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RESUMEN / ABSTRACT 

Muscle fatigue is considered one of the main causes of sEMG changes during repetitive contractions performed for long 

periods of time. In the current work we are proposing and evaluating an approach in order to reduce the effects of muscle 

fatigue on upper limb myoelectric control using adaptive LDA. A dataset of surface EMG signals from nine subjects, 

including six normally-limbed and three upper limb amputees, was processed. The EMG signal was encoded using four 

time-domain features and four coefficients of an auto-regressive model. Adaptive and non-adaptive strategies were 

compared using Accuracy, False Positive Rate, Sensitivity and F1 score. Results obtained with normally-limbed subjects 

show that in normal scenario while muscle fatigue increases, the recognition accuracy and Sensitivity of the classifier 

decrease from more than 90 % to less than 58 %; False Positive Rate increases from around 9 % to 36.2 %, and F1-score 

decreases from 0.9 to 0.6. In contrast, parameters maintain a more stable and higher performance when adaptive LDA is 

evaluated. Although control in amputees shows a reduction in performance compared with normally-limbed subjects, 

results show a similar trend.  The Wilcoxon sum rank test shows a significant increase in performance of upper limb 

myoelectric control tasks when adaptive LDA is used. The main limitation of this work is the need of supervision in the 

adaptation procedure to decide if a trial is adequate for retrain the model, making the proposed method difficult to 

implement in a real scenario. Future work is needed in order to obtain a parameter that serves to choose the proper trial 

for model retraining. 
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1. -INTRODUCTION 

Limb lack can have important consequences on the quality of life of an individual.  Currently, there are available different 

prosthetic options that can help to bring back the lost limb, from simple passive and cosmetic devices to body powered 

devices including myoelectric controlled prostheses. Pattern recognition-based control of myoelectric prostheses has 

deserved great attention in research activities [1–5], but it has not been widely used in clinical scenarios with little 

progressions since the 1960’s.  

According to the scientific literature, myoelectric classification for prosthetic control in real life scenarios can be made with 

high accuracy [6]. This conclusion collides with the clinical practice that shows that only a quarter of the potential patients 

use myoelectric prostheses [7]. In [8] authors showed that 35 % of pediatric and 23 % of adult amputees discontinues the 

use of their prosthetic limb, while in [9] around 13 % of major upper limb amputees discontinued the use of their prosthesis 

mainly due to poor prosthetic comfort, function and control. This reality shows the contradiction between cost of the 

prostheses and their actual performance to increase the quality of live. It is maybe due to the fact that research were usually 

done under very controlled conditions that do not take into account some factors as electrode displacements, muscular 

fatigue, variability of muscle contraction effort, interferences of other signals, limb positions and many other [10]. Some of 

the latest research focused on quantifying or solve particular effects caused by electrode displacements [11-12], variability 

of muscle contraction effort [10], interferences of other signals [13], and limb positions [14-15]. On the other hand, it is 

difficult to find research which have been carried out to test for the effectiveness of the sEMG-based myoelectric control 

when the system is affected by muscle fatigue [16-17]. 
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Muscle fatigue is considered in [17] the major cause of sEMG changes during repetitive contractions performed for long 

periods of time. However, muscle fatigue changes the recruitment of motor units contributing to muscle contraction, which 

in turn changes the nature of any sEMG signal measured at that muscle. Sustained static isometric contractions may cause 

an increase in EMG signal amplitude along with a shift of the spectrum towards the low frequencies. These changes suggest 

that sEMG signals are time-varying due, among other factors, to muscle fatigue. 

In [18] Park and Meek proposed a fatigue compensator preprocessor to reverse the effects of muscle fatigue on the 

frequency spectrum of an EMG signal. The method takes advantage of the fact that muscle fatigue affects the velocity of 

conduction of the muscle fibers. In their approach, the velocity of conduction is used as a fatigue measure, as well and a 

factor of compensation during fatigue contraction, in which the amplitude of EMG is scaled down, and the Power Spectral 

