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ABSTRACT 

Brain Computer Interfaces (BCI) processing algorithms need powerful computational devices to perform in real time. In this 

work, a hardware efficient design for the classification of Electroencephalography (EEG) signals representative of two motor 

imagery task is proposed and implemented on Field Programmable Gate Array (FPGA). Wavelet Packets Decomposition 

(WPD) is used as feature extraction algorithm and Linear Discriminant Analysis (LDA) as the classifier. The system was 

designed using System Generator and it was implemented on a Zybo board using Hardware/Software Co-Simulation. 

Simulation results show an accuracy of 80% during the classification of two motor imagery tasks, a latency of 7.5 ms for a 

clock frequency of 1.5 MHz, and a power consumption of 0.102 W. In addition, the amount of FPGA resources employed is 

less than previous similar works, proving that the design system not only achieves a good accuracy but it also does it in an 

efficient way.    

Key Words:  BCI, Wavelet, LDA, EEG, FPGA. 

 

1. -INTRODUCTION 

Human Computer Interaction (HCI) technology has been the objective of great focus in the past years. BCIs are the latest 

development in this field. Unlike other devices, BCIs read brainwaves in different locations in the scalp, and then translate 

these waves into actions or commands. Most BCIs applications are aimed at helping disabled people to interact with different 

computational devices. They can also be used by gamers to play using their heads, as new ways of social interaction, and to 

enable social applications to capture feelings and emotions[1-3]. 

In the BCIs design, EEG signal processing aims at translating raw EEG signals into certain class corresponding to the user 

mental state. This translation is usually achieved using a pattern recognition approach, which consists of two main steps: 

feature extraction and classification. The first step aims at describing the EEG signals by a few relevant values called 

“features”. Such features should capture the information embedded in EEG signals that is relevant to describe the mental state 

to identify, while the second step, the classifier, assigns a class (associated with a mental state) to the set of features extracted 

from the signals[4]. 

One major challenge in the field of BCIs is to extract reliable information from noisy data in real time in the form of relevant 

features. In order to do this, several feature extraction algorithms have been proposed over the last years, with Principal 

Component Analysis (PCA), Common Spatial Pattern (CSP), Fast Fourier Transform (FFT), Autoregressive Coefficients 

(AR), Wavelet Transform (WT) and Phase Synchronization (PS), being among the most commonly used [5-9]. Physiological 

arguments suggest that the frequency bands around 8-13 Hz and 14-30 Hz are especially relevant for discriminating motor 

activity in the upper limbs[10]. A common approach is thus to extract the power information from the signal over these 

frequency bands and use that as the classification feature [10-13]. To do this, the most popular methods for power spectral 

estimation are the ones based on the FFT like the one proposed in [14], but other band power based feature extraction 

algorithms have been proposed [15]. The autoregressive coefficients (AR) and the Discrete Wavelet Transform (DWT) are 

also used to calculate the spectral density in specific frequencies. Within these algorithms, the decomposition of the EEG 

signal using the DWT and WPD have been the feature extraction methods that provide better results, using as feature vector 

the energy in the Wavelets sub-bands, obtaining in most cases more than an 80% accuracy during classification [13, 16-23].  
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The classification algorithm is as important as the feature extraction method. Nonlinear methods have shown better 

classification performance compared to the linear methods; however, they are more complicated to implement. Linear 

classifiers, such as Linear Discriminant Analysis and Support Vector Machine (SVM) are more suitable for real time BCIs 

systems implementations because of a low computational cost, which have persuaded researchers to use it in the classification 

of biomedical signals [24-26]. In [27], the author carried out a comparison between LDA, SVM and an artificial neural 

network based classifier during the classification of motor imagery tasks. He concluded that although the neural network 

classifier offers a slightly better accuracy over the LDA classifier, the latter offers a simpler implementation and a better 

analysis of the classes when the estimation of power spectral density is used as a feature vector.  

Despite the amount of research conducted in this field, many promising systems still remain confined to research laboratories, 

with studies investigating their long term use for patients who have most need of them[9]. One of the reasons for this delay 

in bringing BCIs to the home user has been the need for a bulky personal computer performing the analysis of brain signals 

and translation into output commands. Hence, there has been growing interest in developing BCIs on mobile platforms[28]. 

Based on that, the aim of this paper is to aid in the solution of the problems presented by the limitations of today’s BCIs 

technologies for motor rehabilitation and the instrumentation where the feature extraction algorithms and classification 

algorithms are implemented, considering the power consumption and delay of these algorithms. 

