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ABSTRACT / RESUMEN 

PyECG is a software tool for QT interval analysis in the electrocardiogram (ECG). The software is written in Python 3.6 

and among its main features includes signal filtering, Q onset, R peak and T offset detection algorithms, classifiers for 

irregular heartbeat identification and rejection, and tools for easy correction of automatically generated annotations. 

Moreover, the software includes a signal quality assessment module in order to help the researcher deciding which lead 

should be used. The software tool computes and plots the QT Variability Index (QTVI) and QT dynamicity parameters. 

Since the software is designed for cardiologists and specialists with no or little programming skills, the graphical user 

interface is intuitive, compact and easy to use. 

Keywords: software, ventricular repolarization, QT interval analysis, QTVI  

PyECG es una herramienta de software para el análisis del intervalo QT en el electrocardiograma (ECG). El programa 

está escrito en Python 3.6 y entre sus principales características se encuentran: filtrado de la señal, algoritmos de 

detección de puntos de inicio de la onda Q, pico de la onda R y final de la onda T, clasificadores para la identificación y 

eliminación de latidos irregulares así como herramientas para facilitar la corrección de las anotaciones generadas 

automáticamente. Además, el software incluye un módulo para la evaluación de la calidad de la señal con el objetivo de 

asistir al usuario en decidir la derivación óptima para el análisis. La herramienta permite calcular y graficar el índice de 

variabilidad del QT (QTVI) y los parámetros del análisis dinámico del QT. El software está diseñado para cardiólogos y 

especialistas con independencia a sus habilidades de programación por lo que la interfaz gráfica de usuario es muy 

sencilla, compacta e intuitiva. 

Palabras claves: software, repolarización ventricular, análisis intervalo QT, QTVI  

PyECG: Una herramienta de software para el análisis del intervalo QT en el electrocardiograma  

1. -INTRODUCTION 

Cardiovascular diseases (CVD) are the major cause of death in Cuba and worldwide. The electrocardiogram (ECG) is a 

cheap, well-known and noninvasive technique for the assessment of the electrical activity of the heart. Most of the 

diagnostic information in the ECG relies on the morphology of the waves and the duration of intervals such as RR and QT. 

RR interval variability has been thoroughly studied and its clinical significance has been established on diagnosis and 

prognosis of several cardiovascular and non-cardiovascular diseases [1-2].  

The QT interval is associated with the ventricular repolarization of the heart. It starts at the beginning of the QRS complex 

and finishes at the end of the T-wave. Normal values of QT interval for males are around 450 ms, meanwhile, for healthy 

females, the mean value is 470 ms [3]. It is well known that QT interval is influenced by changes in heart rate and other 

factors like drug intake [4]. QT anomalies have been associated with the risk of suffering ventricular life-threatening 

arrhythmias and Sudden Cardiac Death (SCD). For instance, in both congenital and acquired Long QT Syndrome (LQTS) 

there is a risk of developing Torsade de Pointes (TdP), a kind of polymorphic ventricular tachycardia which may result into 
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SCD [5]. Several markers have been proposed for the assessment of ventricular repolarization instability. The most relevant 

ones include QT variability indexes, QT dynamicity, QT dispersion (QTd) and T-Wave Alternans (TWA). 

QT variability (QTV) is the quantification of the slight changes in the QT beat to beat. One of the most accepted QTV 

temporary indexes is the QTVI proposed by Berger et al [6], and it is defined as  
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where the terms QTV and HRV correspond to the variance of QT and RR segments, respectively, and QTM and HRM represent 

the average values of these segments in the range considered. QTVI has been studied in different populations, such as 

dilated cardiomyopathy (DCM) patients, post-Myocardial Infarction (MI) subjects, healthy controls, patients with 

implantable cardioverter-defibrillator devices (ICD) [7] and more recently, on patients that suffered spinal cord injury [8]. 

Different methods exist to assess repolarization dynamicity, also known as adaptation or hysteresis. A well-known method 

estimates QT/RR slope, i.e., the slope of the linear regression between QT and RR intervals. Steeper QT/RR may indicate 

either excessive lengthening of QT at slow rates or excessive shortening at fast rates. Both of these processes may 

contribute to the occurrence of a malignant ventricular arrhythmia and consequently to SCD. Although there is no global 

consensus on the normal values of QT/RR slope, small values are in general associated with healthy people whereas higher 

values correspond to pathological subjects [9]. 

Other relevant markers include QT dispersion (QTd) and T-Wave Alternans (TWA). QTd is defined as the difference 

between the maximum and minimum QT in a standard 12-lead ECG [10]. It mainly reflects regional variations in 

ventricular repolarization. However, there is still uncertainty on the ability of QTd to identify patients at high risk of sudden 

death [11]. Moreover, it requires a standard 12-lead ECG and is not available on routine used monitoring systems, but could 

be indirectly derived from Holter systems. TWA is a beat-to-beat alternation in the morphology and amplitude of the ST-

segment or T-wave. It reflects spatiotemporal heterogeneity in the repolarization and has been proposed as a marker for risk 

stratification of ventricular tachycardia (VT) - ventricular fibrillation (VF) and SCD [12-13]. 

