

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

Recibido: 09/2023 Aceptado: 12/2023

1

Distributed architecture for fault

detection in industrial equipment with

improved Precision Score and

Robustness Index

Yandy Pérez Ramos, Carlos Fernández-Aballí Altamirano, Julian L. Cárdenas Barrera,

Francisco Herrera Fernández

ABSTRACT
Creating algorithms and systems that can process and store large amounts of data represents a great scientific,

economic, and practical challenge. The application of machine learning (ML) to these problems is not trivial, and even

less so if the processing of these algorithms needs to be distributed to handle the large computational load of data

analysis and decision making. This paper presents a distributed and robust architecture to train, deploy, and execute

distributed failure detection algorithm pipelines improving their Robustness and Precision. The solution is based on

Smart Operational Realtime Bigdata Analytics (SORBA), a patented distributed architecture. The architecture

combines the metrics of Robustness and Precision to automatically optimize the selection of industrial failure detection

machine learning algorithm pipelines and their hyperparameters. A system of modules is developed for the acquisition,

normalization, data conditioning, training, deployment, and online execution of machine learning algorithm pipelines.

The solution was validated by comparing the Machine Learning (ML) results of two use cases: an industrial motor

and a locomotive battery, with those achieved with Spark. The experiments showed an average improvement on the

Precision Score of 28.76% and Robustness Index of 10.9%. The solution streamlines the implementation of successful

applications and improves the performance of these indicators with respect to the solutions currently available in the

Spark MLlib.

Keywords: Industrial failure detection, distributed architecture, Machine learning, Industrial data processing, Edge

Computing.

RESUMEN
La creación de algoritmos y sistemas capaces de procesar y almacenar grandes cantidades de datos representa un

gran reto científico, económico y práctico. La aplicación del aprendizaje automático (ML) a estos problemas no es

trivial, y menos aún si el procesamiento de estos algoritmos necesita ser distribuido para manejar la gran carga

computacional del análisis de datos y la toma de decisiones. Este trabajo presenta una arquitectura distribuida y

robusta para entrenar, desplegar y ejecutar pipelines distribuidos de algoritmos de detección de fallos mejorando

su Robustez y Precisión. La solución se basa en Smart Operational Realtime Bigdata Analytics (SORBA), una

arquitectura distribuida patentada. La arquitectura combina las métricas de robustez y precisión para optimizar

automáticamente la selección de algoritmos de aprendizaje automático de detección de fallos industriales y sus

hiperparámetros. Se desarrolla un sistema de módulos para la adquisición, normalización, acondicionamiento de

datos, entrenamiento, despliegue y ejecución en línea de pipelines de algoritmos de aprendizaje automático. La

solución se validó comparando los resultados de Machine Learning (ML) de dos casos de uso: un motor industrial

y una batería de locomotora, con los obtenidos con Spark. Los experimentos mostraron una mejora media de la

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

2

puntuación de precisión del 28,76% y del índice de robustez del 10,9%. La solución agiliza la implementación de

aplicaciones de éxito y mejora el rendimiento de estos indicadores con respecto a las soluciones disponibles

actualmente en la MLlib de Spark.

Palabras clave: Detección de fallos industriales, Arquitectura distribuida, Machine learning, Procesamiento de

datos industriales, Computación en la Nube

Título: Arquitectura distribuida para la detección de fallos en equipos industriales con mejor puntuación de

precisión e índice de robustez

1. -INTRODUCCIÓN

In recent decades, strict quality standards and competitive pressure have forced industrial companies to transform their

maintenance strategies and plans. These changes include the emergence of maintenance departments whose function

is to ensure the employment of advanced techniques and practices to maintain the productivity of the company. The

implementation of predictive maintenance strategies to increase component life, improving availability and reliability

of their equipment, has an impact on the productivity of the plant [1,2], and has become an increasingly important

issue for large and medium-sized companies. The Internet of Things (IoT) helps the strategies; however, it also

introduces technological challenges, one of them being the necessary processing of large volumes of data. This high

processing loads has led to the increasing employment of computer clusters [3,4]. Failure detection in industrial

equipment is one of the interesting applications in this field [1,2].

