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RESUMEN/ABSTRACT 

Due to the high incidence of lung cancer, computer-aided detection (CAD) systems may play an increasingly important role 

in screening. Classification in CAD systems has to deal with highly imbalanced datasets composed by actual nodules and 

non-nodule structures. The application of data balancing techniques helps the training process of the classifiers, making the 

generation of the classification rules more effective. The purpose of this paper is to compare the performance of different data 

balancing techniques applied to the classification of lung nodules. According to the reviewed literature, this is the first time 

that different data balancing methods are evaluated on the problem of lung nodule detection using a large data set and at low 

false positive rates. A web-based framework was used to evaluate the different methods applied to a classical CAD system 

(ETROCAD) presented in the LUNA16 Challenge by calculating a score of average sensitivity at different values of false 

positives per scan. In our experiments, data balancing using SMOTE and SMOTE-TL led to the best results, with a score of 

0.760 and 0.759 respectively, in comparison to 0.748 when not balancing the data. Although the impact on the overall score 

may seem marginal, adequate data balancing resulted in the correct classification of 36 additional candidate nodules at 4 

FP/scan. At the time of writing this paper, the SMOTE-based ETROCAD system had the best score among all the classical 

systems using handcrafted features in LUNA16 web site. 

Keywords: Data balance, Computer Aided Detection, Near-Miss, CNN, Random Under-sample, Tomek links, Self-Organized 

Map, Random Over-sample, ADASYN, SMOTE, LUNA16 

Debido a la alta incidencia del cáncer de pulmón a nivel mundial, los sistemas de diagnóstico asistidos por computadora 

(CAD por sus siglas en inglés) desempeñan un papel importante en los estudios de pesquisaje de la enfermedad. El proceso 

de clasificación en los sistemas CAD se ve deteriorado debido al bajo porciento de estructuras detectadas que se 

corresponden a nódulos verdaderos. El principal propósito de este trabajo es compararla influencia de las técnicas de 

balanceo de datos en la clasificación de nódulos pulmonares. De acuerdo con la literatura revisada, en este trabajo se 

presenta por primera vez la comparación entre balanceo de datos aplicado a la detección de nódulos pulmonares 

empleando un conjunto de imágenes grande para razones de falsos positivos bajas. Los métodos se aplicaron a un sistema 

CAD presentado en LUNA16 Challenge (ETROCAD). Los mejores resultados obtenidos se corresponden a los métodos 

SMOTE y SMOTE-TL con una sensibilidad promedio de 0.760 y 0.759 respectivamente, en contraste a 0.748 obtenido sin 

realizar ningún balanceo de datos. Aunque el impacto en el índice empleado en LUNA16 no es alto, un balanceo de datos 

adecuado permitió la detección correcta de 36 candidatos adicionales a una raso de 4 falsos positivos por imagen. En el 

momento de escritura de este trabajo, el desempeño del ETROCAD con balanceo de datos basado en SMOTE exhibe la 

mayor puntuación de entre los sistemas CAD clásicos. 

Palabras clave: balanceo de datos, sistemas de detección asistidos por computadora, Near-Miss, CNN, submuestreo 

aleatorio, Tomek links, Mapas auto-organizados, sobremuestreo aleatorio, ADASYN, LUNA16 

Evaluación de técnicas de balanceo de datos. Aplicación en un sistema CAD para nódulos pulmonares empleando el 

sistema LUNA16 
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1.-INTRODUCTION 

Many real-life classification problems lead to situations in which the distribution of the positive and negative examples is 

unbalanced, because individuals of some classes appear more frequently. This is known as class imbalance and it is not 

uncommon to have an imbalance of several orders of magnitude. As an example, Tan et al. [1]proposed a CAD system for 

lung nodule classification, in which they classified 111 332 candidate structures, of which only 574 structures are actual 

nodules. From a machine learning point of view, this imbalanced nature of the training data represents a challenge for the 

learning algorithm, as it biases the outcome towards the majority class, i.e. the FPs [2]. 

In machine learning, several methods have been proposed to handle the class imbalance [3]. A discussion of open issues and 

present challenges for further development in the field of imbalanced learning can be found in [4]. Typically, to provide a 

balanced distribution, sampling methods are used. The sampling methods can be classified in under-sampling methods or 

over-sampling methods, depending on if they remove or add samples to one of the classes, respectively. The combination of 

under-sampling and over-sampling is referred as ensemble methods. 

