of this solutions demands prior 

knowledge on main signal parameters and involve high complexity of operations. These solutions are limited to apply in 

practice on CR scenarios, where blind communication is established and multiple bands are analyzed. Additionally, their 

estimation error is not worthless and may affect the energy detection process.  

To overcome the above limitations, a new non-parametric approach to estimate noise variance is proposed in this work. The 

proposed method performs a simple processing method through the signal periodogram. By assuming that 90% of the 

frequency response area, provided by the signal periodogram, represents signal of interest, then the remainder 10% is 

assumed to be noise. Following this approach, next steps on the frequency domain comprise the method: 

1. Power Spectral Density estimation: This is obtained by using the periodogram method (29): 

P(𝑒𝑗𝜔) =
1

𝑁
|∑ 𝑣[𝑛]𝑁−1

𝑛=0 𝑒−𝑗𝜔𝑛|
2

=
1

𝑁
|𝑉(𝑒𝑗𝜔)|

2
    (8) 

where 𝑣[𝑛] = 𝑟[𝑛]𝜋[𝑛], 0 ≤ 𝑛 ≤ 𝑁 − 1,  𝑟[𝑛] represents the signal of interest and 𝜋[𝑛] represents the rectangular 

window. 

2. Welch-Bartlett periodogram (29): The Welch-Bartlett periodogram is used to better estimate the Power Spectral 

Density from the received signal by averaging 𝐾 times the expression in (8) as: 

P𝑥(𝑒𝑗𝜔) =
1

𝐾
∑ 𝑃𝑖(𝑒𝑗𝜔)𝐾−1

𝑖=0      (9) 

To illustrate, Fig. 2a) depicts the Welch-Bartlett periodogram of a given signal when 𝐾 = 10.  

3. Ordering: The Welch periodogram obtained in step 2) is sorted from higher to lower values as shown in Fig. 2b) 

using the Bubble Sort Method. This method can be implemented using the following code:  

 

Algorithm 1 

Description of the Bubble Sort Method 
process Bubble Method (𝑎0, 𝑎1, 𝑎2, … , 𝑎(𝑛−1)) 

    for 𝑖 ←1 to n: 

        for 𝑖 ← 0 to 𝑛 − 𝑖: 
            if 𝑎(𝑗) > 𝑎(𝑗+1) then 

               aux ← 𝑎(𝑗) 

𝑎(𝑗) ← 𝑎(𝑗+1) 

 𝑎(𝑗+1) ← 𝑎𝑢𝑥 

            end if 

        end for 

    end for 

end process 

 

Although the Bubble Sort Method seems to be complex and time demanding, this is implemented in parallel on 

FPGA and final cost in hardware does not represent a major concern. This is discussed into next Sections. 
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4. Noise power estimation: Based on the graph of Fig. 2b), the 90% of the frequency response area is assumed to be 

the signal of interest while the other 10% is assumed to be noise. The total area is determined by computing the 

Trapezoids Method as: 

𝐴 = ∫ 𝑓(𝑥)𝑑𝑥 ≈
𝑏

𝑎
 
ℎ

2
[𝑓(𝑎) + 2𝑓(𝑎 + ℎ) + 2𝑓(𝑎 + 2ℎ) + ⋯ + 𝑓(𝑏)]   (10) 

4.1. Next, the total area is multiplied by 0.9 in order to find a level to represent the 90%. Formula in (10) is applied 

to the periodogram in Fig. 2b) by setting 𝑎 = 0 after incrementing the value of ℎ sequentially on a variety of 

frequency steps. These partial areas are sequentially compared to the 90 % level of the total area to find the 

limit 𝑓𝑁 after which noise samples are only present. This is depicted by the right box on Fig. 2b).  

4.2 Finally, noise power is estimated by averaging noise samples inside the right box on Fig. 2b) as: 

𝜎𝑤
2 =

1

𝑁−𝑓𝑁
∑ 𝑤𝑖

𝑁
𝑖=𝑓𝑁

       (11) 

where 𝑁 represents the total number of samples, 𝑓𝑁 is the number of frequency samples after which only noise is 

present and 𝑤 represents the noise sequence samples inside the right box on Fig. 2b). 