Creating algorithms and systems that can process and store large amounts of data represents a great scientific,

economic, and practical challenge. The application of machine learning (ML) to these problems is not trivial, and even

less so if the processing of these algorithms needs to be distributed to handle the large computational load of data

analysis and decision making [3,4].

This is added to the challenges involved in obtaining accurate and robust results in the detection of failures [5-7]. Most

of the architectures developed so far are only used in the training process, and not in the online execution of algorithms

[8-12]. Another important aspect is that these architectures do not contain integrated modules that measure the

robustness and performance of the algorithms out of box. This negatively impacts the ability to train, deploy and

predict failures quickly and effectively. There is a current trend towards the democratization of machine learning,

which means making it more accessible to a wider range of organizations and enterprise customers. Right now, there

is a limited number of machine learning specialists. To generalize the use of ML solutions, tools must be generated to

facilitate the applications in a simple, effective, and fast way [13].

The era of distributed processing has seen the emergence of several architectures for distributed processing of large

amounts of data (Bigdata) [8-12]. These distributed architectures possess a collection of independent entities that

cooperate to solve a problem that cannot be solved individually. Selecting the right architecture requires quantifying

applicability and performance. There are several parameters used to characterize the performance of algorithms, such

as processing time, accuracy and robustness, the latter is defined as the ability to fulfill its function in the presence of

certain irregularities in the data. Different measures are used to quantify this evaluation of the algorithms, usually

expressed by a score that meets the indicated parameters.

Among these architectures is Spark, which has multiple benefits, such as usability, flexibility, scalability, and high

fault tolerance. Spark is a distributed system that possesses properties including generality, fault tolerance, high in-

memory data processing performance, and scalability. It adopts a flexible programming model using Resident

Distributed Data (RDD), with a set of action and transformation operators whose operational functions can be

customized by users according to their applications. It is positioned as a fast and general data processing system [9].

However, Spark has several disadvantages, among them are the limited ability to run algorithms online, limited

lightweight runtime mode to process algorithms at the edge, and does not have out of the box capabilities for auto

selection of algorithm pipelines based on Robustness Index and Precision Score. Spark was designed for generic use,

without considering the particularities of distributed processing of machine learning algorithms [9].

Another alternative is Smart Operational Realtime Big Data Analytics (SORBA). This is a patented architecture [14]

that meets the operational elements related to flexibility, scalability, fault tolerance, general deployment, and execution

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

3

mechanisms. SORBA’s distributed architecture is prepared for training, deployment, and execution of machine

learning algorithm pipelines (MLAP). Still, SORBA was designed without considering the specificities on the

Robustness Index of the algorithms for incomplete observations and lacks an out of the box MLAP auto selection

based on robustness.

The proposed architecture is based on SORBA and it builds upon it by using Precision Score and Robustness Index

to optimize the self-selection, execution, and deployment of machine learning algorithms pipelines for failure

detection in industrial equipment. Table 1 shows the benefits and shortcomings of Spark, SORBA and the proposed

architecture for training, deployment, and execution of algorithms [9-21]. When compared to Spark, the added

capabilities of the proposed architecture improve the performance of ML failure detection algorithms for industrial

equipment, as it can be concluded from the three case studies presented in the paper.

2.- CHARACTERISTS OF THE PROPOSED ARCHITECTURE

The proposed architecture is based on the idea of training, executing, and deploying algorithm pipelines in a distributed

way, using the resources of multiple devices. The different components of the architecture are illustrated in Figure 1

and 2. The components can be defined as follows:

 Executor: These are the processes that execute the calculation operations.

 Worker nodes: They have several executors working in parallel and can be physical servers, virtual machines

or dockers.