For a clear presentation in the rest of this work, some definitions are presented. Consider a training set 𝑆 = 𝑆𝑚𝑎𝑗 ∪ 𝑆𝑚𝑖𝑛 , 

where 𝑆𝑚𝑎𝑗 and 𝑆𝑚𝑖𝑛  are the majority and minority class respectively, such that𝑆𝑚𝑎𝑗 ∩ 𝑆𝑚𝑖𝑛 = {∅}. The samples 𝑥𝑖 ∈ 𝑆𝑚𝑎𝑗and 

𝑦𝑗 ∈ 𝑆𝑚𝑖𝑛 will denote individuals of the majority and minority classes, respectively. Finally, any set generated from sampling 

methods on 𝑆 are labeled as 𝑅. 

 

1.1.-SAMPLING METHODS FOR DATA IMBALANCE 
A first group of methods resample the classes in a random fashion, either by augmenting the 𝑆𝑚𝑖𝑛  or reducing the size of 

𝑆𝑚𝑎𝑗 . The random over-sampling method augments 𝑆𝑚𝑖𝑛  replicating randomly selected examples. In this way, the class 

distribution balance is adjusted. On the other hand, random under-sampling works by removing randomly selected samples 

from 𝑆𝑚𝑎𝑗instead of adding samples. These two mechanisms provide a way for varying the degree of class balance in any 

desired way. Despite of its simplicity, each method is associated with issues that can compromise the performance of the 

learning algorithm [5], [6], [7]. 

The drawback of random under-sampling is obvious as the removal of samples from 𝑆𝑚𝑎𝑗  can cause the classifier to miss 

useful information. Inversely, the over-sampling method can lead to overfitting, due to the replication of some of the samples 

from 𝑆𝑚𝑖𝑛 . Overfitting could make the decision rules too specific, with high accuracies on the training set, but poor 

performance on the testing set [5]. 

Condensed nearest neighbor (CNN)samples𝑆𝑚𝑎𝑗 , eliminating random samples without significantly affecting the performance 

of the nearest neighbor classification, i.e. the nearest neighbor rule used to classify 𝑆𝑚𝑎𝑗should give almost the same result if 

applied to the under-sampled set 𝑅 [8]. This is especially true if the elements in 𝑅 are representative elements of the 𝑆𝑚𝑎𝑗 . 

Tomek links (TL) is a data cleaning technique used to remove the overlap introduced by sampling methods. A Tomek link is 

a pair (𝑥𝑖 , 𝑦𝑗) such that 𝑥𝑖 and 𝑦𝑗 are minimally distanced nearest neighbors. Well-defined class clusters (𝑅) can be established 

removing all 𝑥𝑖 from the Tomek links until all minimally distanced nearest neighbor pairs belong to the same class. This 

method will lead to well-defined classification rules for improved classification performance [3]. 

The Near Miss methods are other data cleaning techniques for under-sampled data sets. Three variants of Near-Miss are 

presented in [9]. NearMiss-1 (NM1) selects the 𝑥𝑖 neighbors closest to some determined number of 𝑦𝑗 and removes them if 

the average distance is minimal. NearMiss-2 (NM2) works in a similar manner but considering all the 𝑦𝑗, and taking the 

average distance to a determined number of the farthest 𝑦𝑗. The third method, NearMiss-3 (NM3), selects a given number of 

𝑥𝑖, surrounding each 𝑦𝑗. The performance of these methods could be influenced by the distribution of the 𝑥𝑖 among the 𝑦𝑗 [9]. 

The Synthetic Minority Oversampling Technique (SMOTE) generates synthetic examples operating in feature space [10]. 

𝑆𝑚𝑖𝑛is over-sampled by taking each 𝑦𝑗 and introducing synthetic examples along the line segments joining all of their nearest 

neighbors. Depending on the amount of required over-sampling, samples from the k-nearest neighbors are randomly chosen. 

Despite its great success in several applications, it has some drawbacks including over-generalization. 

The Adaptive Synthetic (ADASYN) approach adaptively creates different amounts of synthetic data according to their 

distributions [11]. It uses a density distribution as a criterion to automatically decide the number of synthetic samples that 

need to be generated for each 𝑦𝑗 by adaptively changing the weights of different 𝑥𝑖 to compensate for the skewed distributions. 