FPGAs have the advantages of parallel processing to provide higher performance over digital signal processor (DSP) for real-

time multi-channel signal processing. They also have the flexibility of reconfiguration, making it more preferable for proof-

of-concept prototype design than application-specific integrated circuit (ASIC)[14]. While in a typical BCI system only the 

initial stages of signal acquisition and amplification would be performed in hardware and the remaining ones (artefact 

suppression, feature extraction and classification) would be implemented in software, shifting this hardware-software 

interface even further would allow lower power consumption, greater compactness and parallel feature computation[9]. 

Among the first publications to propose a complete BCI system on a FPGA were [29] and [28], where the authors aimed their 

design to detecting and processing  steady state visual evoked potential (SSVEP) and P300 potential respectively. Although 

potentials like P300 can be evoked in nearly all subjects, and are relatively easy to detect[28],  BCIs systems based on them 

would present limitations for patients with visual or eye muscle problems. Such limitations are not found in BCIs based on 

motor imagery due to the use of Event Related Desynchronization/Synchronization (ERD/ERS) potentials [30]. Other P300 

based BCIs embedded on FPGA found in literature are [31, 32].  In 2014, a motor imagery based BCI system embedded on 

FPGA was presented in [33], in order to control basic home devices by the thought of two motor imagery actions: left hand 

and right hand movement. This system performed the entire signal-processing tasks on software running on a Nios II processor 

embedded on a Startix IV FPGA, using CSP as feature extraction algorithm  and the Mahalanobis Distance (MD) as classifier. 

This resulted on a lower FPGA resource consumption, but at the expense of a  0.5-second delay in the execution time. In [34] 

another motor imagery based BCI system is proposed, performing the feature extraction with the Discrete Wavelet Transform 

in combination with a SVM classifier, using Verilog Hardware Description Language. But the authors do not provide any 

information about the FPGA resource consumption or the delay of the system. In [35], a low power hardware implementation 

of a BCI is designed, reducing up to 56 times the power consumption compared with BCIs that use digital filters. They 

achieved this by using the Discrete Cosine Transform as feature extraction and reducing the clock frequency to 0.5 MHz. An 

improvement of [33] can be found in [36], where the authors accelerated some of the critical tasks in hardware, but still 

performing great part of the processing in software, reducing the delay from 0.5s to 0.399, using again CSP as feature 

extraction and MD as classifier. A more complete work about ERD/ERS BCIs is addressed in [30], where the authors proposed 

a complete hardware implementation of a BCI embedded on FPGA, using Separable Common Spatio Spectral Pattern 

(SCSSP) as feature extraction algorithm, which improves the CSP method[37], and SVM as classifier. In this work, a different 

approach is proposed using only 2 EEG channels instead of 14 or 22 channels like [30] and [33, 36] respectively, making a 

greater emphasis on the frequency properties of the EEG signals instead of the spatial ones.  

As the contributions in this paper, a System Generator model is proposed for a hardware efficient implementation on FPGA 

of a motor imagery based BCI. A modular design is used in the implementation of the feature extraction algorithm, based on 

WPD, which in combination with an LDA classifier provides an 80 % of accuracy for a case study, in the recognition of two 

mental state classes (right hand movement and left hand movement). The design is compared with similar designs on previous 

works, where they use CSP or a similar algorithm to extract features from the EEG signal. This comparison shows that the 

design proposed in this paper achieves a lower consumption of FPGA resources and a lower latency than the previous works. 

The rest of the paper is organized as follows. In section 2, a general description of the proposed system and the dataset 

employed is provided. Section 3 describes the details of the feature extraction and classification algorithms. Section 4 

addresses the hardware design and in section 5, the results of the classification and the hardware implementation are discussed. 

Finally, in section 6 the conclusions are presented.   
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2.- PROPOSED BCI DESIGN 
A BCI system is the combination of a signal acquisition hardware, a pre-processing stage, a feature extraction algorithm, a 

classification algorithm and a feedback or command stage[38]. This work focuses on the embedded implementation on FPGA 

of the more critical parts of that kind of systems, the feature extraction and classification stages, contrary to most  works found 

in literature [30, 33, 36] about the implementation on FPGA of ERD/ERS based BCIs, where they use some type of spatial 

filters as the feature extraction algorithm. In this paper, the features extracted are the energy in 8 frequency bands (0-4Hz,4-

8Hz,8-12Hz,12-16Hz,16-20Hz,20-24Hz,24-28Hz,28-32Hz) of each EEG channel employed. In order to do this, each EEG 

channel is decomposed up to four levels with WPD and the normalized energy of each band is calculated. Once the features 

of all channels have been extracted, an LDA classifier assigns a class (1 or 2) to each feature set, indicating the movement of 

the right hand or the left hand. A general diagram of the system is illustrated in Figure 1. 

 

 
Figure 1  

Proposed BCI system design. 