 Cluster Handler: This component is extremely important since it is the one that controls all the exchange of

messages between the worker nodes.

 Resource Handler: Regulates the use of worker nodes based on existing hardware resources.

 Manager Handler: Like the cluster handler, but in this case the program handler is responsible for distributing

and properly controlling the jobs sent to the cluster.

 RESTful API: It is the interface that allows sending jobs to the cluster and the reception of results from the

cluster.

 Applications: They are the ones that send the jobs to the cluster, and they are the ones that use the generated

results to solve problems of various kinds, such as failure detection.

Figure 1

Online execution of distributed algorithms using edge devices.

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

4

Figure 2

Proposed distributed architecture to train machine learning algorithm pipelines.

Table 1 compares the proposed architecture with Spark and SORBA. It also highlights the benefits

of the proposed architecture addressed in this paper.

Table 1

Comparison between Spark, SORBA and proposed distributed architecture.

3. METHODS
To quantify the effects of the auto MLAP selection layer added to the new architecture three industrial failure detection

cases were performed applying Spark and the Proposed architecture. The results were compared in terms of Precision

Score and Robustness Index [22]. Then Shapiro-Wilk’s test [23] was performed to check data normality and

Friedman’s test [24] was used to validate the statistical significance of the results.

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

5

3.1 FAILURE DETECTION EVALUATION CASE STUDIES
Two experiments were conducted. The first experiment consisted of failure detection in an industrial motor. Industrial

motors provide great capacity to intervene in different industrial processes and it is precisely what makes them

vulnerable to different operating problems [5]. For this reason, their maintenance is a key and a recurring theme among

professionals who intervene in the industrial field [5]. In the experiment, the industrial motor was connected to a

Siemens PLC 1200 and the SDE was used to collect, clean/filter the data, and execute in real time the algorithm

pipelines. The experiment used a period of 6 months of data for training, which contains 17 million observations. The

industrial motor had multiple variables available including current (1), frequency (2), power (3), speed (4), torque (5)

and AC voltage (6). In the experiment, several supervised algorithm pipelines were trained to classify a failure in the

motor bearings.

The second experiment consisted of failure detection in a locomotive battery. Batteries are widely used in multiple

industrial applications [25], especially in locomotives, where the starting system is highly dependent on them. The

cost of a locomotive is approximately $3 million USD, which implies that predictive maintenance on the locomotive

would help save top dollars in the long term [25]. The industrial locomotive battery used in the experiment is connected

to a SDE that collected, clean/filtered the data, and executed the algorithm pipelines. A total of 38 million observations

in a period of 5 months were used to train the algorithm pipelines. The variables monitored in the battery are speed

(1), voltage (2) and current (3). In the experiment, several supervised algorithm pipelines are trained to classify a

failure in the battery.

The following identifiers are used for each algorithm:

 SMOTE: Synthetic minority oversampling technique

 TOMEKLINKS: Tomek links for under sampling

 SMOTETOMEK: Synthetic minority oversampling technique and tomek links

 ZS: Z-Score

 SS: Standard scaling

 RS: Robust scaling

 PCA: Principal components analysis

 KPCA: Principal components analysis with kernels

 IPCA: Incremental principal components analysis

 SPCA: Sparse principal components analysis

 RPCA: Randomized principal components analysis

 LRC: Logistic regression classifier

 SVMC: Support vector machine classifier

 RFC: Random forests classifier

 DTC: Decision tree classifier

 GBC: Gradient boosting classifier

 KRC: Kernel ridge classifier

 SPP: SORBA Post-processing

The above algorithms were classified according to their functionality in the following way:

 Data balancing stage: None, SMOTE, TOMEKLINKS and SMOTETOMEK

 Pre-processing stage: None, ZS, SS and RS

 Dimensionality reduction stage: None, PCA, KPCA, IPCA, SPCA and RPCA

 Machine learning estimator stage: LRC, SVMC, RFC, DTC, GBC and KRC

 Post-processing stage: SPP

As a first step, the auto MLAP functionality of the proposed architecture was used to select the best four algorithm

pipelines in terms of Precision Score and Robustness Index. Then they were tuned using the auto hyperparameter

tunning available on the proposed architecture. As a result of this step the four best algorithm pipelines are:

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

6

 SMOTE-PCA-RFC-SPP

 SMOTE-PCA-DTC-SPP

 SMOTE-KPCA-RFC-SPP

 SMOTE-ZS-PCA-RFC-SPP

As a second step, the same four algorithm pipelines that the proposed architecture found were trained using Spark and

Grid Search for the hyperparameter optimization.

A comparison of the four algorithm pipelines is made for the training process using Spark and the proposed

architecture, using the Precision Score and Robustness Index. The training using Spark and the proposed architecture

was performed with three virtual machines that form a cluster, each node has 4 CPUs, 8GB of RAM and 256GB of

storage.

To simplify the naming of the algorithm pipelines a short naming convention is used on the following sections:

 SMOTE-PCA-RFC-SPP trained using the proposed architecture (Alg 1)

 SMOTE-PCA-DTC-SPP trained using the proposed architecture (Alg 2)

 SMOTE-KPCA-RFC-SPP trained using the proposed architecture (Alg 3)

 SMOTE-ZS-PCA-RFC-SPP trained using the proposed architecture (Alg 4)

 SMOTE-PCA-RFC-SPP trained using Spark (Alg 5)

 SMOTE-PCA-DTC-SPP trained using Spark (Alg 6)

 SMOTE-KPCA-RFC-SPP trained using Spark (Alg 7)

 SMOTE-ZS-PCA-RFC-SPP trained using Spark (Alg 8)

3.2 PERFORMANCE INDICES
There are many performance metrics that are used on ML such as precision, accuracy, and f1 score [26,27]. In this

paper we use Precision Score and Robustness Index based on incomplete observations, which are typically used for

supervised distributed algorithms pipelines. The Precision Score most of the time is used on supervised training where

the features and target observations are available [27]. The Precision and Accuracy Scores are calculated using

equations 1 and 2 respectively:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

(1)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2)

Where 𝑇𝑃 is defined as true positive, 𝐹𝑃 false positive, 𝑇𝑁 true negative, and 𝐹𝑁 false negative. The Robustness

Index based on incomplete observations is introduced to quantify the effect on accuracy of the lack of observations in

machine learning algorithms [22]. It is defined by equation 3:

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦40%

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦0%

(3)

Where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦0% and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦40% are the accuracies obtained during the validation process with the test data

group, when all the data is available and when 40% the data is missing.

3.3 VALIDATING THE PERFORMANCE EVALUATION
As part of the experiments and performance evaluation, the Shapiro-Wilk normality test was performed to determine

if the Precision Score and Robustness Index are normally distributed [23]. The hypothesis is:

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

7

 𝐻0: The Precision Score and Robustness Index are not normally distributed.

 𝐻𝑎: The Precision Score and Robustness Index are normally distributed.

When the p-value is greater than 0.05 the null hypothesis cannot be rejected, and it is concluded that the Precision

Score is normally distributed. Then the experimental results regarding the Precision Score and Robustness Index were

validated using Friedman test (FT) [24]. The validation assumes a general hypothesis that the Precision Score and

Robustness Index for all supervised algorithm pipelines are the same:

 𝐻0: The Precision Score and Robustness Index for all supervised algorithm pipelines are the same.

 𝐻𝑎: The Precision Score and Robustness Index for all supervised algorithm pipelines are not the same.

Then considering α = 0.05, 𝐹𝑇 can be calculated using the Equation 4:

𝐹𝑇 = [
12

𝑏(𝑘)(𝑘 + 1)
∑ 𝑇𝑗

2

𝑘

𝑗=1

] − 3𝑏(𝑘 + 1)

(4)

Where 𝑘 is the number of algorithms, 𝑏 is number of experiments and 𝑇2 the sum squared of the ranks of the algorithm.