 
Figure 2 

Proposed method to estimate noise power: a) Signal Periodogram, b) Descended Sorted Periodogram 

4. – FPGA IMPLEMENTATION OF THE PROPOSED METHOD   

The ED method is based on the flow diagram shown in Fig. 3. Based on this scheme, some parameters are modified from 

the conventional diagram in Fig. 1. The test statistic, at the output of the detector, is the result of normalizing the energy of 

the received signal by the noise variance value. In this solution, noise variance parameter is estimated in accordance with 

proposed method described on the previous Section.  

 
Figure 3 

 Proposed ED diagram 

Current work describes an FPGA design based on the scheme depicted in Fig. 3. A variety of advantages such as the 

increase of processing speed and flexibility are provided by digital technology. In addition, FPGA enables to implement 

parallel structures and the increase in execution speed, comparable to powerful General Purpose Processors. The system is 

implemented in Xilinx FPGA, supported by the Xilinx System Generator (XSG) tool. This tool is integrated with the 

mathematical assistant MATLAB, on Simulink platform.  

The design of the proposed energy detector is divided into four stages: Emulation of the test signal, Noise power estimation, 

Test static calculation and Final decision. As depicted in Fig. 4, the output of the emulated test signal stage is divided into 
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real and imaginary parts. These parts are inputs of next two parallel stages: Test static calculation and Noise power 

estimation. The outputs of these two stages are then compared to the predefined threshold in the final decision stage to 

detect whether the signal of interest is present or not. Emulation of the test signal stage is created in the MATLAB Simulink 

scenario without FPGA design. The other three stages are implemented in XSG for FPGA devices. These three stages are 

separated from Simulink blocks by the Gateways In and Gateway Out blocks to comprise the entity ports.  

 

Figure 4  

Block Diagram of Energy detector implementation in XSG 

The first stage is the Emulation of the test signal block, which is implemented by Simulink blocks only, not on FPGA, to 

provide a testing signal to establish detector performance. In this case, an OFDM waveform is employed similar to the used 

on DTV signals as depicted in Fig. 5. Main parameters as symbol rate and length are settled in accordance with DTMB 

standard. These values are defined on Section of Results. Firstly, a random signal is generated and modulated using 

Quadrature Amplitude Modulation (QAM). Then, an OFDM modulator block is employed to build the signal of interest. 

Then, Gaussian white noise is added to the signal as the channel model. For illustration purposes, the implemented DTV 

signal was not conformed by some parameters as error correction and header sequence.  

 

Figure 5  

OFDM signal emulation 

To implement the second stage, Noise power estimation, the 90% method discussed in the previous section is used. Its 

implementation is divided into 4 stages in which the XSG library blocks are connected as follows: 

1. Compute the Discrete Fourier Transform of the input signal using the Fast Fourier Transform (FFT) 7.1 block of 

the XSG library, as depicted in Fig. 6. The inputs of this system are real and imaginary parts of the test signal. 

CMult blocks are used to normalize real and imaginary inputs. The start input is kept active in '1' for the entire time 

interval because the FFT selected mode operates continuously. Outputs of this block are provided by determining 

the real (xk_re) and imaginary (xk_im) parts of the FFT procedure, as well as data valid (dv) and edone signals. By 

means of xk_re and xk_im signals, frequency magnitude signal can be determined. This is done using the XSG 

Mult and AddSub blocks to square both the real and the imaginary part and then add them together. In addition, this 

value is normalized between the total number of samples using Cmult4. Data valid (dv) and edone signals are used 

on next stages as enabling and reset pulses, respectively. 
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Figure 6  

Fast Fourier Transform Calculation 

2. Perform the Welch periodogram averaging multiple periodograms. XSG does not provide any block to implement 

this functionality. In this situation, the operation was designed in hardware description language (HDL). This code 

is added to the Simulink platform using the Black Box block from XSG. The inputs of this block are Magnitude 

and enable outputs from Fig. 6. Welch periodogram is performed with a variable window size to be configured 

according to the needs of the design. In this work, a window of 32 samples was used. To implement Welch 

periodogram, serial samples at the input was first transformed into parallel samples, that was also performed in 

HDL code. The pseudo code of this stage is reported in Algorithm 2.  