A Self-Organizing Map (SOM) aims to reduce the class imbalance by first clustering all 𝑥𝑖 samples into different cells of a 

Kohonen layer based on the similarities in the feature space. The subset 𝑅 is generated by taking a number of examples from 
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each cell. In this way, the size of 𝑆𝑚𝑎𝑗  is reduced without altering the distribution in the feature space. This method was 

employed by Tan et al. [1] to reduce the class imbalance of the lung nodule classification problem to a factor three. 

There is a third category, referred as ensemble methods, that combines over-sampling and under-sampling. Two examples of 

ensemble methods are SMOTE-TL and SOM-SMOTE. In SMOTE-TL, 𝑆𝑚𝑖𝑛  is oversampled with SMOTE to the size of 𝑆𝑚𝑎𝑗, 

then both classes are down-sampled to the original size of 𝑆𝑚𝑖𝑛  using TL. On the other hand, SOM-SMOTE, first down-

sample 𝑆𝑚𝑎𝑗  to a size greater than the size of 𝑆𝑚𝑖𝑛 , and then 𝑆𝑚𝑖𝑛 is oversampled to the new 𝑆𝑚𝑎𝑗  size. As SOM-SMOTE 

reduces the sizes the classes as the first step, balanced data sets with less computational load can be obtained. 

 

1.2.-CAD OF LUNG CANCER 
Lung cancer has been the most common type of cancer for several decades and the second cause of death worldwide among 

all non-communicable diseases1 . Also, its detection in initial states is considered the most effective way to improve survival 

of patients, in which case, the 5-year survival rate is approximately 54 %, compared to 4 % in case of detection in advanced 

stages [12]. These facts have led to the development of screening programs in United States of America [13,14] and Europe2. 

The implementation of the programs at large scale will increase the radiologist burden significantly and the computer-aided 

diagnosis (CAD) systems may play a significant role in reducing the reading time and thereby improving cost-effectiveness 

[15,16]. 

A typical CAD approach for lung cancer detection has three steps: preprocessing, candidate detection, and false positive 

reduction. The preprocessing is used for image standardization (spatially resampling the image to isotropic and homogeneous 

resolution) and lung segmentation in order to restrict the search space. The candidate detection step aims to detect nodule 

candidates at a very high sensitivity. As a consequence, a large imbalance between true positives (TP) and false positives (FP) 

is generated. Subsequently, the FP reduction step lowers the number of FPs among thecandidates and generates the final set 

of detected nodules. Figure 1 depicts the CAD system presented in [1], where the three steps of the procedure are shown. 

 

Figure 1 

  Block diagram for the CAD system presented by Tan et al in [1]. 

 

 

 

1.3.-THE LUNA16 CHALLENGE 

                                                           
1 Global Health Estimates 2015: Burden of disease by Cause, Age, Sex, by Country and by Region, 2000-2015. Geneva, 

World Health Organization; 2016. http://www.who.int/healthinfo/global_burden_disease/en/ 
2http://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30861-6/fulltext 
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To allow the comparison of different CAD systems of lung nodules, an online framework for the evaluation was introduced 

in [17]. The LUng Nodule Analysis 2016 (LUNA16) Challenge has a web interface to evaluate algorithms and compare the 

results with other approaches. LUNA16 consists of two separate tracks: the full pipeline of a CAD system (track 1) for thoracic 

CT images, including the candidate nodule detection and the FP reduction; and a simplified track (track 2) covering only the 

FP reduction for which coordinates of candidate nodules are given. In both tracks, the data originates from the LIDC-IDRI 

database, consisting of a subset of 888 scans for which reference annotations from four radiologists are available [18]. This 

data set can be used for training and system evaluation. 

