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ABSTRACT / RESUMEN 

The current work presents a new algorithm to detect bursts in water pipes automatically, focused on its implementation in 

low-power embedded devices. The algorithm was implemented in an MSP430FR5994 microcontroller and it does not require 

computer devices with the processing capability to execute high-complexity mathematical operations, unlike most of the 

existing algorithms. The developed algorithm uses the approach of detecting bursts by enhancing the singularities they create 

and making decisions based on the application of thresholds. Instead of applying a single mathematically-complex threshold, 

two simpler ones are used that are compatible with the processing capability of low-power embedded devices. Two 

implementations for the convolution operation were tested using the microcontroller’s Low Energy Accelerator module; it 

was found that the convolution in the time domain is faster than the FFT-based method in an average of 65.3%. The algorithm 

detects bursts with a detection probability of 100% and a probability of false positives of 0.13% on the performed tests. 

Keywords: low power, burst detection, MSP430 microcontroller, Wavelet Transform, Low Energy Accelerator module 

En este trabajo se presenta un nuevo algoritmo de detección automática de rupturas súbitas orientado a su implementación 

en dispositivos embebidos de bajo consumo de potencia. El algoritmo fue implementado en un microcontrolador 

MSP430FR5994 y no necesita dispositivos con suficiente capacidad de procesamiento para ejecutar operaciones 

matemáticas complejas, contrario a la mayoría de los algoritmos existentes. El algoritmo desarrollado emplea el enfoque de 

detectar rupturas súbitas mediante la acentuación de las singularidades que ellas crean y tomando decisiones basadas en la 

aplicación de umbrales. En lugar de aplicar un solo umbral que fuera matemáticamente complejo, se usaron dos umbrales 

más simples que fueran compatibles con la capacidad de procesamiento de dispositivos embebidos de bajo consumo de 

potencia. Se probaron dos implementaciones de la operación de convolución usando el módulo Acelerador de Baja Energía 

del microcontrolador; se obtuvo que la convolución en el dominio del tiempo se ejecuta, en promedio, un 65.3% más rápido 

que la basada en el uso de la Transformada rápida de Fourier. El algoritmo es capaz de detectar rupturas súbitas con una 

probabilidad de detección del 100% y una probabilidad de falsos positivos del 0.13% para las pruebas realizadas. 

Palabras claves: bajo consumo de potencia, detección de rupturas súbitas, microcontrolador MSP430, Transformada 

Wavelet, módulo Acelerador de Baja Energía 

Algoritmo de detección de rupturas súbitas en tuberías de agua para su implementación en dispositivos de bajo consumo 

de potencia 

 

1. -INTRODUCTION 

Pipe bursts are a significant problem for a large number of Water Distribution Systems in the world. More than 32 billion 

cubic meters of water are lost within the distribution systems, which accounts for 35% of the total water supply across the 

world [1]. Although the main affectation lies in the water losses, pipe breaks can also result in damage to surrounding 

infrastructure, posing severe threats to public security [2,3]. Large bursts remain unobserved in many cases for a long duration 

before they are identified [4,5], thus, quick detection of the burst would allow decision-makers to reduce the impact of such 

effects to significant values. 
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In general, two big approaches have been used in the literature to detect bursts: model-based and data-driven approach [6,7]. 

The main inconvenience that arises with model-based methods lies in the need for well-calibrated hydraulic modeling of the 

network, which is not an extended practice among water supply companies [8]. In addition, they depend on water supply 

systems that work 24 hours a day, which could not be the case for several systems. On the other hand, data-driven methods 

have found great applicability in real-life District Metered Areas (DMA), mainly because they do not need detailed knowledge 

about the pipe network parameters or system layout [9], thus, they are considered to be promising tools to detect pipe bursts 

[10]. 

Many of the existing approaches rely on data from several sensors to extract features, however, in real-life water distribution 

systems, many DMAs are isolated from each other, and only flow (or water demand) is monitored in the single inlet [11]. 

Automatic detection of bursts is desired, since it would allow the reduction in time of discovery, thus reducing the total amount 

of wasted water. 