Density is decompressed from low frequencies. As main limitation of their work, it is worth mentioning that this approach 

was based in a specific single muscle movement, without considers the real situation where various muscle movements are 

involved. In other application, Song et al. [19] found that pattern recognition based systems, such as those that perform the 

classification using signals from a variety of EMG channels, are especially susceptible to the effects of fatigue. They 

proposed a fatigue compensation approach adjusting the parameters of the classifier during contraction time. The work was 

focused on the case of six basic movements addressed to control a powered wheelchair. Another work [20] proposed an 

alternative of a Linear Discriminant Analysis (LDA) classifier in order to adapt the parameters of the classifier to the time-

varying characteristics of the sEMG signal. The proposed method provides good performance, and authors included data 

from clear and noisy environments, nevertheless the work was not focused in the effects of muscle fatigue, which is the 

main objective in the current study. Adaptability of the hand prostheses is an aspect that was recognized in [21] as a method 

that can help to improve the functionality of the prostheses. In [22] authors proposed a self-correcting system using LDA as 

movement classifier and an artificial neural network (ANN) to provide a confidence to the self-correct process. A covariate 

shift adaptation was evaluated in [23], but it is not exactly an adaptive system, but also it is a day to day retrained system. 

Finally, in [24] an incremental learning algorithm was evaluated in a scenario that includes two different day to collect the 

entry dataset. In [25-26] authors proposed a fuzzy rule based scheme to compensate the effects of muscle fatigue on EMG-

based control. A set of fuzzy rules based on EMG Root Mean Square (RMS) and Mean Power Frequency (MPF) features 

were used to estimate weights, which correspond to the level of the muscle fatigue condition. However, this study was 

focused only in one Degree of Freedom (DoF) movements, considering only the flexion/extension of the elbow while 

subjects hold an external weight. We consider that it is not a suitable model of the daily activities that cause fatigue in 

amputees. 

From all of the previous papers revised, we can conclude that a method that be able to reduce the effects of muscle fatigue 

in upper limb prostheses is mandatory in future developments and is an unsolved problem at present. We hypothesized that 

the solution should consider a scheme that can react to changes caused in sEMG during muscle fatigue. In this context, the 

current paper revisited [20] and we are proposing and evaluating an approach to reduce the effects of muscle fatigue on 

upper limb myoelectric control using adaptive LDA. Results obtained in the current research are presented and discussed in 

the following sessions, and shown that the adaptive approach is a tentative alternative to mitigate the effects of muscle 

fatigue in upper limb prosthesis control.  

 

2.- MATERIALS AND METHODS 

2.1.- EMG SIGNAL DATASET 
Surface EMG signal dataset contains records from nine subjects, including six normally-limbed and three upper limb 

amputees. Data from the six normally-limbed subjects were collected by the authors using six wireless silver electrodes 

equally spaced around the dominant forearm. The electrodes were placed approximately at one third of the length of the 

forearm (Figure 1a) at the area of largest muscle bulk (Figure 1b). No individual muscle was directly measured but the 

contribution of all together. The main muscles located in this area are: flexor carpi, pronator teres, brachioradialis, extensor 

carpis and extensor digitorum. Data were acquired using a Trigno Wireless System (Delsys Inc., USA) [27] (Figure 1c) 

configured to work with a sampling frequency of 2.0 kHz and a 16-bit analog-to-digital converter in a range of 11 mV. Low 

frequency motion artifacts were reduced using a 20 Hz cutoff high-pass 3rd order Butterworth digital filter. Power line 

interference (60 Hz in this case) was reduced using a notch 6th order cascaded digital Butterworth filter. Normally-limbed 

subjects included three males and three females, with ages ranging from 24 to 36 years. During acquisition, normally-

limbed subjects were asked to maintain the contraction of each of the eight classes of motion: wrist flexion/extension, wrist 

pronation/supination, hand close/open, pinch grip and no motion.  Each class of motion was repeated 16 times. Muscle 

fatigue was induced by repeating contractions and increasing duration from 3 to 30 seconds. Each contraction was repeated 

8 times with duration of 3 seconds, 4 times with duration of 10 seconds and 4 times with duration of 30 seconds. This 

method of inducing fatigue, tried to model the real situation in which amputees try to complete each movement. 
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a)  b)  c)  
Figure 1 

EMG Data acquisition configuration. a) Electrodes placed at about one third of the length of the forearm using an elastic band, 

b) Schematic of the electrodes around the forearm, c) Trigno WirelessElectrodes used. 
 