In order to evaluate the systems, the Free-response Receiver Operating Characteristic (FROC) analysis is computed. TP are 

defined as nodules annotated by the majority of the radiologists (at least 3 out of 4 radiologists). Sensitivity is defined as the 

fraction of detected TP divided by the number of nodules in the LUNA16’s reference standard. In the FROC curve, sensitivity 

is plotted as a function of the average number of FP per scan (FPs/scan). Evaluation is performed using predefined subsets 

for 10-fold cross-validation, which can be downloaded from the LUNA16 website. As overall score, the average of the 

sensitivity at 0.125, 0.25, 0.5,1, 2, 4, and 8 FPs per scan, over all folds, is used. Also, the 95% confidence interval using 

bootstrapping with 1000 bootstraps is calculated. For each bootstrap, a new set of candidates are constructed using (scan-

level) sampling with replacement. A Python evaluation script is available for download on the LUNA16 website and the 

results can be viewed by all participants. 

1.4.-CAD SYSTEMS AND DATA BALANCE 
Classifiers with balanced data sets tend to perform better, in particular in terms of increasing sensitivity at low FP rates [10]. 

As mentioned, CAD systems typically face this problem as well. Despite this, few data balance studies for CAD of lung 

nodules have been reported. Table 1 shows an overview of previous work in classical CAD system development. 

Table 1 

Data sets and data balance methods reported in classical CAD systems for lung nodule detection. 

 Number  

of scans 

Data balance 

method 

 Number 

of scans 

Data balance 

method 

Tan et al. [1] 450 SOM Han et al. [19] 1012 - 

Abbas [20] 220 - Madgy et al. [21] 80 - 

Nithila and Kumar. [22] 106 - Orozco et al. [23] 45 - 

Cirujeda et al. [24] 95 - Badura and Pietka [25] 23 - 

Jacobs et al. [26] 888 - Sun et al [27] 360 SMOTE 

Firmino et al. [28] 420 - Keshani et al. [29] 50 - 

Demir and Çamurcu. [30] 95 - Shiju et al. [31] 108 SMOTE 

Gong et al. [32] 189 SMOTE Jingchen et al. [33] 1010 SMOTE 

Demir and Çamurcu. [34] 200 - Makaju et al. [35] 1018 - 

Baboo and Iyyapparaj [36] 1028 - Cao et al. [37] 1012 MKFSOS 

Sui et al. [38] 120 RU-SMOTE Mehre et al. [39] 97 SMOTE 

 

As can be seen, most of the reviewed works on classical CAD systems for lung nodules do not report the use of any data 

balancing methods. Few authors mention data balancing, but did not examine the impact with respect to unbalanced data. To 

the best of the authors knowledge, only Sui et al. [38] described the impact of data balancing for CAD of lung nodules. In 

their experiments, 500 candidate nodules from 120 patients, with a class imbalance of 1/6, were classified based on eight 

features using several techniques to deal with class imbalance. They found that considerable improvement can be obtained by 

alleviating the data imbalance -the best results obtained using a combination of under- and oversampling together with a 

biased SVM approach. 

The purpose of this paper is to compare the performance of different data balancing techniques applied to the classification 

of a highly imbalanced biomedical dataset and their impact on nodule classification tasks. With respect to previous work, the 

presented experiments are based on a larger data set, have higher feature dimensionality, include more data balancing 

techniques and evaluate sensitivities at both low and high FP rates.  

2.-MATERIAL AND METHODS 
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2.1.-THE ETROCAD SYSTEM 
A modification of the system proposed in [1], referred in the rest of this paper as ETROCAD is used to evaluate the effect of 

data balancing techniques on the performance of a CAD system. The ETROCAD system is modified in terms of using a 

Support Vector Machine (SVM) with radial basis function kernel. SVMs are well-established classifiers, proven to be useful 

in many cancer classification tasks [1, 28-40]. 

The 888 scans from the LUNA16 framework were processed by the first two steps of the approach in Figure 1 (preprocessing 

and candidate selection) to extract all the candidates. A feature vector is built by features calculated for each candidate. Table 

2 shows a short summary of the used features [1]. 

Table 2 

Description of features used in ETROCAD 

Feature Notes 

Volume Equivalent to the number of voxels 

Min_diam = min(dimi) Dimi=minimum diameter corresponding to the principal axis i of the 

minimum volume-enclosing ellipsoid Max_diam = max(dimi) 

Compactness1 Ratio between volume and product of all dimi 

Compactness2 Ratio between volume and dimi
3 

Elongation factor Max_dim/min_dim 

Bounding ellipsoid feature 1 for 3D ellipsoid, 0 for 2D ellipsoid 

Distance to lung wall From nodule candidate centroid to lung wall 

Distance to the center of the slice From candidate centroid to the center of the slice on which centroid is located 

Average of Luu and Lvv 
On segmented voxels, and spherical kernels of radius 1 and 3 pixels at scales 

1 and 2. Luu and Lvv features over a gauge coordinate system [1]. 