Several efforts have been made recently to develop effective algorithms to automatically detect bursts in water pipes using 

data-driven approaches. The work presented in [10] focuses on the combined use of multiple data features at multiple 

continuous time steps to identify burst events based on the prediction-classification concept. 

In [12], authors propose an automatic water pipeline leak detection device to continuously monitor the water pipelines to 

reduce manpower involvement. The designed system allows detecting leaks and sending a notification to assist in-place and 

fix damages. The mechanism employed in this work to detect leaks is the Fourier Transform, which comes with the 

disadvantage that it does not offer a multi-resolution analysis [13]. 

In [14] authors developed an algorithm for automatic detection and localization of bursts employing the Discrete Wavelet 

Transform (DWT) and the cross-correlation. Authors prove that the Coiflet 1 is the most adequate Wavelet function to detect 

the singularity generated by bursts. It is also shown how usage of the Wavelet Correlation Criterion (CCW) offers a cleaner 

spectrum of the signal that makes simpler the detection of bursts. The results obtained in that work were improved in [15] by 

minimizing the size of bursts that can be detected and the probability of false positives, using a similar approach. Both works 

are, at this moment, the only ones that perform automatic detection of bursts. Although some other authors have proposed 

techniques that use transient pressure signals to detect and localize bursts in pipelines, the existing techniques require offline 

processing that can delay the detection of bursts [16]. 

As it is observed, most works on burst detection are not conceived to perform the algorithms on small, processing capability-

constrained, low-power embedded systems. Instead, they rely on computer devices with the processing capability to perform 

high-complexity algorithms. In practical scenarios, low energy consumption is of particular importance for pressure-based 

leak detection where the optimal, most sensitive sensor positions are often located in the periphery of a water distribution 

system, where no external power source is available and energy harvesting might not be a viable option[17]. In addition, 

applications that favor more local computations and less wireless-transmission time can contribute to solving the problem of 

high power consumption and performance issues plaguing most centralized Wireless Sensor Network applications [18]. This 

constraint shows the need for data logger nodes that do most of the processing locally while keeping a low-power regime. 

Microcontrollers are among the platforms that have been more widely used as low-power sensor nodes since they can perform 

multiple tasks while guaranteeing low power consumption. The energy savings typically come at the expense of a reduced 

processing capacity, however, several efforts have been made to perform very complex tasks of digital signal processing, such 

as a Wavelet Transform, in microcontrollers. In [19] authors present an implementation of a Haar Wavelet Transform [20] 

using an integer optimization on an MSP430F169 microcontroller from Texas Instruments. The fact of having to use the 

Central Processing Unit (CPU) all time to implement the Wavelet Transform is an inconvenience since the CPU is the main 

source of energy consumption in microcontrollers and low-power strategies are addressed to reduce the CPU’s active mode 

time. In [21], authors employ an MSP430FR5969 microcontroller to implement a four-level Wavelet Transform. As stated by 

authors, the Wavelet transformation, compression, and storage process occurs in 0.920 s, which could be a shortcoming for 

applications where higher sampling frequencies are needed, as is the case for burst detection in water pipes (200 Hz-400 Hz 

[14,22,23]). 

The current work uses the approach of detecting bursts with a single sensor, by matching a pattern that is different from normal 

operation [11]. The desired pattern is the burst, which can be treated as a singularity, thus, a singularity enhancement algorithm 

is employed, such as the one used in [14,15]. The goal of the current work is to design an algorithm to detect bursts in water 

pipes, focused on reducing its computational complexity while maintaining a high probability of detection and a low 

probability of false positives. 
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The main contributions of the paper are: 

▪ A new algorithm to be implemented in a low-power embedded device for automatic detection of bursts in water 

pipes in-place. 

▪ A comparison in performance of two implementations of the convolution operation within the MSP430FR5994’s 

LEA module is given. 

▪ The algorithm’s implementation achieves a 100% detection probability and a 0.13% false positive probability for a 

burst flow rate around 4.2% of the main flow rate, while maintaining a low power consumption. 