Several software tools have been developed for the analysis of the ECG signal, particularly for Heart Rate Variability 

(HRV) analysis. In [14], a software for advanced HRV analysis is presented. This tool is available free of charge on Linux 

and Windows platforms. gHRV is an open source tool written in Python for HRV analysis [15]. It is multiplatform software 

(Linux, Windows and Apple OS X) and provides support for several formats. Other works include a tool for HRV spectral 

analysis [16], a software for the analysis of cardio-respiratory variability signals [17] and a tool in Matlab® for the analysis 

of cardiac inter-beat interval (IBI) data [18]. An extended revision of software tools for HRV can be consulted in [19]. 

Although heartbeat classification in HRV software is rarely used, it is crucial in QT analysis because most of the indexes are 

defined for normal heartbeats. Hence, the inclusion of abnormal heartbeats, like premature atrial or ventricular beats, would 

bias the values of the indexes. Thus, a classification or labeling algorithm is needed for rejecting or identifying such beats. 

Ecg-kit is a package written in Matlab® scripting language which focuses on delineation and classification of the ECG 

signal [20]. However, this tool is intended to be Matlab® toolbox, so is not targeted to any specific task, which implies 

knowledge of the language or programming skills in order to exploit its features.  

In spite of the considerable amount of studies in the analysis of ventricular repolarization, QT analysis is not always 

available in Holter systems and when it is present, the analysis is limited. There is also a lack of tools for computing QTVI 

using the methodology proposed by Berger [6]. Furthermore, up to the knowledge of the authors, there are no software tools 

that support research on QT analysis. The reason behind these facts could be that there is still a lot of research to do before 

including QT indexes in the standard diagnostic protocols. Nevertheless, as more research is needed there is also a need for 

tools that support such research. Hence, this paper proposes an open source software tool that uses advanced algorithms for 

the analysis of the QT interval in Holter recordings. The software called PyECG, is intended to be a useful tool for 

cardiologists and researchers with no or little programming skills, so a simple and intuitive graphical user interface is 

provided. The software is written in Python and supports both, QTVI analysis and QT dynamicity analysis. Future versions 

may include T-wave alternans and QTd analysis. 

 

2.- MATERIALS AND METHODS 
The software has been developed in Python 3.6 using Anaconda 3-5.01 for Linux. The user interface was designed using 

PyQt5 which is a wrapper in Python of the multiplatform library Qt. Both standard packages, NumPy and SciPy were 

extensively used as well. NumPy is a base package for scientific computing with Python. It includes an efficient array object 

and useful functions for performing linear algebra operations, Fourier transform and random number generation. Scipy is a 
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collection of algorithms for mathematics, science, and engineering based on Numpy. Graphics generation used PyQtGraph 

which is a graphics and user interface library for Python intended for use in data acquisition and analysis applications. Other 

packages such as Scikit-Tensor and Scikit-Learn were also used. Scikit-Tensor is a Python module for multi-linear algebra 

and tensor analysis whereas Scikit-Learn is a machine learning library for Python [21]. The development environment (IDE) 

was PyCharm 2017.2.4 from JetBrains. The general workflow of the software is shown in Figure 1. 

 

MODULE 1:

QTVI ANALYSIS

MODULE 2:

QT DYNAMICITY

Holter

recordings

QTVI

QT regression model

QT/RR slope

FILTERING

QRS 

DETECTOR
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ANNOTATED

R-PEAKS
ANNOTATED 

BEAT LABELS

PREPROCESSING LEAD SELECTION

 

Figure 1 

PyECG general workflow. Preprocessing and lead selection stages of the software. SQA and IHB are the signal quality assessment 

and the irregular heartbeats detection blocks respectively. 

 

The tool consists of four main phases, see Figure 1. Since QT analysis requires a high-quality ECG signal some 

preprocessing steps are compulsory before doing any analysis. So, after loading the signal, the first two modules, namely 

Preprocessing and Lead selection, perform the signal conditioning, Figure 1. The preprocessing stage includes filtering and 

QRS complex detection whereas the lead selection stage includes a signal quality assessment (SQA) block and an optional 

irregular heartbeats detection block (IHB). Next, the user can select between two types of analysis. On one hand, Module 1 

is intended for QTVI analysis in both, single and successive 256-second windows. On the other hand, Module 2 is designed 

for QT dynamicity analysis in the segment of the signal previously loaded. 

The filtering stage includes the following blocks, (1) a second order notch filter for removing 60 Hz power-line interference 

(2) a baseline drift removing algorithm using median filtering [22] and (3) a bandpass filtering stage. By default, the -3 dB 

bandwidth of the notch filter was set to 3 Hz which implies a quality factor (Q) of 20. The median filter uses two windows 

sizes of 200 ms and 600 ms respectively. The first stage, using the 200 ms window, removes the P waves and the QRS 

complexes of each heartbeat. The second one, using the 600 ms window, eliminates the T waves. After removing the 

physiological waves, the resulting signal is considered the baseline wander and consequently, it is subtracted from the 

original ECG signal [22]. The bandpass filtering stage consists of a fourth order forward-backward Butterworth filter with 

cut-off frequencies of 0.05 and 50 Hz. As an alternative to the latter, a low pass high order FIR filter is also available. 

