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ABSTRACT / RESUMEN 

Signal-to-Noise Ratio (SNR) parameter represents the main metric to characterize the performance of signal reception. 

Determining this parameter is of major importance for a wide variety of communication techniques such as spectrum 

sensing in Cognitive Radio, Link Adaptation, and power allocation. In general, there are two kinds of SNR estimation 

techniques: Data-Aided (DA) and Blind Estimation (BE). By using Data-Aided estimation (DA), the receiver estimates the 

SNR based on prior information from the transmitter. On the other hand, by using Blind-Estimation (BE), the receiver does 

not have any prior-knowledge of transmission parameters. This technique is extremely used for scenarios where 

transmission parameters are unknown, a common situation on spectrum sensing for non-cooperative applications in 

Cognitive Radio. However, some reported BE algorithms have been developed exploiting specific properties of some 

modulation schemes, which also demands some prior knowledge of signal parameters. This work is focused on describing 

SNR estimation algorithms suitable for several digital and analog modulation schemes. We propose the Subspace-Based 

SNR estimator for spectrum sensing by using the Energy Detector and Link Adaptation applications. Comparative 

simulation results regarding estimator performance exhibit the high precision for several channel models. The applicability 

of this estimator for several analog and digital modulation schemes is also shown as well as proper performance for low 

SNR levels is obtained, in exchange for higher computational complexity. 

Keywords: Signal-to-Noise Ratio Estimation; Blind Estimation; Cognitive Radio; Energy Detector; Link Adaptation. 

Estimador de la SNR Basado en el Método del Subespacio para Radio Cognitiva y Adaptación de Enlace 

 

RESUMEN 

La Relación Señal a Ruido representa una de las principales métricas para caracterizar la recepción de una señal. 

Determinar con la mayor precisión posible este parámetro es de gran importancia para una variedad de técnicas de 

comunicaciones como: el sensado de espectro en la Radio Cognitiva, la Adaptación de Enlace y el control de potencia. 

En general, existen dos clasificaciones en cuanto a técnicas de estimación de la SNR: Las técnicas de estimación 

asistidas por datos (DA) y las técnicas de estimación a ciegas (BE). En la estimación asistida por datos (DA), el receptor 

estima la SNR basado en el conocimiento previo de los datos enviados por el transmisor. Por otra parte, en las técnicas 

de estimación a ciegas (BE), el receptor no conoce los parámetros de la transmisión de antemano. Esta técnica resulta de 

gran utilidad para escenarios donde se desconocen parámetros de la transmisión, situación típica del sensado de espectro 

en la Radio Cognitiva en escenarios no cooperativos. Sin embargo, algunos de los algoritmos BE han sido desarrollados 

aprovechando propiedades específicas de algunos esquemas de modulación, lo cual implica el conocimiento previo de los 

parámetros de la señal. Este trabajo está enfocado en la descripción de algoritmos de estimación de la SNR aplicables a 

varios esquemas de modulación digital y analógica. Se propone el algoritmo de estimación de la SNR basado en el 

método del subespacio para aplicaciones de sensado de espectro con el empleo del detector de energía y adaptación de 

enlace. Resultados comparativos por simulaciones en relación al desempeño del estimador muestran la precisión del 

mismo para varios modelos de canales. También se muestra la aplicabilidad de este estimador para varios esquemas de 

modulaciones analógicas y digitales, así como un buen desempeño del mismo en bajos niveles de SNR, a cambio de una 

mayor complejidad computacional.  

Palabras claves: Estimación de la Relación Señal a Ruido; Estimación a Ciegas; Radio Cognitiva; Detector de Energía; 

Adaptación de Enlace. 
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1. - INTRODUCTION 

Link Adaptation technique improves the rate of transmission by exploiting the channel state information (CSI). This 

technique is highly used for mobile networks and Digital Video Broadcasting by satellite, where SNR parameter estimation 

results of major importance. The precision of spectrum sensing techniques in Cognitive Radio (CR) systems is constrained 

by the estimation of communication channel parameters, in which one of the main parameters is the Signal-to-Noise Ratio 

(SNR).  