 

2.- AUTOMATIC BURST DETECTION IN WATER PIPE 
In [14] authors present the first algorithm to detect and locate bursts. The same authors present a work [15] improving the 

resolution about the singularity generated by a burst through the connection of the Lipschitz exponent with the Wavelet 

Correlation Criterion. In both works, authors use the same approach of finding a DWT-based coefficient, that enhances the 

singularity generated by bursts. As far as we know, this approach remains the only one that is capable of detecting bursts in 

water pipes automatically for isolated nodes, for this reason, the current work uses a similar approach. 

The algorithm presented in [14] is based on using the DWT to detect the negative pressure wave that is produced when a burst 

occurs. The detail coefficients of the last two decomposition levels are extracted and their cross-correlation is found. These 

coefficients are then compared with a previously determined threshold to indicate the occurrence of a burst. The threshold is 

found in a pre-processing stage from a prefixed false positive probability. Pressure signals are obtained through several 

pressure sensors placed on different points of the pipe, connected to their respective Analog-to-Digital Converters (ADC), 

which return the digital signal 𝑥[𝑛] using uniform sampling. The DWT is applied to the discrete signal using the algorithm of 

cascaded discrete convolutions [24,25]. On each decomposition level the signal’s convolution with the filters ℎ[𝑛] and 𝑔[𝑛], 
low-pass and high-pass respectively, are determined; the vector resulting from this operation represents the approximation 

and detail coefficients. Each Wavelet function has different filters, for the work presented in [14], the Coiflet 1 Wavelet 

function was used. For the first decomposition level, the approximation and detail coefficients, 𝑎1 and 𝑑1 respectively, are 

calculated as shown in Equation (1) and (2). 

 

𝑎1[𝑝] = ∑ 𝑔[𝑛 − 2𝑝] ∗ 𝑥[𝑛]+∞
𝑛=−∞      (1) 

 

𝑑1[𝑝] = ∑ ℎ[𝑛 − 2𝑝] ∗ 𝑥[𝑛]+∞
𝑛=−∞      (2) 

 

For the 𝑖𝑡ℎ decomposition level, the approximation and detail coefficients are determined as shown in Equation (3) and (4). 

 

𝑎𝑖[𝑝] = ∑ 𝑔[𝑛 − 2𝑝] ∗ 𝑎𝑖−1[𝑛]+∞
𝑛=−∞     (3) 

 

𝑑𝑖[𝑝] = ∑ ℎ[𝑛 − 2𝑝] ∗ 𝑎𝑖−1[𝑛]+∞
𝑛=−∞     (4) 

 

The CCW must be determined through the element-wise multiplication of the detail coefficients of two consecutive 

decomposition levels [14]. This operation is performed as shown in Equation (5). 

 

𝐶𝑖 = 𝑑𝑖 ∗ 𝑑𝑖+1      (5) 

 

where 𝐶𝑖 represents the coefficients of the CCW at level 𝑖. The detection threshold is determined using a Gaussian distribution, 

based on the Central Limit Theorem [26]. 

The equation that relates the detection threshold 𝜆 for a fixed false positive probability is determined as shown in Equation (6). 

 

𝜆 = 𝑄−1(𝑃𝑓𝑝)√2𝑁  +  𝑁      (6) 

 

where Q−1 is the complementary distribution function from the standard Gaussian distribution, 𝑃𝑓𝑝 is the false positive 

probability and 𝑁 is the number of samples. 
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In [15], authors find the detection threshold after assuming that coefficients for the detection criterion follow a normal 

distribution. With that assumption, the threshold can be obtained for a fixed probability of false positives, aided by the existing 

tables for the normalized case or through Equation (7) [15]. 

 

𝐹(𝜉, 𝜇, 𝜎) =
1

𝜎√2𝜋
∫ 𝑒𝑥𝑝 {−

1

2
(

𝑧−𝜇

𝜎
)

2
}𝑑𝑧

𝜉

−∞
      (7) 

 

The statistical decision 𝑣 used to compare with the threshold 𝜆 is determined as shown Equation (8) [14]. 