The second stage of the preprocessing is the QRS complex detection. Two QRS complex detection algorithms were 

provided with the tool, the first one is based on thresholds on the first and second derivatives of the ECG signal [23]. The 

second one is based on parabolic fitting [24]. 

The SQA block determines the lead which is more suitable for the further analysis, either QTVI analysis (Module 1) or QT 

dynamicity analysis (Module 2). In order to assess the quality of the signal, six quality indexes proposed in [25] were 

implemented on the software: 

 The relative power in the QRS complex (pSQI) 

 The relative power in the baseline (basSQI) 

 The baseline wander check in time domain (bsSQI) 

 The relative energy in the QRS complex (eSQI) 

 The relative amplitude of high frequency noise (hfSQI) 

 The relative standard deviation (STD) of QRS complex (rsdSQI) 

In a separate experimental study (unpublished data), we observed that the above indexes increase with the quality of the 

signal. Since the purpose is to select the lead with the highest quality, a simple majority voting algorithm is proposed as 

follows. First, a counter is initialized to zero. Then, the first index is computed for both leads. If the index for lead A is 

greater than the index of lead B the counter is increased, otherwise is decremented. The process is repeated for all indexes. 
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The software recommends one lead or the other one based on the values of the counter (voting index, VI), see Figure 2. The 

case where the counter remains equal to zero corresponds to a tie in the voting process, in such case the software will 

recommend the lead with the highest normalized index defined as follows, 

                         LLLLLL rsdSQIhfSQIeSQIbsSQIbasSQIpSQINVI  ,                                                (2) 

where L is the lead (A or B) and the   symbol means the normalized value of the current index with respect to both leads 

e.g. the normalized 
ApSQI  for lead A is the ratio between pSQIA and the maximum among both pSQIA and pSQIB. The 

normalized pSQIB is computed in a similar way.  

In the unlikely case that both NVIA and NVIB are equal, the software would recommend using Lead A. It is important to note 

that the suggestion made by the software is relative to the current segments of both leads. Thus, from the point of view of 

the further analyses, it does not mean that the rejected lead is inappropriate nor a guarantee that the suggested one fits the 

quality requirements. 

 

-6 -4 -2 0 2 4 6

LEAD B LEAD A

 

Figure 2 

Voting index (VI) based on the relative values of the six quality indexes from both leads. The sign indicates the lead as follows, (+) 

lead A and (-) lead B. The absolute value corresponds to the difference in the voting process, (6) unanimity, (4) majority, (2) 

minimum majority and (0) tie. 

 

A key prerequisite in QT analysis is that irregular ectopic heartbeats should be avoided, i.e., the analysis should be carried 

out on Normal-to-Normal (NN) intervals. In the case of QTVI computation, less than the 5% of the labeled heartbeats might 

be ectopic. In such cases, the procedure recommends interpolating on the resampled instantaneous interval series by using a 

linear spline approach [6]. For QT dynamicity analysis ectopic heartbeats are not allowed. This fact points out that an 

irregular heartbeat detection block is needed in order to perform the analysis on NN intervals. PyECG provides two tensor-

based methods for detecting irregular heartbeats. The first method uses an unsupervised approach [26]. First, a tensor (3-

ways array) is constructed from the signal. Next, a rank-1 Canonical Polyadic Decomposition (CPD) takes place. Then, the 

mode-3 loading vector of the decomposition is used for classifying the heartbeats. Here, a threshold is constructed using the 

median and the standard deviation of the mode-3 loading vector. The second method uses a machine learning supervised 

scheme. The first stages are similar to the first method, but a Support Vector Machine (SVM) is used as the classifier. The 

inputs to the system are the mode-3 vectors resulting from a rank-r CPD where r > 1 [27]. Both methods can be used either 

separately or together. However, depending on the length of the segment under analysis it might be more efficient to use the 

unsupervised approach on short-term analysis. Conversely, the supervised method or the combination of both approaches 

might be preferable on longer segments. The combination scheme uses the output of the unsupervised classifier as 

preliminary inputs to the supervised method. This leads to a faster training set generation. 

Since Holter systems may provide both, QRS complex detection and heartbeat labeling, it is possible to load such 

information directly from the recording file. Hence, the user can make use of the tools available on the software or load the 

corresponding annotations. Any combination of both alternatives can be used as well. 

After preprocessing the signal, the tool is ready for performing the required analysis using either Module 1 or Module 2. 

Previously, the user is motivated to select the lead of interest. This choice should be guided by the suggestion of the 

software based on the signal quality assessment. However, the user can still perform the analysis on any of the two leads 

regardless of the software suggestion.  

 

2.1.- QTVI AND QT DYNAMICITY MODULES 
The QTVI module performs the computation of the QTVI marker following the algorithm proposed by Berger [6]. The 

QTVI algorithm involves the definition of a single or several 256-second segments (epochs) and a template heartbeat in the 

segment under analysis. A QT interval template is generated by identifying the start of the QRS complex (Q onset, Qon) 
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and the end of the T-wave (T offset, Toff) on the template heartbeat [6]. Given these requirements, the workflow for the 

QTVI module is shown in Figure 3. 