If the critical value is within a given range the null hypothesis can be rejected, and it can be concluded that the Precision

Score and Robustness Index of the supervised algorithm pipelines are not statistically equal.

4. RESULTS
The following section presents the results for the Industrial motor and Locomotive battery experiments. Four different

MLAPs optimized and trained using Spark and the proposed architecture are applied to each case. The results indicate

that the MLAP auto- selection and hyperparameter optimization based on Precision Score and Robustness Index

improves the failure detection performance.

4.1 INDUSTRIAL MOTOR FAILURE DETECTION
Table 2 shows the comparison of the supervised algorithm pipelines trained using Spark and the proposed architecture

for the bearing failure detection on the industrial motor. The Precision Score and Robustness Index based on

incomplete observations were used for the comparison.

Table 2

Comparison of the supervised algorithm pipelines trained using Spark and the proposed architecture for

failure detection in an industrial motor.

Figures 3 and 4 show that industrial motor failure worsened over time. Alg 3 provided the best failure detection results,

predicting the failure 6 days in advance as can be seen in Figure 4. The nature of the failure is multiplicative, it was

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

8

sudden in various parameters of the equipment and is related to a structural failure. It can be classified as a multiple

failure situation because various elements of the equipment were affected. It can also be classified as an abrupt failure

because it evolved rapidly. According to expert reports, the reason for the failure was due to the motor bearing and it

was related to the lack of lubrication in the bearing. This condition is very common, critical and affects many

mechanical equipment, causing rapid deterioration of the mechanical parts of the system.

Figure 3

Variables collected in the industrial motor.

Figure 4

Anomaly curve of the motor bearing failure for the best supervised algorithm pipeline (Alg3).

Failure Detected

Motor Bearing Failure

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

9

4.2 LOCOMOTIVE BATTERY FAILURE DETECTION
Table 3 shows a comparison of the supervised algorithm pipelines trained using Spark and the proposed architecture

for the locomotive battery failure detection. The Precision Score and Robustness Index based on incomplete

observations were used for the comparison.

Table 3

Comparison of the supervised algorithm pipelines trained using Spark and the proposed architecture for

failure detection in a locomotive battery.

Figures 5 and 6 show that the failure worsens over time. Alg 2 provided the best failure detection results, predicting

the failure 3 days in advance as can be seen in Figure 6. The nature of this failure is of a multiplicative type, it was a

gradual failure in various parameters of the equipment and is related to a structural failure. It was a multiple failure

type because various elements of the system were affected. The reason for the failure is related to the disuse of the

battery according to the criteria of the engineers who participated in the discovery and troubleshooting of this event.

As in the other cases, this failure is very common and affects many systems that use batteries as secondary power or

starting systems.

Figure 5

Variables collected on the locomotive battery.

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

10

Figure 6

Anomaly curve of the locomotive battery failure for the best supervised algorithm pipeline (Alg2).

5. ANALYSIS
The objective of the study was to determine if the MLAP auto selection and hyperparameter optimization capabilities

based on Precision Score and Robustness Index improved the results achievable with Spark and Grid Search. The

analysis allows concluding that the proposed architecture has superior performance.

5.1 PERFORMANCE EVALUATION
Firstly Shapiro-Wilk normality test was performed to determine if the Precision Score and the Robustness Index

obtained are normally distributed. The Precision Scores p-value were 0.1575 and 0.1575, and for the Robustness Index

they were 0.6889 and 0.6889. In both cases they were greater than 0.05, therefore the null hypothesis could not be

rejected, allowing us to conclude that they were normally distributed.