In this work, it is considered to carry out SNR parameter estimation from Radio Frequency (RF) signals for Cognitive 

Radio and Link Adaptation applications in case of non-cooperative communications. This is implemented to perform 

spectrum sensing operations, where signal detection represents the first task to be accomplished. In this regard, energy 

detection has been commonly adopted for spectrum sensing. This is due to its low computational complexity and does not 

require prior information from the signal to be detected. However, the precision of this technique is conditioned by the 

precision of the estimated noise power. In this study, it is considered a single carrier communication link with digital or 

analog modulation waveforms. In addition, interference is assumed to be Additive White Gaussian Noise (AWGN).  

Most SNR estimators can be roughly categorized into two couples of classes, one is Data-Aided (DA) and Decision-

Directed (DD) and the other is Blind-Estimator (BE) and Non-Data-Aided (NDA) methods1 [1–4]. DA methods estimate 

the SNR parameter using the periodic reception of transmitted symbols by training sequences. These received symbols are 

usually used for channel estimation, where an approximated channel frequency response is obtained. Data-Aided estimation 

techniques are of widespread use due to their simplicity and effectiveness. However, they undermine power saving criteria 

and decrease the spectral efficiency of the system, especially when there is a fast variation of channel parameters over time 

[2, 3]. To avoid these limitations, other techniques have been developed, although the lack of effectiveness and the increase 

of computational complexity still represent open problems [1–5]. 

Decision-Directed estimators (DD) use demodulated symbols to estimate the SNR parameter. In this case, the use of 

training sequences from DA methods is avoided to improve the efficient use of spectrum capacities. However, feedback 

decisions may be affected by decision errors, especially in scenarios of low SNR levels. These methods could be 

considered as a special case of DA estimators, where training sequences are replaced by output symbols from the decoder 

[5]. In general, DD methods have acceptable performance for slow variation channels and lower noise levels. However, DA 

methods are more accurate in comparison with DD estimators, especially for low SNR levels [7, 8].  

Non-Data-Aided (NDA) and Blind-Estimators (BE) methods estimate the SNR parameter without any prior knowledge 

of received data [9]. There are some reported NDA estimators, which operate, based on prior knowledge of some 

communication parameters. On the other hand, BE obviate prior knowledge of any parameter such as type and modulation 

index and channel characteristics. These methods exploit mathematical and/or statistical properties of transmitted signals in 

exchange of increasing complexity. The NDA solutions are also less accurate than DA estimators, especially for low SNR 

levels. The great advantage of BE algorithms is that they allow avoiding the spectral inefficiency of DA estimators and 

make the estimation without prior knowledge regarding communication parameters. This is why generally NDA and BE 

methods tend to be the slowest in terms of convergence and computationally more complex. Nevertheless, there is a group 

of (NDA) moments-based SNR estimators, which are computationally simpler although some communication parameters 

are assumed. These NDA solutions are not feasible to spectrum sensing scenarios with unknown parameters in Cognitive 

Radio [10, 11]. Recently in [12], [13] and [14] blind SNR estimation methods have been developed for any modulation 

scheme. These have the potential to be used in several applications such as spectrum sensing in Cognitive Radio and Link 

Adaptation. These blind estimators are sometimes reported as Non-Modulation-Aided estimators (NMA). 