TEMPLATE 

BEAT SELECTION

QTVI 

COMPUTATION

QON AND TOFF 

MANUAL ADJUST

- SELECTED LEAD

- R PEAKS
- QTVI VALUE(S)

ANALYSIS WINDOW 

DEFINITION

 

Figure 3 

QTVI module workflow. 

 

First, a template heartbeat must be manually selected by the user. Then, the software will suggest the Qon and Toff points 

for the current heartbeat. Both points may be manually adjusted if needed. The analysis windows can be defined by setting 

the starting sample at any point of the signal. This module allows computing QTVI in a single window or in a sequence of 

either overlapping or non-overlapping windows. 

QT dynamicity analysis requires the detection of the Qon and Toff points for every heartbeat in the segment under analysis. 

This module includes both Qon and Toff automatic detection algorithms. The Qon detection is based on the method of the 

maximum triangle area. The Toff detection algorithm uses the method based on the area under the T-wave proposed by 

Zhang [28]. The Module 2 workflow is shown in Figure 4. 
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Figure 4 

QT dynamicity analysis module workflow. 

 

Although the software automatically detects Qon and Toff points for every heartbeat, these annotations must be manually 

corrected in order to guarantee the precision of the points. Hence, the first step is to check the generated points and 

manually correct them wherever it is needed. The next step is to select an RR profile for the QT analysis. Three profiles are 

available. 

 QT depends on the previous RR interval (default) 

 QT depends on a history of several previous RR intervals; this relation can be modeled by using a linear weighted (LW) 

average of preceding RR intervals [9]. 

 Idem to the previous one but using an exponentially weighted (EW) profile [9]. 

The general expression for all profiles is given by the following equation, 
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where RRi is the RR interval for the i-th heartbeat, Ni is the number of heartbeats in a time lag window of a pre-defined 

length and ωj are the weights of the last Ni RR intervals within the window. Different profiles can be generated by varying 

the weights dependence on j, e.g. a linear weighting (LW) approach is given by 
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As mentioned above, another feasible varying law for the weights is the exponential weighting (EW) defined as 
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where )1/(2 iN  [9]. 

Finally, the QT dynamicity block determines the QT/RR model and their parameters given the RR profile and the QT 

interval series. 

 

3.- RESULTS 

Figure 5 shows the user interface of PyECG. The application includes a Main Menu and a Toolbar in the topmost side of the 

main screen. Both of them provide access to all the options of the software. Thus, hereinafter only the commands in the 

Toolbar will be commented. The Toolbar is divided in three sections. The first one includes actions related to the 

application management. The second and the third sections provide actions which support the general workflow previously 

discussed. 

 

 

Figure 5 

PyECG user interface, main menu and toolbar. 

 

Section (1) provides the following actions, Open, Save, Options and Exit. The Open action (1.1) allows the user to load a 

Holter recording from disk, currently the tool supports Excorde E3C and Matlab® files. This command gives the alternative 

of loading either a segment of the signal or the whole recording. Save (1.2) allows storing the results of the analyses to a 

file. The button Options (1.3) provides access to configuration parameters of the preprocessing stage. Here, the user can 

select and configure the QRS detector and the irregular heartbeat detection algorithm. Finally, the Exit action (1.4) quits the 

application. 

The analysis section (2) implements both processing modules. The elements on this section will be available after opening a 

recording. The actions included are: Detect R, Load R annotations from file, Detect irregular heartbeats, Load label 

annotations from file, QTVI and QT dynamicity. 

The Detect R action (2.1) filters the signal and automatically detects the R peaks on both leads of the record, Figure 6. The 

command shows the detected points directly onto the signal plot. Two panels with possibly missing or incorrectly detected 

R peaks are available to the right. Both panels show the time positions where the algorithm failed and allow going directly 

to these positions by clicking on them. This makes easier the manual correction task, Figure 6. 

The action Load annotations from file (2.2) shows the R-peak positions of the signal, but no R-peak detection is executed by 

the tool. Instead, the R-peak positions are loaded from the recording file. However, still the signal is pre-filtered as was 

described for the Detect R action. After finishing the detection/loading process, the user can manually correct the positions 

in case of errors. The software provides a very simple interface for correcting the detected points. Essentially, a popup menu 

with three entries is available for each detected point. The possible actions include Adjust point, Remove point and Add 

point. Adjust point allows moving the current point around the window, Remove point deletes the current point and Add 

point includes a new point, Figure 6. 

Together with preprocessing actions, the user can explore the power spectrum of the signal before and after filtering. 

Section 3 unique action, namely Spectrum (3.1) shows the power spectrum for both leads at any time it is invoked. This 

action is useful as reference on the effect of the filtering approach implemented in the software. 

Both Detect irregular heartbeats (2.3) and Load label annotations from file (2.4) actions show the class label 

(regular/irregular) associated to every single heartbeat. The main goal of both actions is to provide information on the 

number of irregular heartbeats in the segment under analysis. Thus, the user can judge the pertinence of computing the QT 

indexes on this interval. The IHB is accessible via action 2.3. It processes the signal and assigns a label to each heartbeat. 