Then the results obtained for the Precision Scores and Robustness Index were validated using the Friedman test. The

analysis is presented in Table 4 and Table 5 respectively. In Friedman test as a general hypothesis is that results for

all supervised algorithm pipelines are the same:

 𝐻0: The Precision Score for all supervised algorithm pipelines is the same.

 𝐻𝑎: The Precision Score for all supervised algorithm pipelines is not the same.

Failure detected

Locomotive battery failure

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

11

Table 4

Precision Score data used in the Friedman test for supervised algorithm pipelines.

Considering α = 0.05, 𝐹𝑇 for the scores can be calculated using the following equation:

𝐹𝑇 = [
12

𝑏(𝑘)(𝑘 + 1)
∑ 𝑇𝑗

2

𝑘

𝑗=1

] − 3𝑏(𝑘 + 1) = 17.222

(5)

Where 𝑘 is 8, 𝑏 is 3 and 𝑇2 the sum squared of the rank column. The critical value is 14.067 and 17.222 > = 14.067,

therefore, the null hypothesis can be rejected and conclude that the Precision Score of the supervised algorithm

pipelines is not statistically equal. We can then conclude that the supervised distributed algorithm pipelines trained

using the proposed architecture present an improvement in the Precision Score.

In the case of the Robustness Index a test was performed to determine the impact of incomplete observations on the

accuracy obtained for the algorithm pipelines on the three experiments [22]. Several trainings were performed using

a portion of the data, where 0%, 10%, 20%, 30%, and 40% of the total available observations were removed. The

algorithm pipelines that were trained using the proposed distributed architecture show less reduction in Accuracy

when there are incomplete observations, see Figure 7. Table 5 shows the results for the Robustness Index Friedman

test. Considering α = 0.05, 𝐹𝑇 was calculated using the following equation:

𝐹𝑇 = [
12

𝑏(𝑘)(𝑘 + 1)
∑ 𝑇𝑗

2

𝑘

𝑗=1

] − 3𝑏(𝑘 + 1) = 15.111

(6)

Where 𝑘 is 8, 𝑏 is 3 and 𝑇2 the sum squared of the rank column.

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

12

Figure 7: Comparison between algorithm pipelines reduction in accuracy when there are incomplete observations.

Table 5

Robustness data used in the Friedman test for supervised algorithm pipelines.

From Equation 6 the critical values are 14.067 and 15.111 > = 14.067, therefore, the null hypothesis could be rejected,

making it possible to conclude that the Robustness Indexes of the supervised algorithm pipelines are not statistically

equal. Then we can conclude that the supervised distributed algorithm pipelines trained using the proposed architecture

present an improvement in the Robustness Index based on incomplete observations.

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

13

6. CONCLUSIONS
In this paper, a novel distributed and robust architecture for failure detection in industrial equipment has been

presented. The incorporation of the Robustness Index, together with Precision Score, in the optimization process for

automatic selection of industrial failure detection machine learning algorithm pipelines and their hyperparameters, not

only streamlines the implementation of solutions, but improves the performance of this indicators with respect to the

solutions currently available in the MLlib Spark. Finally, the results obtained allow concluding that:

 The supervised algorithm pipelines that were trained with the proposed architecture perform better in

detecting industrial equipment failures. This can be determined by the experiments performed in previous

sections where an average Precision Score improvement of 28.76% and 10.94% on the Robustness Index

was accomplished.

 The automatic algorithm selection, combined with the hyperparameter auto tunning mechanisms simplifies

the implementation algorithms with optimal results, therefore helping democratize access to machine

learning solutions when compared to MLlib Spark.

 The integrated mechanism of deployment and online execution of the algorithm pipelines helps to simplify

the process of implementing applications related to the detection of failures in industrial equipment.

REFERENCES
1. Dalzochio J. et al. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and

challenges. Computer in Industry. 2020;123():1-15

2. Poor P., Ženíšek D., Basl J. Historical Overview of Maintenance Management Strategies: Development from

Breakdown Maintenance to Predictive Maintenance in Accordance with Four Industrial Revolutions.