 

𝑣 = ∑ ‖
𝐶𝑖

𝑀(𝜎𝑟)
‖𝑁

𝑛=1          (8) 

 

where 𝑀(𝜎𝑟) is the mode of the pressure signal’s standard deviation when no burst is present. The statistical decision 𝛼 to 

compare with the threshold 𝜉 is shown in Equation (9) [15]. 

 

𝛼 = −
𝑙𝑜𝑔2(

‖𝐶𝑖‖
𝑚𝑎𝑥

𝐴
)

𝑖
−

1

2
             (9) 

 

where 𝐴 > 0. 

 

3.- DIGITAL SIGNAL PROCESSING IN LOW POWER PLATFORMS 
As can be concluded from the previous section, when implementing an algorithm of that complexity in a low-power embedded 

device, three aspects must be attended to: determination of CCW, the denoising, and the usage of probability distributions to 

find the detection threshold. 

As explained in Section 2, detail coefficients of the last two decomposition levels are needed to determine the CCW. One of 

the most used schemes to find the DWT is the Mallat scheme [24], as can be seen in Fig. 1, it allows to determine the Wavelet 

coefficients through a filter bank. From this scheme, it can be concluded that N+1 operations of convolution and 

downsampling are needed to determine the detail coefficients of the last two decomposition levels. If instead of the detail 

coefficients, the approximation coefficients are taken, the number of convolution and downsampling operations would be 

reduced by one, which would contribute to the reduction in power consumption. 

 

 

Figure 1 

Mallat’s scheme to determine Wavelet Transform [24]. 

 

In addition, usage of approximation coefficients allows attenuating the high-level noise at the same time that the coefficients 

for the CCW are found. In [14] the coefficients resulting from the DWT are denoised using the Wavelet Shrinkage algorithm 

[27] with the Visushrink strategy [28]. As can be concluded from [28], this strategy requires the usage of transcendental 

functions such as the exponential function and the logarithmic function, whose implementations would be very expensive in 

terms of CPU and memory when using low-power embedded devices. The noise that is present in the acquired signals is high-

frequency noise relative to the variations of the pressure signal when a burst occurs; therefore, when using the approximation 

coefficients, a filtered version of the burst signal is already obtained. 

The other aspect that must be attended to when implementing an algorithm of this complexity is the usage of probability 

distributions to find the detection threshold. An implementation of this kind of algorithm in low-power embedded devices 

would consume most of the controller’s resources and some operations might even be impossible to implement. For this 

reason, a new and less complex strategy was used to decide on the detection of a burst. The determination of a single 

probabilistic threshold was changed by two parameters with low processing requirements that apply simple comparison 

decisions. The analysis was restricted to check the magnitude of the CCW and the number of significant coefficients. To make 
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a better distinction of the singularities generated by bursts, the CCW is extracted to the difference of the signal with its mean, 

which allows working with several low-magnitude coefficients that can be zeroed out by only performing a right-shifting in 

the analysis of significant CCW coefficients. 

 

4.- EXPERIMENTAL SET-UP 
All signals used in this work were acquired on the laboratory of the Center for Hydraulic Research from the Technological 

University of Havana José Antonio Echeverría, Cujae. The installation has a 160 mm High-Density Polyethylene pipeline, 

which is 65.2 m long. The pipeline is supplied by a constant head tank that guarantees a pressure of 10 mwc at the input of 

the pipeline. At the end of the pipeline, there is a valve that is regulated to guarantee a mean fluid velocity of 2 m/s, this was 

set as the extreme condition where the bigger noise is generated, thus, the burst detection is more difficult. Bursts with a flow 

rate of 4.2% relative to the main flow rate, were manually induced by opening a small ball valve. The pressure sensor is placed 

at 7 m from the burst location. A scheme of the installation is shown in Fig. 2. 

 

5.- IMPLEMENTATION OF PROPOSED ALGORITHM 
The proposed algorithm is divided into two stages: signal features extraction and signal features processing. The former stage 

aims at extracting a set of coefficients that identifies bursts in water pipes. The second stage processes the extracted features 

by applying two different operations and comparing them with the corresponding threshold. 