Data corresponding to the three upper limb amputees were obtained from record 3 of the Ninapro database [28]. As is 

described in [29], twelve Trigno Wireless electrodes and a sample frequency of 2.0 kHz were used in the acquisition 

process. The electrodes were placed following two strategies: four using a precise anatomical position and eight equally 

spaced around the dominant forearm at the height of the radio-humeral joint. In the current work we used only information 

from these eight electrodes to conform a dense sample similar to the data from normally-limbed subjects. The sEMG signal 

was filtered to reduce the 50 Hz power line interference and harmonics using a Hampel filter. Amputees, with ages of 23, 50 

and 59 years old, lost their limbs in accidents and the remaining forearm were of 50%, 30% and 50% respectively. Two of 

them have previous experience with myoelectric prostheses.  

In amputees, acquisition protocol was different compared with the normally-limbed subjects; it is described in [29-30] and 

includes 52 movements grouped in 4 exercises. Each movement was repeated 10 times, each repetition lasts five seconds 

with three seconds of rest. In this case, fatigue was not induced, but we selected from the database only the subjects that 

reported muscle fatigue during the acquisition session. In the current work, we included only movements 5,6,9,10,13 and 14 

and No movement from the exercise 2.  Details are presented in Figure 2. 

 

       
Abdution of all 

fingers 

 (Hand Open) 

Finger flexed 

together in fist 

(Hand Close) 

Wrist supination Wrist pronation Wrist flexion Wrist extension No movement 

Figure 2 

Movements patterns corresponding to the three upper limb amputees obtained from the Ninapro database. (Figure is adapted 

from Figure 2 of [29]) 
 

The influence of the muscle fatigue and the adaptive LDA approach proposed in this work were evaluated dividing the 

EMG recordings in equal duration epochs. The first training set was obtained from the first epoch and the performance was 

evaluated using all of the eight epochs. In the adaptive approach the correct result of each new epoch classification is used 

to retrain the model. 

 

2.2.- FEATURE EXTRACTION 
A combination of a time-domain feature set (TD) described in [1] and features from a 4th order Auto-regressive (AR) model 

[31-33] conforms the TDAR feature set used in this work. The time-domain features are considered as the baseline in 

myoelectric control of upper limb prostheses and provide a good representation of how amplitude and frequencies change 

during different contractions. The TD features used are described by Equation (1) to Equation (4). 

 

Mean Absolute Value (MAV) 𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

 

(1) 

 

Zero-crossing (ZC) 𝑍𝐶 = ∑ 𝑠𝑔𝑛(−𝑥𝑖 ∗ 𝑥𝑖+1)

𝑁

𝑖=1

; 𝑠𝑔𝑛 = {
1, 𝑥 > 𝑡ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2) 

 

Waveform Length (WL) 𝑊𝐿 = ∑|∆𝑥𝑖|

𝑁

𝑖=1

; ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 

 

(3) 

 
Slope Sign Changes (SSC) 

 

      

 

𝑆𝑆𝐶 = ∑ 𝑠𝑔𝑛(𝑥𝑖+1 − 𝑥𝑖) ∗ (𝑥𝑖+2 − 𝑥𝑖+1)

𝑁

𝑖=1

; 𝑠𝑔𝑛 = {
1,∧ 𝑥 > 𝑡ℎ
0,∧ 𝑥 < 𝑡ℎ

 

 

(4) 
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In Equations (1) to (4), 𝑥𝑖  represents the amplitude of the sample 𝑖 of EMG, 𝑁 is the length in samples of the analysis 

window, and 𝑡ℎ is a threshold taken as the 5 % of the MAV on the analysis window.                                                

The AR is a time series model of the sEMG signals that were included because provides information about spectral changes 

in the signal, which are important for the purpose of this work. AR features were obtained by calculating the 

coefficients, 𝐴 = [1, 𝑎(2), . . . 𝑎(𝐾+1)], of a 4th order (K = 4) forward linear predictor defined by [33] : 

𝑥𝑝 (𝑛) =  − ∑ 𝑎𝑘𝑥(𝑛−𝑘)

𝐾

𝑘=1

 

 

(5), 

that minimize the sum of the squares of the errors 

 

𝐸𝑟𝑟 = ∑(𝑥(𝑛) − 𝑥𝑝(𝑛))
2

𝑁

𝑛=1

 

(6). 