 

2.1.- DATASET BCI COMPETITION 2003 
To train and test the BCI system, a dataset of real EEG signals was employed, provided by the department of Medical 

Informatics of the  Institute for Biomedical Engineering, University of Technology Graz. These signals were recorded during 

the event BCI competition 2003. During this event, several datasets were recorded from multiple subjects, while they 

performed different tasks. In this paper, the dataset employed was the one labeled: III Motor Imagery, recorded from one 

subject. The subject was a 25- year- old normal female, who sat in a relaxing chair with armrest. The task was to control a 

feedback bar in one dimension by imagination of left or right hand movements. The order of left and right cues was random. 

The experiment included seven runs with 40 trials each. All runs were conducted on the same day with breaks of several 

minutes in between. The dataset consists of 280 trials of 9 seconds each. In each trial, the first 2 seconds were quiet, at t=2s 

an acoustic stimulus indicates the beginning of the trial, and a cross “+” was displayed for 1s. Then, from t=3s to t=9s, an 

arrow (left or right) was displayed as a cue. At the same time, the subject was asked to use her imagination as described above 

to move the feedback bar into the direction of the cue. Three EEG channels were recorded (C3, Cz and C4) using the bipolar 

electrode configuration shown in Figure 2, for the recording a g.tec amplifier and Ag/AgCl electrodes were employed. Each 

channel was sampled at 128 Hz and the data filtered between 0.5 and 30Hz. The trials for training and testing were randomly 

selected to prevent any systematic effect due to the feedback[39]. 

 

 
Figure 2  

Electrode configuration and protocol of the experiment. 

 

From the 280 trials, only 140 contain the class label ‘1’ or ‘2’ for left and right hand respectively, so from those 140 trials, 

70 were used to train the system and 70 to test it. Using from each trial only last six seconds. 
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3.- ALGORITHMS DESCRIPTION. 

3.1.- WAVELET TRANSFORM 
Fourier analysis is ideal to explore signals with stationary data but it is not suited for information with transients that cannot 

be predicted from data’s past. The signal is either spread in the time domain and localized in the frequency domain, or localized 

in time domain and spread in the frequency domain. In signal processing terms this means that it is difficult to determine the 

exact time at which a specific frequency component will appear. These limitations are overcome by the Wavelet transform 

since it allows time-frequency localization and the study of signals with non-stationary data. The analysis using Wavelet 

transform is done by splitting a signal into components, which are called Wavelets[40]. The Continuous Wavelet Transform 

(CWT) of a time signal x(t) in defined as: 

 

                               𝑊Ψ,𝑋(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)
∞

−∞
Ψ* (

𝑡−𝑏

𝑎
) 𝑑𝑡, 𝑎 ≠ 0         (1) 

 

In equation 1, Ψ(t) is a function with limited duration in time, b is the shifting parameter and a is the scaling parameter 

(replacing frequency parameter f). As can be seen, the basic functions (Ψ((t −b)/a)) of the CWT are the shifted and scaled 

version of  Ψ(t), this function is often referred to as the Mother Wavelet. The discrete version called Discrete Wavelet 

Transform is achieved by applying only discrete shifts and scales to the Mother Wavelet and can be implemented using a two 

channel Finite Impulse Response (FIR) filter bank, one low pass filter and a mirror high pass filter, where the outputs of each 

filter are down-sampled by a factor of 2[41]. The schematic for a two level DWT decomposition is shown in Figure 3:  

 

 
Figure 3  

Filter Bank for a two level decomposition using the DWT. 

 

The a(n) are defined as the approximation coefficients which contain the low frequency components of the signal, and d(n) 

the detail coefficients, which contain the high frequency components of the signal. For the filter bank, the high pass and low 

pass filter coefficients are obtained using equations 2 and 3 in which g(i) and h(i) are the filters coefficients shown in Figure 

3. In these equations Φ(n) is defined as the scaling function which is for local approximations in the same way as the Wavelet 

function is for fluctuations around the local approximation[41].  

 

               ψ(𝑛) = ∑ √2𝑔(𝑖)2𝑁−1
𝑖=0 Φ(2𝑛 − 𝑖)                                                         (2) 

 

                                  Φ(𝑛) = ∑ √2ℎ(𝑖)2𝑁−1
𝑖=0 Φ(2𝑛 − 𝑖)                                                         (3) 

 

A generalization of the orthogonal Wavelet decomposition can be found in a procedure called Wavelet Packets 

Decomposition. This procedure allow a finer analysis by breaking up the detail spaces, which are never decomposed in the 

case of the DWT, mitigating the lack of frequency resolution. The principle is, to decompose not only the approximation 

coefficients but also the details coefficients[41], as shown in Figure 4. 
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Figure 4  

Filter Bank for a two level WPD. 