 

5.1.- SIGNAL FEATURES EXTRACTION 
The focus of the algorithm proposed in the current work is the extraction of a set of coefficients, based on the Wavelet 

Transform, that allows distinguishing a burst from noise in water pipes. As a first step, the analysis window size must be 

chosen, as well as the Wavelet function. Samples are acquired at 400 Hz. 

 

Figure 2 

Representation of the experimental set-up. 

 

The DWT is the most CPU-intensive operation on the proposed algorithm, for this reason, a very efficient implementation is 

needed. As it was explained in Section 3, the DWT can be found with a filter bank, and each of the filtering steps can be 

implemented in two manners: convolution in the time domain or through the Fourier Transform. For this kind of operation, 

the FR family of MSP430 microcontrollers from Texas Instruments includes the Low Energy Accelerator (LEA) module [29]. 

The LEA module is a low-power co-processor that is capable of performing signal processing operations without intervention 

from the CPU and triggering an interrupt when the operation is finished. It is capable of implementing digital filtering such 

as finite impulse response (FIR) and infinite impulse response (IIR) filters, as well as Fast Fourier Transform (FFT) operation. 

The LEA module exchanges data with the CPU through a shared Random Access Memory (RAM) space which can be used 

when the LEA module indicates that results are ready to be used. With this mechanism, the CPU can remain in a deep sleep 

mode while the LEA module is processing data, thus reducing energy consumption. In Fig. 1 it can be observed that each 

decomposition level in a Wavelet Transform includes two FIR filtering operations and two downsampling operations. Both, 

downsampling and FIR filtering, are operations included in the “MSP-DSPLIB Digital Signal Processing Library for MSP430 

Microcontrollers”, which is optimized by the manufacturers to handle the LEA module. 
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A comparative analysis for different window sizes when performing a convolution using the LEA module, is made to 

determine the best choice in execution time between both methods. Tests results are shown in Fig. 3. For each method four 

different signal sizes were evaluated, from 32 samples to 256 samples, taking the power-of-two values to be consistent with 

the restrictions of the LEA module. To get a better resolution in convolution, the acquired samples are left-justified at the 

ADC’s output. As can be observed, for all signal sizes, the time convolution method performed better, since it employs less 

time to finish the operation. The time convolution method performed 65.3% faster on average than the FFT method for all 

window sizes. This justifies the choice of the time convolution method to perform the FIR filtering on the DWT 

implementation. 

 

 

Figure 3 

Performance comparison of convolution in MSP430’s LEA module between convolution in the time domain or through the 

Fourier Transform. 

The Coiflet 1 was chosen as the Wavelet function to detect bursts, following the results presented in [14]. The study presents 

an analysis of applying the DWT to a burst signal with several Wavelet functions. After finding all the DWT vectors, the 

Lipschitz coefficient was determined for each one of them and the Coiflet 1 returned the smallest value, which means that it 

offers the best refinement to the singularity, when compared with the others. The signal’s DWT gives the spread 

representation, which is a small set of coefficients that holds the main features of the signal. Burst signals can be detected 

using this set of coefficients. Usage of correlation criterion with the Wavelet coefficients to highlight singularities is shown 

in [14]. The CCW is defined as the element-wise multiplication of Wavelet coefficients for two consecutive decomposition 

levels. For a signal 𝑥 of length 𝑁, the CCW for level k can be determined as shown in Equation (10). 

 

𝐶𝐶𝑊𝑘{𝑥𝑁} = 𝐶𝐷𝑘{𝑥𝑁} ∗ 𝐶𝐷𝑘−1{𝑥𝑁}          (10) 

 

where 𝑘 𝜖 {1,2,3, … , 𝑋}, 𝐶𝐷𝑘{∗}is the operation of extracting the detail coefficients from decomposition level 𝑘. 