Average of nodule filter values On segmented voxels, and spherical kernels of radius 1 and 3 

Average of vessel filter values On segmented voxels, and spherical kernels of radius 1 and 3 

Average of divergence values On segmented voxels, and spherical kernels of radius 1 and 3 

Grey-value features 
Mean, median, maximum, minimum and standard deviation on segmented 

voxels, and spherical kernels of radius 1 and 3  

 

2.2.-BALANCING THE DATA 
The SOM-based method was implemented using a SOM Toolbox for Matlab3.In this case, the TP/FP ratio was 1/3 to be 

consistent with the original system [1]. The rest of data balancing methods and classification were implemented in Python 

2.7, using the Imbalanced-learn [41] and the Scikit-learn4 modules respectively. Scikit-learn provides easy-to-use tools for 

data mining and data analysis. Table 3summarizes the methods implemented in Scikit-learn that were used on the lung nodule 

data provided by the ETROCAD system. In all the cases, the goal was to get a well-balanced dataset with a final TP/FP ratio 

approximating 1.The remaining parameters of the methods were set to recommended default values. 

 

2.3.-DATA SET PROCESSING AND EVALUATION 
To evaluate the different methods, the feature vectors provided by ETROCAD were balanced by each of the data balancing 

methods from Table 3. The result was then used to train the ETROCAD’s classifier. 

The performance of each method was evaluated using the methodology provided by the LUNA16 framework (track 1). The 

10-fold cross-validation was run as described in LUNA16 procedure, and then the FROC curve and the score were calculated 

(average of sensitivities at 0.125, 0.25, 0.5,1, 2, 4, and 8 FPs per scan).To be able to compare the methods, the evaluation 

                                                           
3http://www.cis.hut.fi/projects/somtoolbox 
4http://scikit-learn.org/stable/index.html 

http://www.cis.hut.fi/projects/somtoolbox
http://scikit-learn.org/stable/index.html


Alexander Sóñora Mengana, Evgenia Papavasileiou, Juan C. García Naranjo, Bart Jansen, Jef Vandemeulebroucke 

RIELAC, Vol. XXXIX 3/2018 p. 57-67 Septiembre - Diciembre ISSN: 1815-5928 

                                                                                                                               62 

 

script from LUNA16 was modified to extract all the FROC curves from bootstrapping; and all the scores for each one were 

calculated. 

Table 3 

Sampling methods and default values for methodsused in imbalance learning. 

Method Parameter name Default value 

RUS No parameters - 

TL No parameters - 

NM-3 Number of neighbors to be considered  3 

CNN No parameters - 

ROS No parameters - 

SOM FP-TP ratio 3 

SMOTE Number of nearest neighbors to construct the synthetic samples 5 

ADASYN Number of nearest neighbors to construct the synthetic samples 5 

SMOTE-TL Number of nearest neighbors to construct the synthetic samples 5 

SOM-SMOTE 
FP-TP ratio 3 

Number of nearest neighbors to construct the synthetic samples 5 

 

Kruskal-Wallis test is used to find if there are differences at the 1 % of significance level. If differences are found, a multiple 

comparison is done using the Bonferroni method. Kruskal-Wallis test and multiple comparisons are done using kruskalwallis 

and multcompare functions respectively from Matlab’s Statistical and Machine Learning Toolbox. 

 

3.-RESULTS 

At the output of the candidate detection phase, ETROCAD detected 435 303 structures (candidates) in 888 scans, of which 

1186 correspond to actual nodules according to the ground truth annotations provided. As such, the initial imbalance ratio 

was approximately 367. Figure 2 shows the graphical output obtained with LUNA16 script for SMOTE. The solid line 

represents the FROC curve for the system with the balance method and dashed lines mark the limits for a 95 % confidence 

interval of the bootstrapping procedure. 

 

Figure 2 

LUNA16 script output for SMOTE. Solid line: FROC curve for the 10-fold cross-validation, dashed lines: limits for the 95 % 

confidence interval from bootstrapping. Mean curve is overlapped with the solid line.  