SNR estimation in Link Adaptation and spectrum sensing applications in non-cooperative scenarios demands for some 

requirements. On Link Adaptation applications, changes in the modulation scheme take place, and the estimator must 

maintain accuracy for any modulation scheme. Regarding spectrum sensing for Cognitive Radio, sometimes it is necessary 

to operate in low SNR levels. This is common on networks of a large number of users. In this case, an accurate estimator is 

required for low SNR levels. Based on non–cooperative communications, DA estimators, as well as DD solutions, are 

                                                 
1 Some authors report classifying NDA algorithms into two subcategories: The I/Q estimators, which make use of the in-phase and quadrature 

components of the signal; and the envelope-based estimators (EVB), which only make use of the absolute value of the received complex signal to estimate 

the SNR. 
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discarded provided the need for prior knowledge regarding signal parameters. On the other hand, there are NDA algorithms 

based on prior knowledge of communication parameters for baseband signals, such as the Squared Signal-to-Noise 

Variance (SNV) [15] and the Signal-to-Variation Ratio (SVR) estimators [16]. However, these NDA estimators were 

generally developed for some specific digital modulation schemes and they are only suitable to those schemes and for 

baseband signals [17].  

The main goal of this work is to describe a BE estimator for the SNR parameter, which could be applicable to 

Cognitive Radio and Link Adaptation. The applicability of this algorithm for spectrum sensing with Energy Detector on 

several communications channel models is discussed and also verified through simulations.  Major contributions of this 

paper are summarized as follows: 

 A detailed comparison regarding SNR estimation techniques for Cognitive Radio and Link Adaptation is 

discussed. This is a subject not fully addressed on reported papers. 

 Representative channel models and modulation schemes for Cognitive Radio applications and Link Adaptation 

techniques are summarized from a variety of journal articles. 

 Novel issues for the analyzed SNR estimation techniques regarding applicability on wireless scenarios are 

illustrated. 

 Energy Detector scheme is evaluated by connecting the proposed noise estimation. 

 

Remaining sections of this article are organized as follows: In Section 2 some reported SNR estimators and its 

applicability to Cognitive Radio and Link Adaptation is analyzed, in Section 3 a BE SNR estimator applicable to Cognitive 

Radio and Link Adaptation is described. In Section 4, the description of the Energy Detection by using the BE SNR 

estimator is addressed. In Section 5 the algorithm applicability for several modulation schemes, as well as the accuracy for 

Rayleigh and Rician channel models schemes is analyzed. Finally, Section 6 summarizes the main conclusions of this 

article. 

 

2. - REPORTED NDA ESTIMATORS FOR PASSBAND SIGNALS 

The great majority of reported estimators have been developed for specific modulation schemes for baseband signals. 

In this section, an analysis about the applicability of some reported algorithms for Cognitive Radio and Link Adadptación 

applications is addressed. Papers in [7, 16] report the Signal-to-Variation Ratio (SVR) estimator for M-ary PSK baseband 

signals in real and complex AWGN channels. Another method is described in [15] reported by the Squared Signal-to-Noise 

Variance (SNV) estimator and it is derived for M-ary PSK baseband signals also for real and complex AWGN channels. 

These estimators demand for handshaking signaling between transmitters and receivers as well as to demodulate the signal 

of interest in order to estimate the SNR parameter. In this regard, these methods are not affordable to non-cooperative 

scenarios in CR applications. 

The second and fourth order moments 𝑀2 𝑀4  based SNR estimator described in [15] is a conventional NDA 

algorithm to estimate SNR for M-PSK, M-QAM, APSK, and FM waveforms. This algorithm was initially used to estimate 

the SNR parameter on baseband signals by the expression 

                     

                                                                                   SNR̂ =
√2𝑀2

2 −𝑀4

𝑀2 −√2𝑀2
2 −𝑀4

,                                                                                      (1) 

                                                                           

where 𝑀2  and 𝑀4  represent statistical moments of the received signal. Expression in (1) is derived considering that 

AWGN kurtosis (𝑘𝑛) and baseband signals kurtosis (𝑘𝑠) without noise are previously known. This algorithm can be used to 

carry out the SNR estimation of constant envelope RF signals where the typical value of signal kurtosis is 𝑘𝑠=1.5. It can be 

assumed from expression in (1) that this estimator is only applicable to AWGN channels provided this expression is 

obtained by assuming kurtosis value of the signal of interest, which represents an unknown parameter in fading channels. 