Depending on the algorithm a guided training process may be needed. Action 2.4 involves loading the label annotations 
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stored on the recording file. Although the software is not intended for annotating records, it is possible to override the 

automatically generated labels provided by both, the built-in algorithms and the recording file. 

 

Figure 6 

R-peak detection results using the built in algorithm in a 300 s segment. The panels to the right include the time positions of 

possibly missing or incorrectly detected points. The user can navigate directly to these positions by clicking on them. The popup 

menu shows the available options for the current point. 

 

QTVI and QT dynamicity buttons implement the Module 1 and Module 2 stages respectively. Clicking on the QTVI button 

will display a dock with a brief tutorial on computing QTVI. Here, the software gives details on all the necessary steps and 

suggests a lead for QTVI computation. Then the user should select a lead by clicking on one of the push buttons provided. 

Once the lead has been selected a new dock is displayed with only the lead of interest, Figure 7. 

The new dock includes three sections, (1) a global view of the segment of the signal under analysis, (2) a zoomed area of the 

signal and (3) an information/control panel. The latter, provides the following features, (1) displays information on the 

current template heartbeat, (2) gives options for defining the analysis window (start and overlapping factor) and (3) allows 

computing QTVI, Figure 7. 

The user can define the template heartbeat by clicking on any R peak displayed on the zoomed region. As response to this 

action, the software will change the color of the current heartbeat. Furthermore, two vertical lines will be displayed 

suggesting the Q-on and T-off points of the current heartbeat respectively. These lines can be manually adjusted by the user, 

Figure 7. 

There are two alternatives for specifying the start of the 256 s analysis window. The first one is by directly writing the time 

in seconds or the number of the sample on the Start sample input control. The second one is a graphical alternative where 

the user selects the start by clicking on the push button (….) and moves the start line around the zoomed area. The Set 

overlap control allows for computing either one or several QTVI values on the current segment, depending on its value. A 

negative value corresponds to only one QTVI computation. Zero or positive values correspond to the percentages of 

overlapping among adjacent 256 s windows for computing each QTVI. Finally, the QTVI push button allows the user to 

compute the QTVI value or values given the defined parameters. 

Clicking on the QT dynamicity button follows the same approach as QTVI, i.e. a brief tutorial on QT dynamicity analysis is 

displayed and the user is motivated to select the lead with the best relative signal quality. After selecting the lead of interest, 

a new three-panel dock is opened. The first panel shows the whole segment, the second one, is a zoomed version which 
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includes automatically generated Qon and Toff points for every heartbeat on the segment. Finally, the third one is a control 

panel for managing options. 

 

 

Figure 7 

QTVI analysis window, the options panel shows information on the current template heartbeat (thick dashed yellow line). 

 

Every single Qon and Toff point can be manually adjusted by the user on the zoomed panel. The possible actions include, 

Adjust point (the point can be moved around), Add point (a new point is included, its position is given by the mean value 

between the current point and the previous one), Remove point (the point is deleted). All these actions are available on a 

contextual menu accessible by clicking on the point. 

The control panel provides options for selecting one of the three available RR profiles through the combo box named RRi 

profile. LW and EW profiles require a time lag parameter that can be specified in the corresponding control (Time Lag), 

Figure 8. The QT dynamicity analysis is performed by clicking on the QT/RR button. As a response to this action, a new 

panel is displayed with the QT/RR analysis results. The results panel shows a QT-RR scatter plot and the fitted model. Up 

to 10 models of the relation QT/RR can be evaluated [9]. The parameters of each model are available on demand by 

clicking on the name of the model. 

3.1.- TOOL TEST 

This section shows a brief qualitative and quantitative evaluation of PyECG. Several tests have been performed using both, 

synthetic signals and recordings from the Excorde 3C Holter [29]. The tests will focus on the main features of the tool i.e. 

signal quality assessment, irregular heartbeats detection and QT analysis. 

The SQA block was evaluated by using the tutorial feature of both modules. The tutorial explains the steps for performing 

the further analysis and suggests a lead for doing so. Precisely this suggestion expresses the results of the SQA module by 

coding the VI absolute value (VIav) in words as follows. The unanimity (VIav=6) corresponds to the words “strongly 

recommends”, the word “recommends” means majority (VIav=4), simple majority (VIav=2) is coded to “slightly 

recommends” and a tie (VIav=0) corresponds to “suggests”. The sign of VI points out the lead i.e. is positive for lead A and 

negative for lead B. 
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Figure 8 

QT dynamicity analysis window, the panel at the bottom shows the available parameters. The user can select the profile and a 

time lag in seconds (only for linear and exponentially weighted profiles) 

 

The test for SQA block evaluation consists of comparing artificial signals with different SNR. The signals were generated 

with the synthetic generator from McSharry et al [30]. The parameters for the model are given in Table 1. Thus, with this 

model a noise free signal was generated. Then, this signal was contaminated with uniformly distributed noise with 

amplitude 0.08 mV. Moreover, a 1 Hz, 0.3 mV baseline drift was added. Both, the contaminated and the clean signals were 

assembled in a single two channel signal. This two-channel record was loaded into the tool. Here, the contaminated signal 

corresponds to channel A and the clean one to Lead B. After detecting the R points, the SQA module can be evaluated by 

clicking on the QTVI action, see Figure 9. Since there is a clear difference among qualities of the channels it is expected 

that the software recommends Lead B, this can be seen in Figure 9. 