All features were calculated for time segments corresponding to rectangular windows of 200 ms, overlapped 50% [34]. In 

conclusion, each channel is described by four TD features and four AR features, and space were reduced using Principal 

Component Analysis. With this reduction, the 48 features from each subject are mapped into 8 features that are actually 

used in training and testing steps. With these 48 features computed (4 TD + 4 AR by channel), the principal component 

analysis is carried out in the training stage, from which a representation of 8 dimensions was obtained. Using the 8 

dimension representation, the classification model of each subject is computed. In the 'test' stage, it is necessary to calculate 

again the 48 features and map them back to 8 dimensions following the same transformation previously obtained by PCA.  

 

2.3.- LINEAR DISCRIMINANT ANALYSIS 
Linear discriminant classifier has been frequently used in sEMG based prostheses control [4], [34-35]. It is based on Bayes 

classification theory, where a given observation vector 𝒙, is assigned to a class 𝒄𝒌, if the inequality in Equation 7 is 

satisfied: 

𝑝(𝑐𝑘|𝒙) > 𝑝(𝑐𝑗|𝒙)  ∀ 𝑘 ≠ 𝑗 (7) 

where 𝒑(𝐜𝐣|𝐱) is the probability density function for the vector within 𝒋 classes and 𝒑(𝒄𝒌|𝒙)is the probability density 

function for the vector within 𝒌 classes. Although these posterior probabilities cannot be directly measured, they can be 

estimated from the a priori probabilities and the class distribution according to: 

 

𝑝(𝑐𝑘|𝒙) =  
𝑝(𝑐𝑘)𝑝(𝒙|𝑐𝑘)

𝑝(𝒙)
 

(8) 

where 𝒑(𝒙|𝒄𝒌) is the probability density function for the vector within classes, 𝒑(𝒄𝒌) is the prior probability of the class 𝒌 

that is usually assumed equal for all classes, 𝒑(𝐱) is the probability density function of the input space and is also a constant 

over all of the classes. Now, the decision referred in Equation (7) can be simplified as 

 
𝑝(𝒙|𝑐𝑘) > 𝑝(𝒙|𝑐𝑗)       ∀ 𝑘 ≠ 𝑗. (9) 

If the probability density function for each class is assumed to be Gaussian, it can be defined, considering a multivariate 

normal distribution, as: 

𝑝(𝒙|𝑐𝑘)  =
1

√2𝜋𝑑|𝐶|
𝑒−

1

2
(𝒙−𝜇𝑘)𝑇𝐶−1(𝒙−𝜇𝑘)

 
 

(10) 

where 𝑥 is the vector to be classified, 𝑑 is the number of dimensions, 𝜇𝑘 is the mean value of the class 𝑘 and 𝐶 is the 

common covariance. The final decision is calculated from Equation (9). For a given training dataset, the parameters 𝜇𝑘 and 

𝐶 are fixed and the LDA classifier is static. This means it would be difficult to keep the accuracy of the LDA classifier 

while the EMG signal changes over time. 

 

2.4.- ADAPTIVE LINEAR DISCRIMINANT ANALYSIS (ALDA) 
In this paper we propose an adaptive mechanism to improve the performance of LDA classifier when sEMG is affected by 

muscle fatigue. The proposed method can be summarized as follows: if the resulting classification of each new feature 

vector is correct the oldest feature vector in the training set is replaced and the classifier is retrained. Figure 3a shows the 

traditional classification method, while Figure 3b displays the proposed method. In Figure 3b, dashed line delimits re-

training steps. Note that re-training process do not modified the feature extraction step. 
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a)  b)  

Figure 3 

Flow diagram representing: a) the Traditional LDA approach. Dashed line delimits the training step. b) the Adaptive LDA 

approach. Dashed line delimits re-training step.  

 

The EMG recordings were divided in equally duration epochs of 3 seconds. The first training set was obtained from the first 

epochs of the first 4 repetitions of each class. In the six normally-limbed subjects the first 4 repetitions of each class 

correspond exactly with 3 seconds epochs. In amputees, from the first 4 repetitions of each class we extract the 3 seconds 

corresponding with the duration of an epoch. Summarizing, if we take into account the sampling rate, the duration of the 

epoch, the windows of 200 ms to calculate the features and the overlap of   50%, the total pattern to train the classifier were 

of 18 patterns for each class. In traditional LDA approach, no more retrain is done. In the proposed approach, the correct 

classification results for each new epoch are used to create a new training subset and the model is updated using the new 

training subset. Then, the training dataset is constantly updated, and the LDA classifier parameters are also updated tracking 

the changes of the signal. The new training dataset is not a completed replaced of the original training dataset, else that the 

10% of the data in the first training set is kept without change in order to preserve the model stability. The new training 

dataset consists of a non-replaceable data subset and a subset of the correctly classified frames for each new epoch. The 

non-replaceable data subset is formed by the 10% with lowest entropy in the first training subset, while the correctly 

classified frames for each new epoch are obtained by a confidence threshold based on entropy. The confidence threshold is 

not discussed in the current work. 