 

For a decomposition level J there are 2j terminal nodes that cover a frequency range from 0 to fs /2, where the bandwidth of 

each terminal node l is given in equation  4 and fs  is the sampling frequency [17]: 

 

         [
𝑙 𝑓𝑠

2𝑗+1 ,
(𝑙+1)𝑓𝑠

2𝑗+1 ]    𝑙 = 0,1,2, . . . 2𝑗 − 1           (4) 

 

In pattern recognition system, several types of features can be extracted from Wavelet decomposition. The sub-band energy 

and the coefficients themselves are among the most commonly used in BCI systems [13, 17, 22, 23]. The energy in each 

terminal node of a WPD tree can be calculated using equation 5. 

 

                       𝐸𝑙 = ∑ (𝑐𝑙
𝑗(𝑛))𝑀

𝑛=1

2
                          (5) 

 

Where l is the number of the terminal node, j is the level of decomposition and n the index of the coefficient. If the sum of all 

sub bands energies is calculated  by equation 6, then the normalized energy for every sub-band can be defined by equation 7 

[23].  

 

                                  𝐸𝑇 = ∑ 𝐸𝑙                                                        (6) 

                                                                                                                           𝐸𝑁 =
𝐸𝑙

𝐸𝑇

                                                                                       (7) 

In EEG signals, several frequency bands can be associated with specific activity. This bands are: Delta waves (0.5Hz-4Hz), 

Theta waves (4Hz-7Hz), Alpha waves (8Hz-15Hz), Beta waves (16Hz-31Hz) and Gamma waves (32Hz-42Hz) [14]. 

According to equation 4, if an EEG signal sampled at 128 Hz is decomposed at level J=4 using WPD, the bandwidth resolution 

of each terminal node is 4 Hz, which is enough to decompose any EEG signal in the frequency bands mentioned above. With 

this in mind, 2 of the 3 channels recorded in the dataset where decomposed and the normalized energy was calculated and 

selected as feature vector, this channels were C3 and C4, because they are spatially the most representative of the electrical 

activity related to arms movement[13]. The feature vectors extracted from each trial where organized as shown in Figure 5. 

Eight components where extracted from each channel, for a total of 16 components in the entire feature vector. 

 

Figure 5  

Organization of the energy feature vectors. 
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3.2- Linear Discriminant Analysis  

Linear Discriminant Analysis is a very common technique for dimensionality reduction problems, preprocessing step for 

machine learning and pattern classification applications. The LDA objective in a two class pattern recognition problem is to 

project a data matrix X(NxM), where N is the amount data samples of length M, into a lower dimensional space V(Mxk), where 

k<M. In order to do this a linear transformation (equation 8) is used, this linear transformation maximizes the between-class 

variance and minimizes the within-class variance, thereby guaranteeing maximum class separability[42, 43].  

 

𝑌 = 𝑋(𝑁𝑥𝑀) 𝑉(𝑀𝑥𝑘)                                                                         (8) 

 

The first step to find the lower dimensional space V is to calculate the between-class variance matrix SB(MxM). This can be 

achieved using equation 9, where c is the amount of classes, ni represents the amount of features vectors that belongs to the i 

class (in this case i∈ [1,2] , and c=2), µi represents the mean of i class vectors, and µ the mean of all vectors. 

 

𝑆𝐵(𝑀𝑥𝑀) = ∑ 𝑛𝑖(𝜇𝑖(1 𝑥𝑀) − 𝜇(1 𝑥𝑀))𝑐
𝑖=1 (𝜇𝑖(1 𝑥𝑀) − 𝜇(1 𝑥𝑀))𝑇                                       (9) 

 

The second step is to calculate the within-class variance matrix SW(MxM) using equation 10, where xij represents i vector of 

the j class. 

 

𝑆𝑊(𝑀𝑥𝑀) = ∑ ∑ (𝑥𝑖𝑗(1 𝑥𝑀) − 𝜇𝑗(1 𝑥𝑀))(𝑥𝑖𝑗(1 𝑥𝑀) − 𝜇𝑗(1 𝑥𝑀))
𝑇𝑛𝑗

𝑖=1
𝑐
𝑗=1                                       (10) 

 

Once the SB and SW matrixes are obtained the next step is to calculate the transformation matrix W(MxM) using equation 11. 

Then from the matrix W, the eigenvalues λ(k) and eigenvectors V(kxM) are calculated and sorted in descended order according 

to the eigenvalues, selecting only a few k eigenvectors to form the V lower dimensional space. In this work, only one 

eigenvector was selected, the eigenvector, that provided the best separability between classes when the vectors from the 

training set where projected into it. 