The algorithm is also applicable to non-constant envelope modulation schemes such as APSK and QAM. In these cases, it 

is required prior knowledge of the modulation order to obtain the kurtosis of the signal without noise by the expression: 

𝑘𝑠 = 1 + 2/5[1 − 3/(𝑀 − 1)], where 𝑀 represents the modulation order. This algorithm could be applicable to Link 

Adaptation schemes for AWGN channels only. In case of spectrum sensing for non-cooperative scenarios, 

the 𝑀2𝑀4 estimator is only applicable for signals of constant envelope.  
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The split-symbol moment estimator (SSME) is a reported NDA method to estimate the SNR parameter [5]. This 

method exploits the property that noise samples in a symbol interval are uncorrelated, while the signal without noise 

samples are correlated. This algorithm performs the SNR estimation based on prior knowledge of symbol intervals in a 

perfectly synchronized system. In addition, if the signal is affected by multipath fading, performance is highly deteriorated, 

due to the lack of correlation between samples of the signal of interest. Nevertheless, this algorithm exhibits proper 

performance at low SNR ranges. However, the SSME estimator is only used for some digital modulations such as: M-PSK, 

M-QAM, APSK and GMSK signals. The SNR estimation using the SSME algorithm is obtained through the following 

expression 

                                                      

                                                               SNR̂ =

1
𝑁𝑚

∑ ∑ |𝑦𝑖,𝑘|
2𝑁𝑠

𝑘=1
𝐼
𝑖=1 −

1
𝑁𝑚

∑ |𝑅𝑖|
2𝐼

𝑖=1

1
𝑁𝑚

∑ |𝑅𝑖|
2𝐼

𝑖=1

,                                                                       (2) 

                                                                           

where                                                             

                                                                           𝑅𝑖 = ∑(𝑦𝑖,2𝑘 − 𝑦𝑖,2𝑘−1)

𝑁𝑠/2

𝑘=1

.                                                                                            (3) 

                                                                                    

 

In the above expressions, 𝑁𝑠 represents the total number of samples per symbol to process, 𝑁𝑚 represents the total 

numbers of samples of the received signal. The quantity 𝑅𝑖 in (3) brings noisy samples from the i-th symbol interval of the 

received signal 𝐲. Expression in (2) is only applicable when samples of the signal of interest are highly correlated. SSME 

estimator could not be applied for spectrum sensing applications in Cognitive Radio due to assumptions of perfect 

synchronization. This algorithm could be used to estimate the SNR parameter on Link Adaptation applications, but only 

for AWGN channels and for some specific phase modulation schemes. 

 

3. - BLIND SNR ESTIMATOR FOR DIGITAL AND ANALOG MODULATION 

WAVEFORMS 

The Subspace-Based SNR estimator is a BE estimator for RF signals. This algorithm is based on the correlation 

matrix of the received signal. The Subspace-Based SNR estimator reported in [12] is applicable to AWGN, Rayleigh and 

Rician channels, and is well suited for any single carrier digital and analog modulation formats. Furthermore, this 

algorithm presents high accuracy at low SNR levels regarding other reported algorithms. These conditions allow the 

Subspace-Based SNR estimator to be applicable to Cognitive Radio and Link Adaptation scenarios. 

Considering the received discrete-time signal 𝐲 from AWGN channels, then the signal model is given by 

  

                                                                                                  𝐲 = 𝐬 + 𝐧,                                                                                                     (4) 
 

where 𝐬 represents the signal of interest and 𝐧 is an independent zero-mean process from AWGN processes. The random 

variable 𝐧 is a non-correlated process, analytically described by 

 

                                                                                𝐧~𝒩ℂ(0, 𝜎𝑛
2).                                                                                                 (5)    

  

By using properties of (5), the autocorrelation matrix of y is obtained by 

 

                                          