In the adaptation process itself, the new classifier parameters (mean 𝜇𝑘 and covariance 𝐶) were updated via Expectation-

Maximization [36] as shown in [37]. In the Expectation step, the current probability was estimated using Equation (10), 

while in the Maximization step the resulting probability of the expectation is used to update the values of the mean of each 

classes and common covariance as in Equation (11) and Equation (12): 
 

𝜇𝑘 =  
1

𝑝(𝑐𝑘)𝑁
∑ 𝑝(𝑐𝑘|𝑥𝑖)𝑥𝑖

𝑁

𝑖=1

 

 

(11) 

𝐶 =  
1

𝑁 − 1
∑ ∑ 𝑝(𝑐𝑘|𝑥𝑖)(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇

𝑁

𝑖=1

𝐾

𝑘=1

 

(12) 

where 𝑁 is the last 𝑥𝑖, and 𝑥𝑖 is weighted with the class probabilities, that, in the cases of the training dataset where the class 

is know, the weight for the correct class is set to 1 and for the rest of classes is set to 0. 

 

2.5.- CLASSIFICATION PERFORMANCE 
For each subject the data was divided into two subsets: training data and test data. The training data was used to train a LDA 

classifier, while the test data was used to evaluate the static LDA classifier and to implement and evaluate the ALDA 

classifier. The performance of the classifiers was measured by the offline metric classification Accuracy (Acc), False 

Positive Rate (FPR), Sensitivity (Se) and F1-score (F1). Expressions for these metrics are shown in Equation (13) to 

Equation (16): 
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Accuracy (Acc): 
𝐴𝑐𝑐 =  

# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

# 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
100% 

(13) 

 

False Positive Rate (FPR): 
𝐹𝑃𝑅 =

∑ 𝐹𝑃𝑖
𝐼
𝑖=1

∑ (𝐹𝑃𝑖 + 𝑇𝑁𝑖)
𝐼
𝑖=1

100% 
(14) 

 

Sensitivity (Se): 
𝑆𝑒 =

∑ 𝑇𝑃𝑖
𝐼
𝑖=1

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝐼
𝑖=1

100% 
(15) 

 

F1-score: (F1): 
𝐹1 =  

𝑆𝑒 ∗ 𝑃𝑟

𝑆𝑒 + 𝑃𝑟
 ;                   𝑃𝑟 = 1 − 𝐹𝑃𝑅 

(16) 

 

In all cases I is the number of classes considered, I = 8 in this study. In Equation (14)  ∑ 𝐹𝑃𝑖
𝐼
𝑖=1   represents the number of 

false positive when the classification task for each class is considered as a binary problem. The term ∑ (𝐹𝑃𝑖 + 𝑇𝑁𝑖)
𝐼
𝑖=1  is the 

sum of false positives and true negatives from each class. In Equation (15) ∑ 𝑇𝑃𝑖
𝐼
𝑖=1  represents the number of true positive 

for each class 𝑖 and ∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝐼
𝑖=1  is the sum of true positive and false negative for each class. Equation (16) is a 

simultaneous measurement of sensitivity and precision. Note that for Acc (Equation (13)), Se (Equation (15)) and F1-Score 

(F1) (Equation (16)) a higher value indicates a major performance, while in FPR (Equation (14)) the best performance 

corresponds to the lowest value. The results of each of the strategies described in this paper (non-adaptive and adaptive 

approach) were compared using a Friedman test and a Wilcoxon signed ranks test using a significance of p = 0.01. 