 

 

Algorithm 2  

HDL description of the Welch Periodogram Method 
1: Input: Magnitude, enable (outputs 1 and 2 in Fig. 6). 

2: Initialization: window size, samples, bits, counter1 = 0; temp_parallel= 0, 
temp_welch=0, temp_prom = 0, these variables are temporary.   
3: if Rising edge clock is present and enable = 1 then 
4:     counter1 := counter1 + 1; 
       #Perform parallel to serial conversion 
5:     temp_parallel((counter1*bits)-1 to (counter1 -1)*bits) <= Magnitude;  
6:     if counter1 = samples/window then 
           #Perform Welch Periodogram using equation (9) 
7:         for l in 0 to samples/window-1 loop 
8:             temp_welch := 0; 
9:             for m in 0 to window-1 loop 
10:                temp_welch := temp_welch + temp_parallel ((l*window + n + 1)*bits-1 to 
(l*window + n)*bits));  
11:            end loop; 
12:            temp_prom  := temp_welch/window; 
13:            temp_parallel((l+1)*bits-1 to l*bits) := temp_prom;  
14:        end loop; 
15:    end if; 
16: end if; 

 

3. Ordering: This non-linear operation is not available on XSG and is also designed on HDL. The ordering process is 

implemented using the Bubble Sort Method as described in previous section. Algorithm 3 describes this ordering 

process, which is synthetized in parallel by the ISE compiler. Thus, the sorting procedure is implemented just in 
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one clock period. Finally, the ordered samples are converted from parallel to serial to properly connect with next 

XSG blocks. The serialization process was then implemented in HDL as well. 
 

Algorithm 3 

HDL description of the Sort Method 
1: Input: temp_parallel (Algorithm 1). 

2: Initialization: window size, samples, bits; temp_sort= 0, this variable is 
temporal.   

   #Perform Sort using Bubble Sort Method 
3: for i in 1 to samples/window-1 loop   
4:     for j in 0 to samples/window-1-i loop  
5:         if(temp_parallel ((j+1)*bits-1 to j*bits) > temp_parallel((j+2)*bits-1 to 
(j+1)*bits)) then 
6:             temp_sort := temp_parallel ((j+1)*bits-1 downto j*bits); 
7:             temp_parallel ((j+1)*bits-1 to j*bits):= temp_parallel ((j+2)*bits-1 to 
(j+1)*bits); 
8:             temp_parallel ((j+2)*bits-1 to (j+1)*bits) := temp_sort; 
9:         end if; 
10:    end loop; 
11: end loop; 
    #Perform serial to parallel conversion 
12: if (counter2 < samples/window) then 
13:     data_out(bits-1 to 0) <= temp_parallel(((samples/window-11: counter2)*bits)-1 
to (samples/window-counter2-1)*bits); 
14:     couter2 := counter2 +1; 
15: else 
16:     couter2 := counter2; 
17:     data_out(bits-1 to 0)<=0; 
18: end if; 

 

4. Compute the area of sorted values at stage 3 before by the Trapezoids Method using blocks: Accumulator, Mux, 

Counter, CMult and Mcode, as depicted on Fig. 7. The Mcode1 block is used to allow the inclusion of some 

MATLAB statements to halve first and last samples on equation (10). The multiplexor allows the selection of first 

and last samples as selected by the output of Mcode1 block. This two samples are multiplied using CMult5 times 

0.5 and then all the samples are accumulated together with Accumulator2 block. These operations implement 

equation (10) at the output signal 1 on Fig. 7. Output signals 2 and 3 are used to reset and enable next stage. 