In [14] authors calculate the CCW using the detail coefficients. As indicated in Section 3, some modifications were made to 

the original algorithm to adapt it to the processing constraints of a low-power controller, such as the determination of the 

CCW to the difference between the signal and its mean, and the usage of approximation coefficients (instead of detail 

coefficients) for the first two decomposition levels. With these changes, the CCW, based on the approximation coefficients, 

for a signal 𝑥 of length 𝑁, is defined as shown in Equation (11). 

 

𝐶𝐶𝑊𝐴𝑘{𝑥𝑁} = 𝐶𝐴𝑘{𝑥𝑁} ∗ 𝐶𝐴𝑘−1{𝑥𝑁}           (11) 

 

where 𝑘 𝜖 {1,2,3, … , 𝑋}, 𝐶𝐴𝑘{∗}is the operation of extracting the approximation coefficients from decomposition level 𝑘. The 

Equation (12) is used as a simplified notation to represent the absolute value of the resulting signal from obtaining the level 

two, modified CCW, to the 𝑖𝑡ℎ window of the signal 𝑥 (discrete and length 𝑁) removing its mean value. 

 

𝛤𝑖
𝐿 = 𝑎𝑏𝑠(𝐶𝐶𝑊𝐴2{𝑥𝑁 − 𝑥𝑁̅̅̅̅ })       (12) 

 

where 𝐿 is the length of the resulting signal, with 𝐿 <  𝑁. 
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These Γ𝑖
𝐿  coefficients resulting from the CCWA are then used in a second stage to detect the burst. The global steps in the 

signal features extraction stage are shown in Fig. 4. 

 

 

Figure 4 

Global steps in the determination of 𝜞𝒊
𝑳 coefficients. 

5.2.- SIGNAL FEATURES PROCESSING 

For the gamma vector (Γ𝑖
𝐿) to work as an effective enhancer of burst events, the choice of the input signal’s analysis windows 

size should be made. As can be seen in Fig. 5-8, as the windows size increases, the gamma values’ magnitude is increased, 

thus, it is simpler to distinguish a burst from noise. However, choosing a very long analysis window demands more resources 

from the processor, and it takes longer to finish processing signals. Limitations on available RAM in low-power 

microcontrollers impose the need of reducing the amount of memory used. In this case, the windows size of 64 samples was 

chosen, since, as can be observed, it is the smallest window size that distinguishes well the frames where a burst is present 

and those where only the noise is present. Since the proposed algorithm reduces the number of decomposition levels and uses 

approximation coefficients, some non-burst related, high-frequency components, are obtained in the gamma vector with a 

magnitude that could increase the false positive probability. To compensate for this effect, instead of limiting the detection of 

a burst to choosing gamma values over a certain threshold, as it was made in [14,15], the number of significant gamma values 

per analysis windows is included in addition to the magnitude. The lower magnitude bound of what is identified as “significant 

gamma values” was fixed in the minimum Q15-formatted value after left justification by the ADC, it was denoted as 𝐿𝑆𝐴𝐷𝐶  =
 24  ∗  2−15  =  0.00048828125. In this case, the MSP430FR5994 microcontroller’s ADC outputs results with a 12-bit 

maximum resolution and it offers the choice of giving conversion results, automatically, left-justified or right-justified within 

a 16-bit register. 

 

 

Figure 5 

Superposition of Gamma vector and its corresponding burst signal for an analysis windows size of 32 samples. 
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Figure 6 

Superposition of Gamma vector and its corresponding burst signal for an analysis windows size of 64 samples 

 

 

 

 

Figure 7 

Superposition of Gamma vector and its corresponding burst signal for an analysis windows size of 128 samples. 
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Figure 8 

Superposition of Gamma vector and its corresponding burst signal for an analysis windows size of 256 samples. 

 

In the sharp rise and fall slopes, the sum of gamma values is expected to be high, as well as the number of gamma values over 

𝐿𝑆𝐴𝐷𝐶 , when compared to noise signals. Both magnitudes were identified as 𝛼 (for the sum of gamma values) and 𝛽 (for the 

number of gamma values over 𝐿𝑆𝐴𝐷𝐶). 

Parameters 𝛼 and 𝛽 for the 𝑖𝑡ℎ window are defined as shown in Equation (13) and (14). 