International Conference on Industrial Engineering and Operations Management. Pilsen; Rep. Checa; 2019. p.

495-504

3. Thanigaivelan N.K., Nigussie E., Kanth R.K., Virtanen S., Isoaho J. Distributed internal anomaly detection

system for Internet-of-Things. 13th IEEE Annual Consumer Communications Networking Conference (CCNC).

Las Vegas; USA; 2016. p. 319–320.

4. Almasoud A., Al-Khalifa H., Al-salman A., Lytras M. A Framework for Enhancing Big Data Integration in

Biological Domain Using Distributed Processing. Applied Sciences. 2020; 10(20)020:1-16.

5. Neupane D., Seok J., Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset

With Deep Learning Approaches: A Review. IEEE Access, 2020; 8():93155–93178.

6. Gangsar P., Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction

motors: A state-of-the-art review. Mechanical System and Signal Processing. 2020; 144():1-37.

7. Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis:

Part I: Quantitative model-based methods. Computers & . Chemical Engineering. 2002; 27(3):293–311.

8. Xu F., Qin Y., Chen L., Zhou Z., Liu F. λDNN: Achieving Predictable Distributed DNN Training with Serverless

Architectures. IEEE Transactions on Computers. 2022;71(2):450-463.

9. Tang S., He B., Yu C., Li Y., Li K. A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine

Learning, and Applications. IEEE Transactions on Knowledge and Data Engineering. 2020;4():9469-9478.

10. Torabzadehkashi M., Rezaei S., Alves V., Bagherzadeh N. CompStor: An In- storage Computation Platform for

Scalable Distributed Processing. IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). Vancouver; Canadá; 2018. p. 1260–1267.

11. Sparks E.R. et al. MLI: An API for Distributed Machine Learning. IEEE 13th International Conference on Data

Mining. Texas; USA; 2013. p. 1187–1192.

12. Samiei S., Joodaki M., Ghadiri N. A Scalable Pattern Mining Method Using Apache Spark Platform. 7th

International Conference on Web Research (ICWR). Teheran; Irán; 2021. p. 114–118.

13. Finley T.K. Democratization of Artificial Intelligence: One Library’s Approach. Information Technologies and

Libraries. 2019;38(1):8-13

14. Perez-Ramos Y., Ferrante A. Method and system for developing an anomaly detector for detecting an anomaly

parameter on network terminals in a distributed network. 2017. USA Patent Number: 10218722

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

14

15. Misra P., Yadav A.S. Improving the Classification Accuracy using Recursive Feature Elimination with Cross-

Validation. International Journal of Emerging Tecnologies. 2020;11(3):659–665.

16. Abas M.A.H. Ismail N., Ali N.A., Tajuddin S., Tahir N. Agarwood Oil Quality Classification using Support

Vector Classifier and Grid Search Cross Validation Hyperparameter Tuning. International Journal of

Emerging Trends in Engineering Research. 2020;8(6):2551–2556.

17. Siriwardhana Y., Porambage P., Liyanage M., Ylianttila M. A Survey on Mobile Augmented Reality With 5G

Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Communications Surveys

and Tutorials. 2021;23(2):1160–1192.

18. Lv Z., Chen D., Lou R., Wang Q. Intelligent edge computing based on machine learning for smart city. Future

Generation Computer Systems. 2020;115():90–99.

19. Grasso M., Colosimo B.M., Semeraro Q., Pacella M. A Comparison Study of Distribution-Free Multivariate SPC

Methods for Multimode Data,” Quality Reliability Engineering International. 2015;31(1):75–96.

20. Bersimis S., Psarakis S., Panaretos J. Multivariate statistical process control charts: an overview. Quality

Reliability Engineering International. 2007;23(5):517-543.

21. Choi S.W., Martin E.B., Morris A.J., Lee I.B. Adaptive Multivariate Statistical Process Control for Monitoring

Time-Varying Processes. Industrial & Engineering Chemistry Research. 2006;45(9):3108–3118.