 

Table 1 

McSharry et al [30] model parameters for two experiments, the SQA evaluation and the QT dynamicity analysis. 

 

Parameter Value (SQA) Value (QT/RR) 

Sampling frequency 250 Hz 250 Hz 

Noise amplitude 0.01 mV 0.01 mV 

Number of beats 60 3700 

Heart rate mean 75 bpm 75 bpm 

Heart rate standard deviation 4.667 bpm 4.667 bpm 

LF/LH ratio 0.5 0.5 

Internal sampling frequency 250 Hz 250 Hz 
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Figure 9 

SQA block test with synthetically generated signals. Lead A was contaminated with noise and baseline drift (see the text), lead B 

is the clean signal. To the right, the QTVI tutorial points out lead B as the best one. 

 

An IHB stage performance evaluation requires annotated records. Thus, eight 15-min segments of different Holter 

recordings were manually annotated by cardiologists using an independent tool. Table 2 shows the main characteristics of 

these records. The sample intends to cover several heartbeat classes such as Normal beats (NORMB), Supraventricular 

Ectopic Beats (SVEB), Paced Beats (PB) and Ventricular Ectopic Beats (VEB). Moreover, the recordings include signal 

quality changes, different types of noise, artifacts and other types of disturbances that normally affect ambulatory signals. 

 

Table 2 

Segments of 15 min from different holter recordings for the evaluation of the IHB. 

 

Segment Characteristics 

1 Moderate noise in both leads, premature ventricular contraction beats (PVCB) and paced beats (PB).  

2 Several SVEB. Lead B low amplitude 

3 First half of lead A is noisy. Few PVCB. 

4 Low SNR in lead A. Motion artifacts. 

5 Very low level signal in both leads, particularly in lead A, where it is almost unreadable. Few artifacts. 

6 Low level signal in both leads, particularly in lead B. Few irregular beats. 

7 Severe noise in both leads in the interval 300-500 s. Several paced beats. 

8 Lead A clean signal, no abnormal heartbeats. Lead B completely noisy and unusable. 

 

Table 3 shows the results of the performance evaluation using the segments of Table 2. It is worth to note that a true 

positive corresponds to the correct detection of an abnormal heartbeat. Excluding the positive predictive value (P+), the 

performance indexes are all above 96%. The worst performance index is P+ with a 64.4%. This means that the classifier is 

very sensitive to morphology variations. Indeed, the signal quality changes affect the morphology and consequently the 

output of the classifier. For instance, in segments 1 and 5 most of the false positives found, correspond to intervals where 

the signal quality is compromised by an increment in the noise level. We hypothesize that in such cases, better performances 

can be achieved by using supervised classification because the knowledge of the user can be incorporated into the 

classification system. However, the proper assessment of the previous hypothesis would require an extensive evaluation, 

which is beyond the scope of this paper. Furthermore, for the purposes of this tool, this behavior is not too critical because it 

is important to avoid low-quality segments. Hence, a very sensitive classifier may notify the user about poor quality 

segments. 
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Table 3 

Evaluation of the irregular heartbeat detection block using the signals from Table 2. Here, R is the number of 

detected heartbeats, TP, FP, FN and TN are the number of true positives, false positives, false negatives and true 

negatives respectively. Moreover, sensitivity (Se), specificity (Sp), positive predictive value (P+) and accuracy (Acc) 

performance metrics are included. 

 

Segment R Total (%) TP FP FN TN Se Sp P+ Acc 

1 1037 1042 99.5 32 52 0 953 100 94.8 38.1 95.0 

2 1026 1029 99.7 41 6 4 975 91.1 99.4 87.2 99.0 

3 1368 1370 99.9 2 0 1 1365 66.7 100 100 99.9 

4 1315 1318 99.8 1 0 0 1144 100 100 100 100 

5 977 978 99.9 2 21 1 954 66.7 97.8 8.7 97.8 

6 975 981 99.4 4 8 0 962 100 99.2 33.3 99.2 

7 888 935 95.0 88 7 0 793 100 99.1 92.6 99.2 

8 903 906 99.7 0 0 0 903 - 100 - 100 

Total 8489 8559 99.2 170 94 6 8049 96.6 98.8 64.4 98.8 

 

In order to evaluate the performance of the detection algorithms the QT Database (QTDB) [31] was used. QTDB is publicly 

available in Physionet [32] and was designed for evaluating the performance of algorithms for event detection in ECG. It 

consists of short segments (15 min) extracted from 105 Holter recordings, each with two channels. The sampling frequency 

is 250 Hz. 

Regarding the evaluation of the Toff detector, the following experiment was designed. First, the output of the original 

algorithm was obtained for all records in QTDB. This results in 65 records with at least one lead, which satisfies Group I 

error stratification level according to the CSE Working Party criterion [33]. This level corresponds to the records where the 

mean error (accuracy) on detecting Toff is below 15 ms and the standard deviation of the error (precision) is below 30.6 ms. 