                                       𝐑𝑦𝑦 = 𝔼[𝐲𝐲
𝐻] = 𝔼[(𝐬 + 𝐧)(𝐬 + 𝐧)𝐻] = 𝔼[𝐬𝐬𝐻] + 𝜎𝑛

2𝐈 = 𝐑𝑠𝑠 + 𝜎𝑛
2𝐈,                                                     (6) 

  

where 𝐧𝐻 denotes the conjugate-transpose of 𝐧 and 𝐧𝑇 denotes the transpose of  𝐧, 𝜎𝑛
2 is the noise power, 𝐈 represents the 

identity matrix. 𝐲 = [𝑦1, 𝑦2, . . . , 𝑦𝑁𝑚]
𝑇 is the received signal, 𝐬 = [𝑠1, 𝑠2, . . . , 𝑠𝑁𝑚]

𝑇 represents the signal of interest, 𝐧 =

[𝑛1, 𝑛2, . . . , 𝑛𝑁𝑚]
𝑇  represents noise, 𝐑𝑠𝑠 = 𝔼[𝐬𝐬

𝐻] is the autocorrelation matrix of the signal of interest without noise and 𝐿 
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is the matrix order. Based on properties of autocorrelation matrices of the RF signal [18], 𝐑𝑠𝑠 is a positive semi-definite 

matrix of rank (𝑞 < 𝐿). In this case, the 𝐿 − 𝑞 smaller eigenvalues 𝜆𝑖 (𝑞 < 𝑖 < 𝐿) that result from the matrix 

decomposition of 𝐑𝑠𝑠 are approximately zero. Considering the matrix property that the trace is equal to the sum of the 

eigenvalues, by sorting the eigenvalues from the matrix decomposition of 𝐑𝑦𝑦 in (6)  as 𝜆1 ≥ 𝜆2 ≥. . . ≥ 𝜆𝐿, then the mean 

of the smaller (𝐿 − 𝑞) eigenvalues of 𝐑𝑦𝑦 are approximately the noise power (𝜎𝑛
2), this is denoted by 

                                                                                   

                                                                                 𝜎𝑛
2̂ =

1

𝐿 − 𝑞
∑ 𝜆𝑖

𝐿

𝑖=𝑞+1
,                                                                                              (7) 

                                                                               

where 𝜎𝑛
2̂ is an approximation 𝜎𝑛

2. Denoting the signal power without noise by 𝜎𝑠
2, then this parameter may be obtained by 

                                                                          

                                                                              𝜎𝑠
2̂ = (

1

𝑁𝑚
∑|𝑦𝑘|

2

𝑁𝑚

𝑘=1

) − 𝜎𝑛
2̂,                                                                                         (8) 

                                                                           

where 𝑁𝑚 is the total number of samples of the received signal. By using expression above the SNR parameter can be 

estimated by  

                         SNR ̂=
𝜎𝑠
2̂

𝜎𝑛
2̂

⁄ .                                                                                                       (9)     

 

On the formulation above, to determine the subspace 𝑞 represents the major problem of this method. To determine this 

subspace, the Minimum Description Length principle (MDL) is used [19]. MDL principle allows detecting the total number 

of most representative values of data strings. Assuming the received signal of 𝑁𝑚 samples is divided into time slots of 𝐿 

samples, then there are 𝑁 = 𝑁𝑚/𝐿 vectors  of 𝐿 components. Thus, after obtaining the eigenvalues the following 

expression corresponding to MDL principle is used                    

                                                  MDL(𝑘) = −log(
∏ 𝜆

𝑖

1
𝐿−𝑘𝐿

𝑖=𝑘+1

1
𝐿 − 𝑘

∑ 𝜆𝑖
𝐿
𝑖=𝑘+1

)

(𝐿−𝑘)𝑁

+ 0.5𝑘(2𝐿 − 𝑘)log (𝑁).                                          (10) 

  

The subspace of signal with noise 𝑞 corresponds to the value of k  that minimizes the previous expression by 

  

                                                                                          𝑞 = arg min MDL(𝑘).                                                                                     (11)
𝑘