From the modified LUNA16 script, 1000 FROC curves were extracted from the bootstrapping procedure for each balancing 

method. Table 4 shows the mean scores and standard deviations for all sets of curves. Differences at 1 % of significance level 

were found among the populations using the Kruskal-Wallis test (p-value = 0).  

Table 4 
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Mean scores and standard deviations for all curves from bootstrapping 

 
No 

Balance 
SOM CNN RUS NM-3 TL ROS ADASYN SMOTE 

SMOTE-

TL 

SOM-

SMOTE 

Mean score 0.748 0.704 0.55 0.655 0.422 0.749 0.743 0.730 0.760 0.760 0.745 

Standard 

deviation 
0.018 0.023 0.018 0.019 0.017 0.018 0.020 0.019 0.019 0.018 0.019 

 

Figure 3 shows the graphical output from the Matlab’s multcompare function. This graph shows the estimates and a pair wise 

comparison in which two groups are significantly different if their intervals (horizontal lines) are disjoint. In this way, only 

SOM-SMOTE and TL, have no significant differences with NoBalance. The best overall performance was obtained using 

SMOTE and SMOTE-TL methods. 

 

Figure 3 

Differences among methods using multiple comparison test. Because Kruskal-Wallis test was used, horizontal axis corresponds to 

the ranks of the median for each method. SOM-SMOTE and TL (gray lines) have no significant differences respect to NoBalance 

(blue line). 

A more detailed analysis of the sensitivities at different FP rates is shown in Table 5, along with final average score for each 

method. For the lowest FP rate (0.125FP/scan), all evaluated methods except for TL have scores below the system with no 

data balancing. All over-sampling and ensemble methods achieve higher overall scores than the under-sample ones.  

Table 5 

Sensitivities at selected FP per scan and scores as defined in LUNA16 Challenge 

FP/Scan 
No 

Balance 
SOM RUS CNN NM-3 TL ROS ADASYN SMOTE 

SMOTE

-TL 

SOM-

SMOTE 

0.125 0.578 0.245 0.344 0.384 0.294 0.581 0.486 0.453 0.540 0.538 0.515 

0.250 0.663 0.509 0.488 0.431 0.332 0.663 0.618 0.590 0.650 0.652 0.628 

0.500 0.718 0.647 0.606 0.485 0.368 0.718 0.724 0.707 0.740 0.738 0.728 

1.000 0.773 0.750 0.696 0.535 0.420 0.775 0.783 0.780 0.792 0.793 0.778 

2.000 0.805 0.810 0.772 0.594 0.458 0.810 0.834 0.824 0.839 0.838 0.824 

4.000 0.837 0.854 0.822 0.672 0.513 0.836 0.864 0.862 0.868 0.864 0.862 

8.000 0.860 0.886 0.858 0.755 0.581 0.860 0.885 0.882 0.890 0.889 0.891 

Score 0.748 0.672 0.655 0.551 0.424 0.749 0.742 0.728 0.760 0.759 0.747 
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Figure 4 shows the FROC curves for all methods. As can be seen, curves for NM3, CNN and RUS are always below 

NoBalance. SOM goes over NoBalance only at FP rates higher than 2FP/Scan. The sensitivity values for TL are almost the 

same than NoBalance. On the other hand, the rest of the methods but ADASYN go higher than NoBalance for FP rates higher 

than 0.5 FP/Scan. 

 

Figure 4 

FROC curves for each method. SMOTE and SMOTE-TL as well as TL and NoBalance are overlapped. 

 

To highlight the impact of data balancing, Table 6 shows a summary of the results obtained at 4 FP/scan, a value commonly 

used in a clinical setting. For the best method, data balancing resulted in 36 additional nodules correctly classified. 