 

3.-RESULTS AND DISCUSSION 
Classification results were validated using Accuracy (Acc), False Positive Rate (FPR), True Positive Rate (Pr), Sensitivity 

(Se) and F1-score (F1). Validation parameters were calculated epoch by epoch in both scenarios: using Adaptive LDA and 

using non-adaptive LDA.  Table 1 represents the True Positive Rate for each class subject by subject. An analysis of Table 1 

has shown the inte-rsubject and inter-class variability. For example, in able-bodied 2, the poor class is class 3 while in able-

bodied 4 the poor class is class 1. It is important to note that in general, the adaptive approach improve the True Positive 

Rate in both normally limbed and amputees. The class 8 shows a results close to perfect classification whit the exception of 

the subject 2. 
Table 1 

True Positive Rate for each class subject by subject comparing adaptive and no adaptive approach. Note that able-bodied subjects 

8 movements while amputees 7 movements. 

 

Subj. Method Class  1 Class  2 Class  3 Class  4 Class  5 Class  6 Class  7 Class  8 

Able-

bodied 1 

No Adapt. 90.57 77.42 95.31 83.96 76.79 91.25 80.91 88.66 

Adapt. 88.89 81.52 78.95 91.40 91.67 90.72 85.29 100.00 

Able-

bodied 2 

No Adapt. 80.67 100.00 52.46 71.43 88.24 91.55 76.72 100.00 

Adapt. 89.52 86.05 88.42 90.43 89.69 87.76 89.58 88.66 

Able-

bodied 3 

No Adapt. 89.36 67.47 88.78 51.20 88.10 77.48 93.33 100.00 

Adapt. 90.57 89.58 89.58 88.66 89.47 89.58 90.53 100.00 

Able-

bodied 4 

No Adapt. 52.73 88.12 61.67 87.13 86.84 100.00 72.65 98.82 

Adapt. 73.28 87.63 89.36 89.58 89.58 100.00 87.76 100.00 

Able-

bodied 5 

No Adapt. 90.57 88.66 88.54 92.68 62.00 88.66 83.33 100.00 

Adapt. 90.57 86.87 89.58 88.24 80.37 86.87 94.12 100.00 

Able-

bodied 6 

No Adapt. 87.27 79.61 88.78 69.51 87.01 89.80 89.58 73.08 

Adapt. 89.72 87.18 89.58 69.51 100.00 89.58 87.76 100.00 

Amp.1 
No Adapt. 89.01 100.00 46.27 40.08 7.75 94.25 48.05  

Adapt. 91.49 78.57 90.79 73.47 52.69 81.08 90.43  

Amp.2 
No Adapt. 75.70 100.00 60.14 40.71 82.76 81.63 58.90  

Adapt. 76.19 86.08 77.98 77.61 80.00 73.55 100.00  
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Amp. 3 
No Adapt. 68.42 57.72 67.18 85.42 69.32 79.07 100.00  

Adapt. 85.71 71.79 89.47 79.57 82.80 72.27 92.55  

 

Figure 4 represents the mean and standard deviation of the parameters for the six normally-limbed subjects. Parameters 

were obtained from each of the class and combined. The solid lines represent classification results of the adaptive LDA 

classifier proposed in the current work, whereas the dashed lines represent classification results of the conventional LDA 

classifier. As shown in Figure 3, when muscle fatigue increases, the accuracy and sensitivity of the conventional LDA 

classifier decreases from more than 90% to less than 58% in normally-limbed subjects. Figure 3 (b) shows that False 

Positive Rate increases from around 9% to 36.2%. The F1-score (Figure 3 c) decreases from 0.9 to 0.6. On the other hand, 

the parameters of the adaptive LDA show stable and higher performance. 

 

  
a) b) 

 
 

c) d) 
Figure 4 

Comparison of Adaptive vs. Non-adaptive LDA in normally-limbed subjects a) Accuracy, b) False Positive Rate, c) 

Sensitivity and d) F1-score. In all cases green solid line represents Adaptive LDA while red dashed line represents 

Non-adaptive LDA. 

 

Figure 5 (a-d) shows accuracy (Acc), False Positive Rate (FPR), Sensitivity (Se) and F1-score (F1) for 

classification of epochs from three amputees. Although in this case is evident an overall reduction in 

performance compared with normally-limbed subjects, results show a similar trend. While performance suffers 

a reduction with increasing fatigue in non-adaptive LDA (red dashed line), adaptive LDA (green solid line) 

shows stable results. This confirms that the adaptive LDA can be an eligible approach in order to reduce the 

effects of muscle fatigue on classification results. 
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a) b) 

  
c) d) 

Figure 5 

Adaptive vs. Non-adaptive LDA in amputees comparison a) Accuracy, b) False Positive Rate, c) Sensitivity and d) F1-score. 
In all cases green solid line represents Adaptive LDA while red dashed line represents Non-adaptive LDA.  