 

  

In order to summarize, the described method above can be applied by the following steps to estimate the SNR 

parameter:   

 

1. Determine the autocorrelation matrix 𝐑𝑦𝑦 of the received signal by the expression in (6).  

2. Compute eigenvalues of the matrix 𝐑𝑦𝑦 by numerical algorithms such as QR Algorithm or Power Method [20].  

3. Compute the rank of matrix 𝐑𝑠𝑠 using the MDL principle in (11).  

4. Estimate noise power by expression in (7).  

5. Compute signal power by expression in (8) and compute the estimated SNR according to (9).  

The algorithm described above can be applied to several schemes of digital and analog modulations, thus it is suitable 

for Link Adaptation scenarios and CR applications. 

 

4. - ENERGY DETECTOR IMPLEMENTATION BY USING THE SUBSPACE-

BASED SNR ESTIMATOR 

Signal detection represents the first task to be accomplished in Cognitive Radio. Consequently, several spectrum 

sensing techniques have been developed such as: Cyclostationary Detector [21], Matched Filter [22], Energy Detector [23], 

Wavelets [24] and Eigenvalue [25]. Performance of spectrum sensing techniques is closely related to the process related to 
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sampling signals and processing [26]. From the perspective of signal detection, there are two categories in which different 

reported techniques can be grouped to determine whether the channel is available. These categories are: coherent detection 

and non-coherent detection [27]. The former includes all those methods in which the signal of interest is detected when 

compared with a locally generated signal. This demands prior knowledge regarding the parameters used to modulate the 

transmitted signal, such as frequency of the carrier and the used modulation order. Non-coherent techniques for spectrum 

measurement are those that do not require prior knowledge regarding the parameters of the signals of interest. These 

techniques are used in non-cooperative scenarios in Cognitive Radio. When noise variance value is available, the simplest 

method to perform spectrum sensing is given by the Energy Detector. This technique has been the most studied for 

measuring the spectrum, and its performance has been evaluated under multiple conditions of the communication channel. 

However, precision of this method is highly conditioned by the accuracy of the noise variance estimation. This section 

discusses Energy Detector scheme by using the Subspace-Based SNR estimator. 

Figure 1 introduces the block diagram to connect the noise estimation method (Estimator Block) and energy 

measurement blocks (Energy Detector). Detection threshold value (𝜆) can be determined according to the Neyman-Pearson 

rule by using the maximum likelihood test [27].  

 

 

             ( )y t                               𝑦𝑘    

                                                                                                            
𝐻0
𝐻1
⁄  

 

 

 

 

 
 

Figure 1 

Block diagram of Energy Detector. 

 

 

The detection probability (𝑃𝑑) and the false alarm probability (𝑃𝑓), both values to assess spectrum sensing performance 

of the Energy Detector, can be evaluated by [27]  

                                                             

                                                                                      𝑃𝑓 = 𝑄 (
𝜆 − 𝑁𝑚

√2𝑁𝑚
),                                                                                               (12) 

                                                                                                                                      

                                                                              𝑃𝑑 = 𝑄(
𝜆 − 𝑁𝑚(1 + SNR)

√2𝑁𝑚(1 + SNR)
),                                                                                   (13) 

                                                                                     

where 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒

−𝑡2

2

∞

𝑥

𝑑𝑡 and 𝜆 is the decision threshold. From (13) the decision threshold is established in terms of 𝑃𝑓 

and 𝑁𝑚 by  

 

                                                       

                                                                                    𝜆 = 𝑁𝑚 +√2𝑁𝑚𝑄
−1(𝑃𝑓).                                                                                   (14) 

                                                                              

By using the decision threshold value from (15), the probability of detection (𝑃𝑑) considering the Subspace-Based 

SNR estimator will be 

A/D 𝐸 =
1

𝑁𝑚𝜎𝑛
2̂
∑|𝑦𝑘|

2

𝑁𝑚

𝑘=1

 