 

𝑊(𝑀𝑥𝑀) = 𝑆𝑊
−1(𝑀𝑥𝑀) 𝑆𝐵(𝑀𝑥𝑀)                                         (11) 

 

In Figure 6, a better understanding of the two stages of the LDA algorithm is provided, where the first stage is the training of 

the algorithm. To train the classifier, 70 trials were selected. Then, the software Matlab 2015 from Mathwork Company and 

its Wavelet toolbox were used to extract the energies features mentioned in section 3.1. The feature vectors were organized 

into a matrix X(70x16) with 70 features vectors and 16 components in each vector. Once the features were extracted, the 

between-class variance matrix SB, the within-class variance matrix SW, the transformation matrix W, the eigenvalues λ(k) and 

eigenvectors V(Mxk) were calculated using Matlab, selecting the eigenvector that provided the best separability between 

classes, to implement in hardware the validation stage using the equation 8.  This second stage of the classifier was 

implemented on a Zynq 7000 device and validated using the other 70 trials from the test set. 

 

 
Figure 6  

Stages of the LDA classifier. 
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4.- FPGA IMPLEMENTATION. 
To implement the proposed system, the tool System Generator from Xilinx was employed, mainly because of its capability to 

model and implement high-performance DSP systems on FPGA using Simulink, and also its capability to use all the analysis 

and graphic power from Matlab. Similar to Figure 1, the design in System Generator was divided into several subsystems: 

Channel Selection, WPD, Sub Band Energy, Control, Register and LDA Classifier, as shown in Figure 7.  

 

 

Figure 7  

Block Diagram of proposed BCI in System Generator. 

 

The EEG signals from channels C3 and C4 were loaded from the Matlab Workspace to the Simulink environment using   two 

From Workspace blocks. Then both channels were decomposed up to four levels using Wavelet Packet Decomposition and 

the normalized energy in the 8 frequency bands mentioned in section 3.1 were used as features for the classifier. However, 

the two channels were not processed at the same time, because that would require two feature extraction subsystems working 

simultaneously, incurring on an increase of hardware resources utilization. Instead, an approach similar to the one proposed 

on [9] was used, where the channels turn to be processed by the feature extraction subsystem is multiplexed. First, the features 

from the channel C3 are extracted and stored on a register chain and then the features from channel C4 are extracted and 

introduced to the classifier at the same time as the features from the channel C3. In order to do this, the Channel Selection 

subsystem receives the samples from both channel at the same time, but it stores the samples that belongs to the channel C4 

in a memory, passing to the WPD subsystem the samples from the channel C3 in order to extract the energy features. After 

the channel C3 features are extracted, the WPD indicates to the Channel Selection subsystem that it is ready to process the 

samples from C4, using for this communication the signal Select. The signal R_EN is used to reset the WPD subsystem to its 

initial state when the features from the channel C3 are extracted and before the feature extraction from the channel C4 starts, 

this signal is also used to enable the write operation in the subsystem Register when the features from C3 are in its input. The 

signal R_EN_1 is used to habilitate the operations of the classifier once the features from both channels have been extracted. 

All of these signals (Select, R_EN and R_EN_1) emerge from the Control subsystem whose function is to provide order and 

synchronism to the data transfer between subsystems.  

The diagram in Figure 8 shows the internal structure of the Channel Selection subsystem, whose components are a Counter, 

a RAM Memory, a Multiplexer, a NOT gate and two Gateway in. The inputs 2 and 3 are driven by de Select signal, the input 

3 chooses the write or read operation in the RAM Memory that stores the samples from the channel C4, while the input 2 

drives the sel signal in the multiplexer that selects which channel samples are passed to the WPD subsystem. A counter with 

a modulus equal to the amount of samples in the channels C4 and C3 segments is used to drive the address in the memory 

block. The input 1 is the entry for the samples from the channel C3 and the input 4 is the entry for the samples from the 

channel C4. 
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Figure 8 

Internal structure of the Channel Selection subsystem. 

 
One of the main problems in the design of digital signal processing systems on FPGA is optimizing the use of embedded 

multipliers on chip[44]. As mentioned in section 3.1 the implementation for the Wavelet Packets Decomposition algorithm is 

based on a mirror filter bank with two types of filters, a low pass and a high pass filter. These filters’ length and coefficients 

are dependent on the Mother Wavelet employed, but not all Mother Wavelets have discrete implementation[41]. The 

Daubechies (Db) family of Wavelets has been used several times in the design of BCI systems [19, 20, 22, 23]. In [17] a 

comparison of accuracy in a BCI system is performed, when seven different Mother Wavelets are used in a feature extraction 

algorithm based on the DWT. That comparison shows that the best results were obtain when the Mother Wavelet Daubechies4 

(Db4) was employed. That is why Db4 was selected as the Mother Wavelet to be used in this paper. The amount of coefficients 

for the Db4 is eight per filter. For a parallel FPGA implementation of an eight taps FIR filter, eight multipliers are needed. 