 

𝛼𝑖 = 𝑇1{𝛤𝑖
𝐿}       (13) 

 

𝛽𝑖 = 𝑇2{𝛤𝑖
𝐿}       (14) 

 

Transformations 𝑇1{∗} and 𝑇2{∗} on a discrete and finite signal 𝑓, of length 𝐿, are defined as shown in Equation (15) and (16). 

 

𝑇1{𝑓} = ∑ 𝑓[𝑙]𝐿
𝑙=1             (15) 

 

𝑇2{𝑓} = 𝑐𝑜𝑢𝑛𝑡{𝑓|𝑓[𝑙]>𝐿𝑆𝐴𝐷𝐶
}            (16) 

 

A comparison of the behavior of 𝛼 and 𝛽 parameters for a signal with a burst and only noise is shown in Fig. 9 and 10. In 

noise signals, alpha parameter remains in a low magnitude and little variance; in the case of beta parameters, the difference 

in the magnitude of their variance could be more significant when compared to the behavior of bursts, still, it can be noticed 

that the maximum value remains low in most cases. For these reasons, it was decided to calculate the thresholds for 𝛼 and 𝛽 

as shown in Equation (17) and (18), guaranteeing that only noise is present at the moment of threshold determination. This 

choice of threshold calculation allows keeping a balance to raise the detection probability while reducing the false positive 

probability. The threshold for 𝛼, which is the first condition to check, is more permissive, however, the threshold for 𝛽 is 

more strict, that way, even if some non-burst signals pass the 𝛼 threshold, it is more difficult to pass the 𝛽 threshold. 

 

𝑇ℎ𝛼 =
1

𝐿
∑ 𝛼𝑖

𝐿
𝑙=1        (17) 

 

𝑇ℎ𝛽 = 𝑚𝑎𝑥 {𝛽}       (18) 
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a) Burst 

 

 

b) Noise 

Figure 9 

Analysis of alpha values for a) burst signal and b) noise signal. 

 

After determining all parameters, the block diagram of the algorithm to detect bursts is shown in Fig. 11. The thresholds 

determination stage was highlighted in dotted red lines to distinguish it from the main process, since 𝑇ℎ𝛼  and 𝑇ℎ𝛽 are 

determined in an initial stage, when the node is installed, guaranteeing that no burst occurs at that moment. Once the node 

finishes the threshold determination stage, it starts executing the burst detection algorithm. 
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a) Burst 

 

 

b) Noise 

Figure 10 

Analysis of alpha values for a) burst signal and b) noise signal. 

 

6.- ANALYSIS OF ALGORITHM’S PERFORMANCE 

In this section, the performance of the proposed algorithm is assessed, by determining its detection probability and false 

positives probability. Tests were performed in the installation described in Section 4, shown in Fig. 2. A total of 60 bursts 

were generated and processed to get the detection probability. False positives probability was determined through the 

analysis of 2269 windows containing only noise. 

 

6.1.- ALGORITHM’S DETECTION PROBABILITY ANALYSIS 

For all signals where a burst is detected, alpha and beta parameters are extracted for the first analysis window where the 

detection is achieved. In case no burst is detected for any of the studied signals, alpha and beta parameters are extracted for 

the window where alpha reaches its highest value. Results are shown in Fig. 12 and Fig. 13. As can be observed all of the 

tested signals matched the detection criteria, for a detection probability of 100%. From Fig. 13 it can be concluded that more 
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than a third of the analyzed signals reached a beta value of 10, which implies that for those analysis windows, the number of 

gamma values over 𝐿𝑆𝐴𝐷𝐶  outnumbered the threshold (𝑇ℎ𝛽) in three. This is a remarkable difference, since 𝑇ℎ𝛽 is determined 

for the maximum number of gamma values over 𝐿𝑆𝐴𝐷𝐶 , for the noise signals used for training, therefore, it means that the 

most frequent 𝛽 value, for the analyzed burst signals, exceeds the maximum 𝛽 value determined for noise signals 

approximately in a 43.86% of its value. 

 

 

Figure 11 

Algorithm’s block diagram. 