     Decision 

 

  𝐸   <
> 𝜆 

 

Estimator 

𝜎𝑛
2 
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                                                                                  𝑃𝑑 = 𝑄

(

 
𝜆 − 𝑁𝑚(1 + SNR̂)

√2𝑁𝑚(1 + SNR̂) )

 .                                                                             (15) 

                                                                         

5. - RESULTS AND DISCUSSION 

Simulations to validate the Subspace-Based SNR estimator performance and its applicability for Link Adaptation and 

Cognitive Radio are presented by using the mathematical software tool MATLAB. A Monte Carlo simulation of 500 

attempts has been performed due to the randomness of the signals. In addition, comparative results are shown with the 

other two mentioned SNR estimators for RF signals in Section 2. Signals to simulate have been created with random 

parameters such as bit rate and modulation scheme. The carrier frequency is settled by 𝑓𝑐 = 400 MHz. Parameters that 

characterize Rician and Rayleigh channel models have also been considered as follows: Rician distribution having 𝐾 = 3, 

Doppler shift is taken to be in the range 50Hz to 100 Hz and path delay has been chosen in the range between 20 𝜇𝑠 and 

80 𝜇𝑠. Performance is analyzed by the normalized mean square error (NMSE) criterion defined by NMSE (SNR̂) =

𝔼 [(SNR̂ − SNR)
2
] /SNR2, where SNR is the true SNR value and SNR̂ is an estimated value. This metric is commonly used 

to measure estimator quality. Provided that useful applications of SNR estimator are ranged on values below 0.5 for the 

NMSE metric, the analysis that follows exhibits results limited on the range [0, 0.5]. Considering NMSE metric versus 

SNR parameter the estimator is really "blind" to any considered modulation. To evaluate the performance of the Energy 

Detector for 𝑁𝑚 = 1024  samples, the detection probability 𝑃𝑑 vs SNR is considered. Computational complexity of 

algorithms is also evaluated by considering the total number of required operations to their implementation. 

Figure 2 shows the performance of the Subspace-Based SNR estimator for different modulation schemes. The mean 

value provided by the proposed estimator is very close to the true SNR value to all exhibited modulation schemes. The 

figure also shows the normalized mean square error (NMSE) of the estimation. Values of  NMSE are quite small and 

similar for all digital modulation schemes. This result introduces the applicability of the Subspace-Based SNR estimator 

for Link Adaptation applications. 

 

 
Figure 2 

Mean value and normalized mean square error of estimation made by the Subspace-Based SNR estimator for several signals. 
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Figure 3 illustrates a comparison of the Subspace-Based SNR estimator to other two conventional algorithms 

(𝑀2 𝑀4 and SSME estimators) regarding NMSE and the mean of the estimated SNR. Figure 3 shows that mean value 

provided by the Subspace-Based SNR estimator is closer to the true SNR value than other two mentioned algorithms. This 

figure also shows that the values of the NMSE presented by Subspace-Based SNR estimator are lower than the error 

provided by other algorithms. 
 

 

Figure 3 

Mean value and normalized mean square error of estimation made by several estimators for QPSK signal in AWGN 

channel. 

Figures 4 and 5 show results of the Subspace-Based SNR estimator in case of Rayleigh and Rician channel models. 

Figure 4 shows results by the Subspace-Based SNR estimator for Rayleigh channels. Additionally, Figure 4 shows the 

mean value of the SNR estimated values. The estimated parameter is nearly similar to the true SNR value and with the low 

error values of the NMSE. This has a similar behavior to results obtained for AWGN channel in Figure 3. 
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Figure 4 

Mean value and normalized mean square error of estimation made by Subspace-Based SNR estimator for several signals in 

Rayleigh channels. 

Figure 5 shows the estimated SNR value by the Subspace-Based SNR estimator for Rician channels. The figure shows 

the similarities between the estimation provided by this method and the true SNR value. When SNR is higher than -5 dB, 

NMSE values are quite small. This represents a similar behavior to the results obtained for a Rayleigh channel. 