 

Figure 6 depicts the relative performance of Accuracy and FPR for both adaptive and non-adaptive approaches in all 

subjects. All Acc points located above diagonal line and all FPR points below diagonal line means that adaptive LDA 

performs better that non-adaptive. From Figure 5 we can observe that adaptive LDA outperforms non-adaptive LDA. 

Results shows in Figure 5 and Figure 6 are compared whit results reported in [23] report Acc around 90 % in normally 

limbed subjects and 80 % in amputees. It is important appoint that in [23], although authors consider factors that can change 

EMG patterns in time, they do not consider in particular muscle fatigue. In [22], the Acc results reported are close to 100 % 

but muscle fatigue was not consider because data acquisition protocol include sufficient pauses between repetition to 

prevent fatigue. Comparing with it, the current paper presents a solution in the state of the art in myoelectric control. 
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Figure 6 

Comparison of Adaptive and Non-Adaptive classifiers based on Accuracy (Acc) and False Positive Rate (FPR) in both normally 

limbed subjects and amputees. Black Circles and purple Crosses represent Acc for normally limbed subjects and amputees 

respectively. All points above diagonal (line y = x) mean that in all cases Acc increases when adaptive LDA is used. Black asterisks 

and purple plus sings represent FPR in normally limb subjects and amputees. All points below diagonal mean that adaptive 

approach (y-axis) performs better that non-adaptive approach (x-axis). 

 

A graphical example of how much the proposed adaptive approach increases the performance of myoelectric pattern 

classification is shown in Figure 7. The data belong to the normally-limbed subject 6. The blue points represent the expected 

class for each frame, the green points represent the correctly classified frames and the red points represent 

misclassifications. Figure 7a) represents results from non-adaptive method while Figure 7b) shows results from the adaptive 

method.  

  
a) b) 

Figure 7 

Graphical example of how Adaptive LDA show in (b), improves the correct classification rate compared to Non-Adaptive 

LDA show in (a). In both, (b) and (b) red points represent misclassification cases and green points represent correct 

classification cases. Blue points represent the expected response. Data belong to the normally-limbed subject 6. 
 

For all parameters: Acc, FPR, Se and F1 score, the Wilcoxon signed ranks test shows a significant increase in performance 

of upper limb myoelectric control tasks when adaptive LDA is used. Details are presented in Figure 8. 
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Figure 8 

Wilcoxon signed ranks test showing significant different between non-adaptive LDA and adaptive LDA. 

 

From Figure 8, all the parameters used to compare the non-adaptive LDA and adaptive LDA proposed in this paper show 

significant differences with 𝑝_𝑣𝑎𝑙𝑢𝑒 = 0.008. This value is less than 0.01, which is a confidence level of 99 %. 

 

6.–CONCLUSIONS 

Muscle fatigue is considered the major cause of sEMG changes during repetitive contractions performed for long periods of 

time. In this paper we focused on reducing the effects of muscle fatigue on upper limb myoelectric control using adaptive 

LDA. The proposed method is based on retraining the classifier using a new set formed by replacing 90 % of the oldest 

feature vector in the training set. Results show that when muscle fatigue increases, the recognition accuracy and sensitivity 

of the non-adaptive LDA classifier decreases from more than 90% to less than 58% in normally-limbed subjects, in the 

same situation False Positive Rate increases from around 9% to 36.2% and the F1-score decreases from 0.9 to 0.6. These 

parameters showed a more stable behavior and higher performance when adaptive LDA was evaluated. Although the overall 

results on amputees reveal a reduction of the performance compared to normally-limbed subjects, results show a similar 

trend. The Wilcoxon sum rank test shows a significant increase in performance of upper limb myoelectric control tasks 

when adaptive LDA is used with a confidence level of 99 %. In order to achieve a practical implementation of the proposed 

adaptive algorithm it is necessary a parameter that can be used to decide if certain trial is adequate for retraining the model. 

In addition, a future study should include the analysis of the performance in real-time conditions. These findings could help 

to reduce the current gap between scientific research and clinical practice in the field of EMG pattern recognition.  
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