22. Askarian M., Escudero G., Graells M., Zarghami R., Jalali-Farahani F., Mostoufi N. Fault diagnosis of chemical

processes with incomplete observations: A comparative study. Computers and Chemical Engineering.

2016;84():104–116.

23. Royston P. Approximating the Shapiro-Wilk W-test for non-normality. Statistic and Computing. 1992;2(3):117–

119.

24. Irigaray D., Dufrechou E., Pedemonte M., Ezzatti P., López-Vázquez C. Accelerating the Calculation of Friedman

Test Tables on Many-Core Processors. In: High Performance Computing. Alemania: Springer; 2020. p. 122–

135.

25. Lee S. et al. Diagnosing various failures of lithium-ion batteries using artificial neural network enhanced by

likelihood mapping. Journal of Energy Storage. 2021;40():102768.

26. Syed D., Refaat S.S., Abu-Rub H. Performance Evaluation of Distributed Machine Learning for Load Forecasting

in Smart Grids. 2020;():1–6.

27. Souza P.S.S., Santos Marques W., Rossi F.D., Cunha Rodrigues G., Calheiros R.N. Performance and accuracy

trade-off analysis of techniques for anomaly detection in IoT sensors. International Conference on Information

Networking (ICOIN). Da Nang; VietNam; 2017. p. 486–491.

CONFLICT OF INTEREST
There is no conflict of interest among the authors, or with any institution with which each is affiliated, or with any

other institution.

The opinions expressed herein are solely the responsibility of the authors and do not represent the position of the

Institution or institutions with which they are affiliated.

AUTHORS' CONTRIBUTIONS

Yandy Pérez Ramos: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project

administration, Resources, Software, Validation, Visualization, Writing - original draft

Carlos Fernández Aballí Altamirano : Data curation, Writing - original draft

Julian L. Cárdenas Barrera : Project administration, Supervision

Francisco Herrera Fernández : Project administration, Supervision, Visualization, Writing - review & editing

Yandy Pérez, Carlos Fernández-Aballí, Julián L. Cárdenas, Francisco Herrera

RIELAC, Vol. 44(3):e2303 (2023) ISSN: 1815-5928

15

AUTORS

Yandy Pérez Ramos. Automation Control Engineer, Doctor of Technical Science. CEO SORBOTICS, Jacksonville,

Florida, USA, yramos@sorba.ai. Interests: Artificial Intelligence, Systems Optimization, Predictive Maintenance,

Advanced Process Control. ORCID: 0000-0002-0769-3773.

Carlos Fernandez-Aballi Altamirano. Mechanical Engineer, Doctor of Technical Science. Technical Consultant

SORBOTICS, Jacksonville, Florida, USA, cfernandez@sorba.ai. Interests: Thermodynamic Systems, Solar Energy,

Renewable Energy, Industrial Design ORCID: 0000-0002-5191-2937.

Julian L. Cárdenas Barrera. Telecommunications Engineer. Doctor of Technical Science. Associate Professor,

University of New Brunswick. Canadá. jcardena@unb.ca, Electrical and Computer Engineering, NB Power Industrial

Research Chair on Smart Grid Technologies. ORCID: 0000-0002-3674-3995.

Francisco Herrera Fernández. Electrical Engineer, Doctor of Technical Science. Consulting Professor, Senior

Researcher, Department of Automatic Control, Universidad Central "Marta Abreu " de Las Villas.

herrera@uclv.edu.cu, Interests: Application of Artificial Intelligence in Automatics. Predictive systems. Modeling

and identification of systems. ORCID: 0000-0002-0774-0752.

https://orcid.org/0000-0002-0769-3773
https://orcid.org/0000-0002-5191-2937
https://orcid.org/0000-0002-3674-3995
https://orcid.org/0000-0002-0774-0752