When both leads accomplished this criterion, the best one was chosen. Then, 40 recordings were selected at random from 

this group for the evaluation using PyECG. The results of this evaluation are shown in Table 4. 

Although the original output is slightly better, both algorithms produce similar results and the overall performance barely 

changes. Indeed, the absolute differences in the mean accuracy and the mean precision are below one sample at 250 Hz (4 

ms). Hence, it is clear that both versions have equal performances so the PyECG implementation is reliable enough and 

follows the original algorithm. 

The Q onset detection algorithm was compared against the output of the wavelet delineator [34] included in the ECG-kit. 

This is a well-known delineator which is also publicly available in Phyisonet. The original code of the wavelet delineator is 

written in Matlab® and a similar methodology was followed for the comparison. Once more, the ground-truth is the set of Q 

onset annotations available on QTDB. Besides, the previous 40 records were also used and the same lead was considered for 

both algorithms. Although this approach for evaluating the Q onset detectors will result in lower performances, this choice 

is based on the fact that for the purposes of the QT/RR and QTVI analysis only one lead is finally available. Thus, all the 

fiducial points should be detected on the chosen lead. 

From Table 4, it is noticeable that there are significant differences among algorithms. The method implemented tends to 

estimate the Q onset points before their real positions whereas the wavelet delineator tends to estimate the Qon points after 

their true location. In terms of the QT interval and assuming an exact Toff, the former method would overestimate the QT 

interval. Conversely, the wavelet delineator would underestimate it. Nevertheless, in terms of the absolute value of the 

accuracy, both methods have approximately the same mean accuracy. This is also the case of the precision parameter where 

the absolute difference is negligible (0.3 ms). Hence, the Q onset detector based on trapezium area has almost the same 

precision as the wavelet delineator; however, it is simpler and faster than the wavelet approach. 

Finally, a brief test of the QT dynamicity block was performed as follows. Using the McSharry model a 3700 s signal was 

generated. The parameters for the model are shown in Table 1. Two signals were generated A signal with 0.01 mV of noise 

amplitude and a clean signal which is used as reference. This free-noise reference is used for determining the positions of 

the Qon and Toff points. These positions were determined outside of the tool using Matlab®. Then the QT/RR slope and y-

intercept were computed using the previous points and the first profile (QT depends on the previous RR). The values of 

both, the slope and the y-intercept are taken as ground truth.  
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Table 4 

Evaluation of the Toff and Qon detectors using a subset of the QT database . 

 