An alternative implementation for the DWT is presented in [45], where they use distributed arithmetic instead of embedded 

multiplier to perform the multiplication in the filters. They concluded that the throughput using a conventional embedded 

multiplier architecture is more than 3 times faster than the throughput achieved when distributed arithmetic is employed, and 

they report a maximum percent error of 9.8%. Considering that information, a conventional embedded multiplier architecture 

was selected to be used in this paper. As mentioned above, two filters are required for one level of decomposition with the 

DWT, incurring in a total of 16 multipliers only in this first stage of decomposition if the mother Wavelet Db4 is used and a 

parallel architecture is employed. In each decomposition stage, the number of filters doubles in comparison with the previous 

one, and so it does the number of multipliers. The EEG signals has very low frequency components compared with the 

oscillators available in most FPGA kits these days. This allows for the use of more hardware efficient filter’s architecture like 

a serial one, where only one multiplier is used instead of eight, without compromising the system latency.  

In a serial architecture for a FIR filter all the multiplications and additions necessary to process one sample need to be 

completed before the next sample arrives. For an M taps filter, M multiplications and additions are necessary, assuming that 

one multiplication and one addition can be performed in the same clock cycle, a constrain to the system clock frequency 

(CLK) needs to be placed. That constrain is that the CLK frequency must be at least M times higher than the sampling 

frequency of the signal. This relationship is shown in equation 12[44]. 

 

𝐶𝐿𝐾 ≥ 𝑀*𝑓𝑠                                        (12) 

 

To implement the filter the HDL Coder Tool from Matlab was used, generating the VHDL code for a Discrete Time FIR filter 

block, configured to use a serial architecture. This block is located at the Simulink DSP Library. After the VHDL code of the 

low pass and high pass filters was generated, the code of each filter was introduced into a Black Box of System Generator. 

These black boxes alone with the other element shown in Figure 9 conform the basic decomposition block for the WPD 

implementation proposed in this paper. 
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Figure 9 

Basic WPD decomposition block.        

   

Other blocks shown in Figure 9 are a counter, a multiplexer and a couple of latches, which together provide the equivalent of 

a down-sample block. The counter has only one bit in the output port, which means that the output can only be zero or one. 

The enable port of the counter is connected to the ce_out port of the Hi_Pass filter which indicates when a new sample is 

ready at the output of the filter (it also could be connected to the Low_Pass filter). This makes the counter output be one for 

one sampling period and zero for the next one, which makes the output of the multiplexer delivers the ce_out signal pulse 

every two sampling periods to the enable input of the latches. In this way, it achieves the same results as a down-sample by a 

factor of 2. The input of the FSM (Finite State Machine) block is connected to the valid_out pin of the previous stage, which 

indicates when a new sample is presented at the output of that stage. When the FSM block detects a rising edge in the din 

port, it sets the output ha to high for as many clock periods as the filter’s coefficients, according to the relationship shown in 

equation 12, allowing the filter to perform all the necessary operations to process one sample. Last but not least, the Convert 

blocks are used to accommodate the fixed-point representation of the samples to a 16-bit sign format before they enter the 

next stage of the system. 

With this basic decomposition block, any signal can be decomposed in as many levels as necessary, simply by concatenating 

several of them. The entire decomposition tree for four levels of WPD is shown in Figure 10. For a signal sampled at 128 Hz, 

this tree covers the frequency range from 0 to 64 Hz. However, the information of interest (0-32Hz) is concentrated in the 

eight terminal nodes of the left. This means that in the hardware implementation the eight terminal nodes of the right and the 

previous nodes that lead to them are not necessary, allowing an optimization in the use of hardware resources. Thanks to the 

modular approach proposed in this paper for the implementation of the WPD algorithm, there is no need to implement the 

entire tree, only the left half that covers the frequencies of interest. This implementation is performed using several blocks 

that implement the design shown in figure 9. The interconnection of these blocks within the WPD subsystem is shown in 

Figure 11. 

 

 
Figure 10  

Wavelet Packets Decomposition Tree for L=4. 
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Figure 11  

System Generator Implementation of WPD subsystem. 

 
The energy in each band is the sum of the square of the coefficient on that band. To normalize that energy, it needs to be 

divided between the sums of the energy in all bands. These operations are performed by the Sub Band Energy subsystem, 

which receives the coefficients from each terminal node in the WPD subsystem. Each terminal node that enters the Sub Band 

Energy subsystem is connected to a multiplier and that multiplier is connected to an accumulator, as shown in Figure 12. This 

structure performs the operation of equation 5. 

 

 
 

Figure 12 

System Generator sub system to calculate the sub-band energy. 