 

 
Figure 5 

Mean value and normalized mean square error of estimation made by Subspace-Based SNR estimator for several signals in 

Rician channels. 

Figure 6 shows the performance of the Energy Detector by using the blind SNR estimator. A variety of channel models 

are considered by transmitting digital modulation waveforms. Performance obtained by using the Subspace-Based SNR 

estimator is very close to the ideal 𝑃𝑑 from ED method when SNR is higher than -5 dB.  
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Figure 6 

Detection probability 𝑃𝑑 vs SNR(dB) with 𝑃𝑓 = 0.1 for signals with digital modulation in different channel models. 

The Subspace-Based SNR algorithm can be applied to several schemes of digital and analog modulations for low SNR 

values. We are considering conventional digital modulations schemes from High-Speed Downlink Packet Access (HSDPA) 

technique and DVB-S2 standards to validate the SNR estimator applicability in these scenarios. These real-life scenarios 

commonly implement Link Adaptation techniques. The Subspace-Based SNR algorithm is also applicable to Rayleigh and 

Rician channel models. These are representative channel models of Digital Terrestrial Television (DTV), a possible 

spectral band to deploy Cognitive Radio techniques, considering the development of the IEEE 802.22 standard using TV 

white spaces. 

 

To analyze complexity, Table 1 shows the total number of adders and multipliers to implement each considered 

method. This represents the common reported metric of complexity [2, 5, 14]. This table shows that the total number of 

multipliers and adders to apply Subspace-Based SNR estimator depends cubically on the total number of analyzed samples, 

while other algorithms exhibit a linear dependence. Subspace-Based SNR estimator is the most complex method due to 

matrix operations such as autocorrelation matrix decomposition. However, this method reports high accuracy levels for any 

considered signal and thus represents a useful application on blind estimation. 

 

Table 1 

Complexity of NDA SNR Estimation Techniques 

 

Estimator Adds Multiplications 

𝑀2𝑀4 Estimator 4𝑁𝑚 − 2 5𝑁𝑚 + 1 

Split-Symbol Moment Estimation (SSME) 4𝑁𝑚 + 1 𝑁𝑚 + 2 

Subspace-Based SNR Estimator 8/3𝐿3 + 𝒪(𝑁𝑚
3 ) 8/3𝐿3 + 𝒪(𝑁𝑚

2 ) 

 

 

6. - CONCLUSIONS 

Spectrum sensing operations for Cognitive Radio and Link Adaptation applications demand SNR parameter 

estimation. The second and fourth order moments 𝑀2𝑀4 based SNR estimator can provide a "blind" SNR estimation in 

digital modulations scheme of constant envelope in AWGN channel. Although accuracy for low SNR levels is extremely 

degraded.  
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On the other hand, SSME estimator provides the accuracy that 𝑀2 𝑀4 estimator does not present for lower SNR levels. 

However, this algorithm is only applicable when the symbol rate and modulation scheme are provided, strong constraints in 

scenarios of blind spectrum sensing for Cognitive Radio applications. 

In this work, we have proposed the application of the Subspace-Based SNR estimator to estimate the SNR parameter 

for Cognitive Radio applications in non-cooperative scenarios and Link Adaptation. Although the Subspace-Based SNR 

estimator presents the higher computational complexity, this method exhibits to have the best performance at low SNR 

values in comparison to other reported. In addition, this method does not require prior knowledge of the analog or digital 

modulation format. The Subspace-Based SNR estimator is also applicable to Rayleigh and Rician channel models with 

proper results in the range of SNR values of -5 dB to 15 dB.  

Future work will be conducted by studying blind SNR estimation techniques applicable to Orthogonal-Frequency-

Division-Multiplexing (OFDM) scheme. Additionally, to analyze the implementation of these solutions on hardware on 

FPGA devices may contribute to the further development of CR applications. 
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