 

Figure 7  

Implementation of the trapezoidal method 

4.1. Multiply by 0.9 the area obtained in stage 4 to establish the 90% level of the total area as implemented by the 

multiplier CMult1 in Fig. 8. Then, based on the sorted periodogram obtained by Algorithm 3, the area is 

computed sequentially by using the same scheme depicted on Fig. 7. In this case, the partial results are delayed 

by 𝑁 samples using block Delay3 as shown in Fig. 8. Finally, each obtained value at the input of Relational1 
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block is compared to the 90% level obtained at the output of Cmult1 block, as shown in Fig. 8. Output of 

Relational1 block enables to average proper vector noise samples. 

 

Figure 8 

 Implementation of 90% method 

4.2. To avoid the use of a divider block, the value of variable (𝑁 − 𝑓𝑁) in equation (11) is considered on the final 

stage as an equivalent multiplier to decrement hardware complexity. This is further analyzed on next 

paragraphs.  

Stages above implement the Noise power estimation block in Fig. 4. Then, Test static calculation block in Fig. 4 was 

implemented by using XSG blocks to determine the energy of the simulated signal. Firstly, the real and imaginary parts of 

the signal are raised to the square by using blocks Mult5 and Mult4 as depicted in Fig. 9. Then, all values are accumulated 

by the Accumulator1 block to compute the signal energy. The output of Accumulator1 must be delayed by 3𝑁 samples as 

seen in Fig. 9. This is due to the processing delay of the noise power estimation stage given by the parallelization process 

and the implementation of the proposed method. 

In the Final decision block in Fig. 4 the comparison between the test statistic and threshold value is performed as described 

in (7). By using this expression together with (11), an equivalent expression to the test statistic may be determined by: 

(𝑁 − 𝑓𝑁) ∙ ∑ |𝑟[𝑛]|2𝑁−1
𝑛=0 ⋚ 𝜆 ∙ ∑ 𝑤𝑖

𝑁
𝑖=𝑓𝑁

,     (12) 

after rearranging the dividing terms in (7). In this new equivalent expression in (12), dividers are avoided and the 

implementation is equivalent. Equation in (12) is implemented in Fig. 9 by connecting, multiplying and comparing properly 

the outputs of Fig. 8 and energy calculated in Fig. 9. The energy signal obtained in Acumulator1 is multiplied using Mult3 

with the total number of noise samples offered by output 2 in Fig. 8. Then, after multiplying the average noise values times 

the threshold by using CMult6 block, this is compared to the output of Mult3 to provide a final decision. 

 

Figure 9 

Test static calculation and Final decision stages in XSG 
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5. - RESULTS AND DISCUSION 

To analyze performance of proposed detector, the Receiver Operational Characteristic (ROC curve) is examined in 

comparison to ideal ED where noise variance match exactly to that on the channel. To this end, an OFDM waveform is 

employed, similar to the used on DTV signals by employing the scheme in Fig. 5. Main parameters as bandwidth of 

nominal channel by 𝐵 = 6 𝑀𝐻𝑧 and the number of subcarriers by 3780 are settled in accordance with DTMB used in the 

International Telecommunications Union (ITU) region 2 (Americas). The used sampling frequency is four times the 

bandwidth 𝑓𝑚 = 4𝐵. Fig. 10 shows the increasing probability of detection related to the increase of false alarm probability. 

Fig. 10 a) and b) depicts results for SNR equals to -7 dB and -8 dB, respectively. The detector performs correctly, as alleged 

IEEE standard, and similar to ideal ED. 

 

Figure 10 

ROC of OFDM signal (N = 4096) a) SNR = -7 dB, b) SNR = -8 dB 

In order to analyze how the total number of samples influence the effectiveness of the estimator, the simulation of the 

detector implemented in XSG with a BPSK signal was made. The signal bandwidth is given by 𝑓𝑠 =  0.5 𝑘𝐻𝑧 and the used 

sampling frequency is ten times the bandwidth 𝑓𝑚 = 10𝑓𝑠. Fig. 11 shows values of probability of detection, these values 

increase with the increment of the total number of samples. Obtained results are similar to the ideal detector. In addition, 

Fig. 12 exhibits results by means of a variety of signals like Quadrature Amplitude Modulation (QAM), already mentioned 

BPSK and Orthogonal Frequency-Division Multiplexing (OFDM with QAM to emulate television signal). Considering 

values of Fig. 12, the implemented solutions performs correctly by processing other modulation type formats. In comparison 

with the ideal ED, performance detection is almost the same. 