         

The enable of the accumulators is connected to the Valid out port in one of the basic decomposition blocks of the final stage 

in the WPD subsystem, which indicates when a new coefficient is ready. The output of all accumulators is added with the 

adders shown in Figure 13, to perform the operation of equation 6. That sum is then passed as the dividend to a divide block 

whose divisor is the output of the accumulator. The division that normalizes the energy (equation 7) of the terminal node 15 

is shown in Figure 14. This procedure is performed to all the terminal nodes that enter the Sub Band Energy subsystem. 

 

 
Figure 13  

Addition of all accumulator exits. 
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Figure 14  

Division to normalize the energy. 

 
In order to extract the features from one channel first, and the from the second, and pass both at the same time to the classifier, 

it is necessary to have a synchronism in the data transfer between subsystems. This is provided by the control subsystem, 

whose internal structure is shown in Figure 15.  In this subsystem, a counter with the enable connected to the Valid out port 

in one of the basic decomposition blocks of the final stage in the WPD subsystem, indicates how many Wavelet coefficients 

have been calculated. The output from the counter is compared with the number of coefficients needed from channel C3 using 

a Relational block. Then the output of that block is used as the Select signal and as the input of a Moore State Machine that 

performs the function of an edge detector. That state machine generates a pulse in high that is used as the R_EN signal. After 

the R_EN signal resets the WPD and Sub Band Energy subsystems, indicating the end of the feature extraction from C3, the 

same operation needs to be performed for C4. Therefore, the same procedure is applied with a second Relational block and a 

second Moore State Machine. But since the counter is not reset, the comparison in the second Relational block is performed 

with a constant that is twice the number of coefficients needed in the first one. The exit of the second state machine is used 

as the R_EN_1 signal.  

 

 
 

Figure 15  

Internal structure of the Control subsystem. 

 
The final subsystem, LDA Classifier assigns a class (1 or 2) to the feature vector extracted from the EEG signals. This is done 

by implementing equation 8 that was defined as the projection of the data X (feature vector) on a lower dimensional space Vk. 

In simpler words, this means calculating the dot product between the feature vector and the eigenvector selected, which results 

in a scalar number. At the time of the eigenvector selection, the feature vectors extracted from the training trials belonging to 

both classes are multiplied by it and a threshold for the decision between classes is set. During the validation stage, if the 

multiplication of a feature vector that belongs to the test set with the eigenvector is above that threshold, then class 1 is 

assigned. If not, class 2 is chosen. The details of the LDA Classifier subsystem implementation are shown in Figure 16.  
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Figure 16 

Internal structure of the LDA Classifier subsystem. 

 

The internal structure of the LDA Classifier subsystem can be separated into four main operations for a better understanding: 

 

• In the Eigenvector Component Selection, the eigenvector values are stored in a ROM memory block (implemented 

with a RAM memory), whose address is controlled by a counter with modulus 16. A register connected to the edge 

signal, which is connected to the R_EN_1 signal, controls the enable of the ROM memory and the counter. When a 

pulse is received in the edge signal, it enables the transition in the register whose outputs enable the Counter and the 

ROM  memory, commencing this way the operation of the classifier.  

• The Multiplexer sel signal is driven by the same counter as the ROM block that storage the eigenvalues. Thus, during 

the same 16 clock periods that the ROM block outputs the components of the eigenvector, the multiplexer will output 

the component of the feature vector.  

• The Dot Product Calculation section is based mainly in a multiplier that calculates the product between the feature 

vector and the eigenvector. An accumulator is used to storage the sum of these products and a register is used to save 

the result.  

• The final section is the Class Assignment, whose task is to compare the result of the dot product with the threshold 

established during the training stage and to assign a class to the vector. To do this, it uses a Constant block to store 

the threshold, a Relational block to make the comparison and a multiplexer whose sel signal is driven by the result 

of the comparison. Several delays are used to synchronize the enable signal of the comparison block. 

 

5- RESULTS AND DISCUSSION   
To analyze the performance during the classification of both classes, statistical tools like Confusion matrix (Figure 17) and 

Receiver Operational Characteristic (ROC curve) shown in Figure 18 were used. The Confusion matrix shows the accuracy 

in the classification of each class and the total classification accuracy of the system, while the ROC curves shows a graphic 

of true positive rate versus false positive rate for each class. 
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Figure 17 

Confusion Matrix. 