No Record 

T offset location error Q onset location error 

MATLAB[28] PyECG MATLAB[34] PyECG 

MEAN STD MEAN STD MEAN STD MEAN STD 

1 sel100 -14.0 16.5 -9.87 17.1 23.3 8.28 3.33 7.80 

2 sel103 -7.47 17.1 -3.73 16.7 11.3 9.62 -11.8 14.6 

3 sel116 -11.8 17.6 -7.36 17.0 12.1 12.8 -25.2 22.8 

4 sel123 -5.73 8.71 -2.00 7.77 33.3 11.7 -10.3 16.2 

5 sel14046 -6.84 15.3 -2.45 15.1 -1.60 18.6 -14.9 18.9 

6 sel14157 -14.3 8.71 -10.1 8.39 10.4 5.62 4.27 5.65 

7 sel16272 4.27 10.0 6.00 11.0 10.8 5.37 -6.80 5.86 

8 sel16273 14.9 8.06 -9.87 8.65 10.0 9.38 3.20 8.43 

9 sel16420 2.53 11.3 4.67 11.5 6.80 5.05 0.00 4.33 

10 sel16483 -2.40 7.32 -3.07 7.62 8.80 6.68 5.47 6.43 

11 sel16539 4.13 10.2 7.20 9.82 12.5 7.41 6.00 7.33 

12 sel16773 2.67 8.75 7.60 8.75 4.40 8.29 -45.6 12.1 

13 sel16786 0.53 10.2 4.13 10.4 -34.5 40.5 -11.7 20.1 

14 sel16795 -10.3 11.5 -10.1 12.0 16.7 8.73 -3.07 8.96 

15 sel17152 -3.07 16.5 4.67 18.3 6.53 9.48 -38.0 12.1 

16 sel17453 8.00 18.7 11.6 18.0 -2.06 11.9 -27.5 13.4 

17 sel221 -8.67 14.9 -4.53 14.1 25.8 28.9 -19.6 20.8 

18 sel223 4.00 20.7 8.13 21.1 -0.08 7.86 -6.00 6.32 

19 sel230 -2.88 17.2 -1.04 17.5 13.8 6.79 20.7 12.7 

20 sel231 -10.6 15.6 -6.64 15.8 13.7 8.32 -8.13 7.24 

21 sel306 -4.11 10.8 8.89 9.80 9.87 8.19 14.9 21.5 

22 sel803 -2.27 12.6 -5.73 12.5 3.20 15.0 -45.7 14.5 

23 sel808 -13.6 19.1 -14.5 19.9 3.87 12.3 -12.3 9.57 

24 sel811 -6.80 11.2 -10.4 12.2 15.9 9.92 -25.9 11.5 

25 sel821 7.73 15.4 12.3 16.8 -9.07 24.7 -25.9 12.7 

26 sel840 0.23 13.5 1.31 14.3 18.0 7.11 -4.80 7.00 

27 sel847 -5.21 13.9 -0.61 14.2 14.5 6.99 -9.21 5.79 

28 sel853 -8.80 14.9 -11.7 16.6 11.2 9.88 -6.00 11.7 

29 sel871 -2.00 22.4 -1.14 15.7 24.4 4.62 1.20 4.35 

30 sel872 -0.80 9.12 -2.40 10.5 9.73 5.63 -19.3 16.3 

31 sel873 7.27 19.2 11.4 18.8 7.07 5.43 -11.6 4.97 

32 sel883 -5.07 12.6 -3.60 12.4 8.93 4.54 -10.5 4.26 

33 sel891 4.79 13.3 4.23 17.7 8.13 8.69 -2.13 7.26 

34 sele0106 7.07 15.3 12.0 14.7 2.67 20.1 -9.73 10.0 

35 sele0110 -12.8 27.3 -8.53 27.4 1.33 4.50 -18.1 13.2 

36 sele0111 -6.40 8.76 -2.00 9.32 0.67 12.2 -32.0 23.0 

37 sele0114 7.73 20.9 12.4 20.6 17.3 6.67 -3.60 6.75 

38 sele0121 10.5 8.17 14.8 8.15 2.53 7.54 1.47 4.98 

39 sele0122 8.27 6.21 2.27 6.38 19.1 11.7 -0.40 7.96 

40 sele0133 -0.67 9.10 3.60 9.70 9.73 8.51 -4.80 5.70 

MEAN (ms) -1.79 13.71 0.14 13.86 9.03 10.6 -10.3 10.9 

MEAN (samples) -0.45 3.43 0.04 3.47 2.26 2.66 -2.56 2.72 
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The noise-contaminated signal was loaded into the tool. The QT dynamicity analysis module was launched after filtering 

and R peak detection and correction processes. Since it is known that the model generates QT intervals linearly related to 

the RR intervals [30], the linear model for regression was used. The results for the linear model using the first profile and 

the relative errors with respect to the reference are given in Table 5. It is noticeable that no manual correction to the 

automatically generated Qon and Toff points was used. In spite of the latter, low relative errors were obtained, see Table 2. 

Figure 10 shows the results for this analysis using PyECG and the QT-RR scatter plot. Besides, the regression line is also 

visible. 

 

Table 5 

QT analysis on synthetic signals using the linear model and the profile where the QT depends on the previous RR 

interval. QT/RR line parameters given for both, contaminated and clean signals. 

 

Clean signal (ground-truth) Contaminated signal Relative errors 

Slope (α) y-intercept (β) Slope (α) y-intercept (β) Relative error α (%) Relative error β (%) 

0.2728 0.1598 0.2703 0.1628 -0.9121 1.9052 

 

 

 

Figure 10 

Results of the QT dynamicity analysis on the synthetic signal generated with the model (see Table 1). Scatter plot 

QT/RR and results panel of the QT dynamicity analysis. The first profile (QT depends on the previous RR) was used, so blue 

triangles represent the coordinates (RRi-1, QTi) for the i-th heartbeat. Ten models are accessible through the combo box. The 

model parameters (alpha and beta) are shown below the QT/RR scatter plot. Here, alpha is the slope of the regression line (in 

white) and beta is the y-intercept. The Pearson correlation coefficient is also available. The parameters for the linear model 

are given to the right. 

 

So far we have described PyECG and some validation examples have been discussed. However, there is still room for 

improvements and the main goals for future versions of this tool will be the following:  

- To introduce a second level classifier for separating between supraventricular origin (SVEB) and ventricular origin 

(VEB) heartbeats in order to determine the VEB/SVEB occurrence ratio and/or to support studies on the behavior 

of RR or QT after a VEB 

- To provide support for several holter systems and formats, currently PyECG supports only Excorde 3C recordings 

and Matlab® files. 

- To include adaptive algorithms for detecting characteristic points like the end of the T wave (Toff) in order to 

improve the detection performance.  
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This tool was presented during a scientific seminar of the Cardiology Service at the Hospital Provincial Saturnino Lora, 

Santiago de Cuba, Cuba. We received a positive feedback from the cardiologists and the first steps for the evaluation of the 

tool by the service were planned. A major concern on the use of the tool was that so far PyECG runs for Linux OS and the 

available computers at the service run Windows. Thus, a necessary step is to port the tool to Windows OS in order to assure 

a fast introduction of PyECG. 

 

4.- CONCLUSIONS 

This paper presented a software tool for the analysis of the QT interval on Holter recordings. The main contribution of this 

work is that this is the first public software tool that allows to compute indexes that have been pointed out as markers of 

repolarization instability. Besides, irregular heartbeats can be detected and rejected. This feature, together with a block for 

signal quality assessment allows for an easy, reliable and fast evaluation on the feasibility of the current segment for the QT 

analysis. It can be used by cardiologists and specialists with no programming skills as a tool for research on QT interval 

analysis. Moreover, the software has been tested with records from the Excorde 3C Holter system which is widespread 

throughout hospitals in Cuba. 
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