Table 6 

Summary for the selected ETROCAD versions. The first row corresponds to the system with no balance method; the other rows 

are sorted in ascendant order according to sensitivity (Sens). dTP, dTN, dFP and dFN are the detection differences respect to the 

no balanced system. Negative numbers represent less detections than NoBalance. All values are reported at 4 FP/scan 

 

Method TP TN FP FN dTP dTN dFP dFN 
Sens 

(%) 

Spec 

(%) 

Acc 

(%) 

NoBalance 992 80025 3434 194 - - - - 83.73 5.35 1.40 

NM3 608 80774 3547 578 -384 749 113 384 51.35 14.01 1.39 

CNN 796 80227 3538 390 -196 202 104 196 67.20 9.93 1.40 

RUS 974 79685 3522 212 -18 -340 88 18 82.21 5.68 1.41 

TL 991 79882 3545 195 -1 -143 111 1 83.64 5.21 1.40 

SOMSMOTE 1022 74648 3550 164 30 -5377 116 -30 86.17 4.42 1.49 

SOM 1023 78623 3551 163 31 -1402 117 -31 86.26 4.39 1.42 

ADASYN 1023 79479 3487 163 31 -546 53 -31 86.34 4.47 1.41 

SMOTETL 1026 79505 3500 160 34 -520 66 -34 86.59 4.37 1.41 

ROS 1028 79495 3520 158 36 -530 86 -36 86.76 4.30 1.41 

SMOTE 1028 79492 3533 158 36 -533 99 -36 86.76 4.28 1.41 
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4.-DISCUSSION 

Under sampling methods were found to perform badly in the experiments. Both, RUS and NM3 remove samples without 

considering whether they are “good examples” of FP. This may have hampered the performance of the system, which is 

confirmed by the reduced score of both methods. On the other hand, as TL tries to get a well-defined set for training by 

removing boundary or noisy samples, it is expected to perform better than other methods. For the cases of SMOTE and 

SMOTE-TL, they were found significant better than the rest of the methods, as can be seen from the Table 4 and Figure 3, 

although the relative difference in the score is only 0.1 % with respect to no balancing. 

When considering the LUNA16 score, differences between the methods are relatively small in terms of average sensitivity, 

(Table 6). This can be attributed to averaging of sensitivities at different FP rates, and the high number of candidate structures. 

At 4 FP/scan, and when considering the absolute number of detections, the difference is more apparent.   

The performance of the employed CAD system is comparable to the state of the art. Most studies report sensitivities at high 

FP rates. Achieving high sensitivity at low FP rates is technically challenging, but more suitable for clinical use, which is why 

it was included in current study. Mehre et al. [39] report sensitivities of 92.91 % at 3 FP/scan. Although this value is higher 

than the values shown at Table 4, their performance at lower FP rates is worse. To be able to get the values at lower FP rates, 

the sensitivities at 0.125, 0.25, 0.5, 1, 2, 4, 8 FP/scans from the FROC curve in [39] were estimated using WebPlotDigitizer5. 

The estimated sensitivities were 0.2, 0.34, 0.53, 0.73, 0.87, 0.96 and 0.98; yielding a LUNA16 score of 0.66, which is lower 

than the best scores reported in Table 5.  

The improvement for lung nodule classification when using data balancing reported by Sui et al. [38], was larger with respect 

to the results obtained in this study. Detailed comparison is however difficult, as differences could be due to the different 

dataset, the limited amount of scans used in latter study (120 scans) and the low-dimensional feature space.  

The impact of proper data balancing can be seen when considering the results of the LUNA16 Challenge (https://luna16.grand-

challenge.org/results/). In December of 2017, the ETROCAD system using SOM, ranked 15thout of 18 participants in track 1 

of the competition (competition metric: 0.672). The same system, i.e. using the same candidate detector, feature extraction 

and classification; but using SMOTE or SMOTE-TL as a data balancing method instead of SOM, would achieve a 13th place 

(competition metric: 0.759) and become the highest ranking system based on handcrafted features (all the systems with higher 

scores use deep-learning techniques). One should consider the improvement was obtained without adding any additional data 

or priors to the classification problem.  

 

5.-CONCLUSIONS 

In this work, the influence of data balancing techniques on a lung CAD system was evaluated using a web-based framework. 

Data balancing techniques can be useful to improve the efficiency or boost the performance of classification. The use of data 

augmentation is always advisable since, although changes in the sensitivity may seem marginal for a big training set, an 

improvement in the quality of the detection in absolute values can be seen. These methods can have a significant impact on 

the training process of the SVM, making the generation of classification rules easier. For the application of lung nodule 

classification, SMOTE and SMOTE-TL were found to perform best, leading to a gain in sensitivity, in particular at lower FP 

rates. Although, balancing the data can improve the performance of the classification, this is only one factor to take into 

account in machine learning. 
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