 
In Figure 17, the confusion matrix shows several accuracy results for the classification of two classes, to class 1 the label P 

(Positive) was assigned and to class 2 the label N (Negative) was assigned. The first column in this matrix shows the 

classification results for the features vectors that truly belong to the positive class, obtaining 34 true positives and 6 false 

positives, resulting in a sensitivity of 85%. The second column shows the classification results for the feature vectors that 

truly belong to the negative class, resulting in 22 true negatives and 8 false negatives, for a specificity of 73.3%. The first 

component in the third column indicates the correct classification rate for the vectors assigned to the positive class for an 81% 

of correct classification, while the second component in the third column offers the same information but for the feature 

vectors assigned to the negative class, resulting in a 78.6% of correct classification. The third component in this third column 

indicates the total correct classification rate of all the features vectors, where 80% of the 70 feature vectors extracted from the 

test set were correctly classified. The percent value below true positives, false negative, true negatives and false negative 

number indicates the percentage that those vectors represents out of the 70 features vectors in the test set. 

 

 
Figure 18 

ROC curves. 

 
As mentioned above, the ROC curve is a plot of the true positive rate on the vertical axis, against the false positive rate on the 

horizontal axis for both classes. In other words, it is a plot of the probability of correct classification against the probability 

of false classification, where the closer the curves pass to the upper left corner, the better the classifier is. Another parameter 

call Area Under Curve (AUC) can be estimated from the ROC curves. This parameter provides a single numeric value obtained 

from each class curve, for the evaluation of the performance of the classifier during the classification of that class. The closer 

this parameter is to 1, the better the classifier is. For the curve of class 1, the AUC is 0.7985 and for the curve of class 2 it is 

0.7925. 
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Another  important metric for evaluating the classification performance of a BCI system is the Information Transfer Rate 

(ITR)[36] which can be expressed by equation 13. 

 

𝐼𝑇𝑅 = 𝐿 (𝑝𝑠 𝑙𝑜𝑔2( 𝑝𝑠) + 𝑙𝑜𝑔2( 𝑁𝑡) + (1 − 𝑝𝑠) 𝑙𝑜𝑔2 (
1−𝑝𝑠

𝑁𝑡−1
))                                              (13) 

 

Where L is the number of decisions per minute, and pS the accuracy of the decision made for the Nt targets. As mentioned 

above only the last six seconds were used from each trial, so in a minute ten trials can be processed which make L=10. The 

total accuracy of the system is ps=0.8 and the number of targets Nt is the amount of classes to classified. Because of the 

relatively long EEG segments (6 seconds) used to classified only two classes, the ITR achieved was only of 2.78 bit/min. 

The system was implemented using Hardware/Software Co-Simulation on a Zybo platform, whose main component is a Zynq 

xc7z010-clg400. Also the latency and power consumption were estimated using the Xilinx tools provided by Vivado Design 

Suit. In Table 1, an implementation report and comparison with previous works is shown for a clock frequency of 1.5 MHz. 

Although the maximum operating frequency of the system is 61.234 MHz, the clock frequency was reduced to obtain a lower 

power consumption. The comparison shows an improvement in latency with other similar systems, while maintaining almost 

the same accuracy as [30], a better one than [33] and been outperformed only by [36]. In addition, the consumption of LUTs 

(Look Up Tables) and LUTRAM (Look Up Table Random Access Memory) is less than the three previous analyzed works 

and the only design that outperforms this work in the use of DSP block was [33], at the cost of incurring on a latency of 500 

ms. Is also worth mentioned that design proposed in this paper use only two EEG channels, instead of 14 or 22 like the ones 

compared with. Still, a similar accuracy is maintained, and lower use in hardware resources and latency are achieved. All of 

this thanks to the use of the WPD algorithm to extract relevant features from the EEG signals.  

 
Table 1  

Implementation and accuracy comparison. 

 LUTs Registers LUTRAM DSP Blocks Latency (ms) On Chip 

Power (W) 

Accuracy 

(%) 

This work 7561 4512 2 24 7.5 0.102 80 

[30] 11311 - 65536 24 ≤10 0.083 81.9 

[36] 27906 40402 818624 624 399 1.067 94.47 

[33] 17281 - 557332 4 500 - 72 

        

 

5- CONCLUSIONS 

In this work, a System Generator model for a hardware efficient BCI was designed, using WPD as the feature extraction 

algorithm and LDA as the classifier. The design was validated using real EEG signals representative of two motor imagery 

actions (right hand movement and left hand movement), recorded during the event BCI Competition 2003. An accuracy of 

80 % was achieved in the classification process, performed during the validation stage of the system on a Zynq xc7z010-

clg400 device, using Hardware/Software Co-Simulation. Other metrics like ROC curves and Information Transfer Rate of the 

system was analyzed while the latency, hardware resource consumption and power consumption was compared with previous 

works, showing an improvement in the resource consumption and the latency while maintaining an average accuracy. The 

results obtained, proved that the design proposed in this paper can be used to accelerate the more complex  computational 

stages in embedded BCIs systems, due to its implementation on FPGA. Future work will include the incorporation of a data 

acquisition hardware, a preprocessing module and a feedback stage for the online experimentation on test subjects.   
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