 

 

Figure 12 

Behavior of alpha parameter for the 60 analyzed burst signals. 
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Figure 13 

Histogram of beta parameter for the 60 analyzed burst signals. 

 

In addition, the algorithm was tested on the same burst signals set used in [15]. In that work, the author focuses on analyzing 

three different burst flow rates. Results concluded that it performed very well for flow rates of 2.2% and 4.2% from the main 

flow rate, however, for a flow rate of 1.4% the detection probability started to decrease. After analyzing the same set of 

samples with the algorithm presented in our work, the results are shown in Table 1. As can be seen, our algorithm detects 

100% of bursts with the biggest flow rate, the main difference lies in the burst flow rate of 2.2% relative to the main flow rate, 

for that case the detection probability falls to 76.67%, compared to a 100% detection probability shown in [15]. Although the 

performance falls for this burst flow rate, the algorithm remains a robust solution for low-power embedded devices in burst 

flow rates close to 4.2% (or bigger) of the main flow rate. 

 

Table 1  

Analysis of detection probability with sample set used in [15]. 

Burst flow rate relative 
to main flow rate[%] 

Detection 
probability[%] 

1.4 56.67 

2.2 76.67 

4.2 100 

 

6.2.- ALGORITHM’S FALSE POSITIVE PROBABILITY ANALYSIS 

To find the false positives probability, for all analyzed windows of noise signals, alpha and beta parameters were extracted. 

Results are shown in Fig. 14 and 15. As can be observed, only three out of the 2269 noise windows under analysis indicated, 

erroneously, the occurrence of a burst, for a false positive probability of 0.13%. From both figures, it can be observed that, 

even when a large number of windows had an alpha parameter over the threshold (𝑇ℎ𝛼), most of those cases didn't match the 

second detection criteria, which gave the algorithm more robustness to false positives. In addition, from Fig. 15 it is noticeable 

that more than half the total of analyzed windows, presented only one or none gamma value over 𝐿𝑆ADC, and as the possible 

beta values increase, there is a lesser number of occurrences. This behavior for noise signals is very different from the one 

observed for burst signals in Fig. 13, which confirms that the usage of alpha and beta parameters, presented in this work, are 

good as estimators of bursts' presence. 

As it was made in Section 6.1, noise samples used in [15] were analyzed with our algorithm and a false positive probability 

of 0.21% was obtained. As can be seen, although some analysis windows were detected erroneously as bursts, the false 

positive probability remains very low. 
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Figure 14 

Behavior of alpha parameter for the 2269 analyzed noise windows. 

 

 

Figure 15 

Histogram of beta parameter for the 2269 analyzed noise windows. 

 

6.- CONCLUSIONS 

The strategy of choosing the approximation coefficients for the CCW, multiple simple thresholds instead of a single complex 

one, left justification for the ADC and finding the CCW to the difference of the signal with its mean, allowed the 

implementation of an algorithm for automatic detection of bursts in water pipes in low-power embedded systems while 

maintaining a good performance.  

The comparison between time convolution and FFT methods, using the MSP430FR5994 microcontroller’s LEA module to 

perform the convolution operation, resulted in the conclusion that the time convolution method is more efficient for signal 
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sizes between 32 and 256 samples. For all signal sizes in the range, execution time is reduced by an average of 65.3% relative 

to the execution time of the FFT-based method, which has implications in lowering the DWT’s power consumption. 

Tests performed at a sample rate of 400 Hz and a burst flow rate of 4.2% of the main flow rate, gave as result a detection 

probability of 100% for the 60 burst signals analyzed and a false positive probability of 0.13% for 2269 noise-only windows. 

The algorithm was compared to an implementation using a similar approach but with higher processing requirements and 

results showed that, although the detection probability reduces as bursts’ flow rate reduces, for flow rates close to 4.2% of the 

main flow rate, it exhibits a similar behavior. 

As future work, new algorithms will be implemented in the microcontroller, using results from an Artificial Intelligence-based 

analysis, and this approach will be compared with the current work to check differences in energy consumption. 
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