 

 

Figure 11  

Probability of detection vs Number of samples (𝑷𝒇𝒂 = 𝟎. 𝟏, 

𝑺𝑵𝑹 = −𝟖 𝒅𝑩) 

 

Figure 12 

 Probability of detection vs Modulation (𝑷𝒇𝒂 = 𝟎. 𝟏 ,       

𝑺𝑵𝑹 = −𝟖 𝒅𝑩, 𝑵 = 𝟒𝟎𝟗𝟔) 
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To compare with other reported solutions, the analysis of the proposed noise estimator performance is presented in terms of 

absolute error and in Normalized-mean-square-error (NMSE). Considering the estimated noise variance (𝜎𝑤
2̂), the absolute 

error on the noise estimated value is given by: 

 𝑒 =  |𝜎𝑤
2  −  𝜎𝑤

2̂ |                         (13) 

where 𝜎𝑤
2   represents the exact noise power at the channel. Fig. 13 demonstrates a minimal error on noise estimation using 

the proposed method comparing with (14). The NMSE is calculated by: 

𝑁𝑀𝑆𝐸 =
1

𝑀
∑ (

𝜎𝑤
2  − 𝜎𝑤

2̂

𝜎𝑤
2 )

2
𝑀
𝑖=1                                                                             (14) 

where M is the independent number of simulation data. Fig. 14 shows a small error using NMSE characteristic, which is 

higher in comparison with the result obtained by NDA (13). In the other hand, NDA requires prior knowledge of the signal, 

while the proposed method in this work is completely blind to all the signal parameters. 

 

Figure 13  

Absolute error in noise power estimation  

 
Figure 14 

NMSE of noise power estimation 

 

In order to evaluate performance for a variety of SNR values, Fig. 15 shows the detection probability by using the OFDM 

signal obtained by the scheme in Fig. 5. In comparison with the ideal ED, detection performance is almost similar for SNR 

values superior to -8 dB.  

Hardware complexity on FPGA of the proposed method is analyzed by the Resource Estimator block, presented on Xilinx 

library. Fig. 16 shows the results obtained using this block. The necessary resources for implementation on FPGA are just a 

few, in correspondence with the simplicity of the ED (30).  

 

 

Figure 15  

Detection probability vs SNR (𝑵 =  𝟒𝟎𝟗𝟔, 𝑷𝒇𝒂 = 𝟎. 𝟏)  

 

 
 

Figure 16  

Total number of needed hardware resources 
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6. - CONCLUSIONS 

In this work, a blind sensing method for spectrum sensing based on energy detection technique in Xilinx System Generator 

for FPGAs has been implemented. The proposed design applies directly to implement the sensing component of Cognitive 

Radio devices. Also, this method allows the detection of primary users without prior knowledge on signal parameters. 

The proposed solution is valuable, considering the trade-off between implementation complexity and precision, since the 

algorithm is efficient and the complexity is comparable to other reported. In addition, real-time application is affordable due 

to the implemented solution on FPGA. 

The proposed final solution allows to estimate noise levels in bands where signal and noise are mixed. Additionally, this 

estimation is integrated to the energy detector to use on spectrum sensing applications. Future work on this direction 

demands to validate the proposed solution in a hardware co-simulation environment. 

Results obtained demonstrate the applicability of the energy detection method for a variety of signals. Especially, the 

application of the proposed solution to Digital Television signals provides proper results based on DTMB standard used in 

Cuba. In this sense, using this solution it is possible to detect digital television white spaces to be reused for wireless 

communications purposes. 
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