Evaluation of TBP, TOA and MEK as extractants to obtain 99mTc radiotracers in organic phase from 99Mo / 99mTc generator

Judith Domínguez Catasús, Yusnier León Arias, Regla Gamboa Marrero, Aidamary Abreu Díaz, Jorge Isaías Borroto Portela

1 Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC). Ave. Luaces y Salvador Allende. La Habana, Cuba
2 Centro de Isótopos (CENTIS)

judith@instec.cu

Abstract
An alternative for radiotracer technique in Cuba, is the use of sodium pertechnate (Na99mTcO$_4$) eluted from 99Mo / 99mTc generator. This radioisotope generator is produced by the Cuban Center of Isotopes (CENTIS). Taking into account that solvent extraction is an usual procedure to separate 99TcO$_4^-$ from the fission products, this technique was used to get a radiotracer in organic phase from the eluted 99mTcO$_4^-$, using 30% TBP-16% TOA/ n-dodecane and 30% TBP-16% TOA/ ciclohexane as solvents. On the other hand, MEK is used as solvent in the so called 99Mo / 99mTc extraction radioisotope generator. Consequently, it was also evaluated. In this paper, the influence on the extraction degree, of the volumetric ratio between organic and aqueous phases, the time of phase shaking and the time elapsed between shaking-end and phase separation were studied. Furthermore, in the case of MEK, the influence of NaOH concentration in the aqueous phase was considered. For the extraction using 30% TBP-16% TOA/ciclohexane and 30% TBP-16% TOA/n-dodecane, the influence of pH was also studied. The extraction degree of 99mTcO$_4^-$ eluted from generator using MEK, as well as 30% TBP-16% TOA in n-dodecane or ciclohexane, in adequate conditions, was higher than 99%, so, any of the tested solvents could be used to get a 99mTc radiotracer in organic phase.

Key words: extraction, trioctylamine, tracer techniques, ketones, TBP

Evaluación del TBF, la TOA y la MEC como extrayentes para obtener radiotrazadores de 99mTc en fase orgánica a partir del generador de 99Mo / 99mTc

Resumen
Una alternativa para el empleo de la técnica de radiotrazadores en Cuba ha sido el uso del pertechnato de sodio (Na99mTcO$_4$) eluido del generador de 99Mo / 99mTc producido en el Centro de Isótopos. Teniendo en cuenta que la extracción se utiliza regularmente para separar al 99TcO$_4^-$ de los productos de fisión, se evaluó este método para obtener un radiotrazador en fase orgánica a partir del 99mTcO$_4^-$, empleando como solventes la mezcla 30% TBF-16% TOA en n-dodecano y en ciclohexano. Por otro lado, la metiletilcetona se utiliza como solvente en el generador radiotópico de extracción de 99Mo / 99mTc, por lo que también se evaluó para estos fines. En el trabajo se estudió la influencia de la relación volumétrica de la fase acuosa y la orgánica, del tiempo de contacto en agitación y del tiempo de reposo antes de la separación de las fases, en el grado de extracción del 99mTc. En el caso de la metiletilcetona se evaluó además, la influencia de la concentración de NaOH en la fase acuosa y para la extracción, con 30% TBF-16% TOA en ciclohexano y en n-dodecano, la del pH. El grado de extracción del 99mTcO$_4^-$ eluido del generador empleando, ya sea la metiletilcetona o la mezcla 30% TBF-16% TOA en n-dodecano o ciclohexano, en condiciones adecuadas, fue superior al 99%; por tanto, cualquiera de los solventes evaluados se puede utilizar para obtener radiotrazadores de 99mTc en fase orgánica.

Palabras clave: extracción, trioctilamina, técnicas de trazadores, cetonas, TBP
Introduction

Studies which expand the potentialities of the 99mTc eluted from 99Mo / 99mTc to label silts [1], surface waters in non-reducing [2,3,4] or reducing [5] environment have been carried out in our country. However, alternatives that allow the use of this isotope for labeling organic fluids have so far not been explored yet. Therefore, applications related with organic phase tracing have so far not been done in Cuba.

The application and development of nuclear energy goes by the treatment and confinement of its residuals, especially those with high activity which result from the re-processing of nuclear fuel. 99Tc and 129I radionuclides represent the dominant portion of the nuclear wastes with radiological risk [6].

Selective extraction with organic solvents is a commonly used procedure to separate $^{99TcO_4}^-$ from the rest of the fission products, with the objective of concentrating it before its final disposition. Tri-n-butylphosphate (TBP) and tri-n-octylamine (TOA) are two of the most used, either in self-sufficient form, in a mixture with diluents or in their one mixture. In all of these studies, the shaking times are between 10 and 15 min. Different diluents are used, among them: cyclohexane and n-dodecane [7-11].

On the other hand, it is also known that methylethylketone (MEK) is used as solvent in the so called 99Mo / 99mTc radioisotope generator, which is produced nowadays by the Indian Radiation and Isotopic Technology Association [12].

The aim of the present work was to evaluate the extraction conditions of Na99mTcO$_4^-$, eluted from the 99Mo / 99mTc radioisotope generator, using TBP, TOA and MEK as extractants in order to get a 99mTc radiotracer for organic fluids.

Materials and methods

General procedure for the extraction experiments

The extraction behavior of 99mTcO$_4^-$, eluted from the 99Mo / 99mTc generator, was studied using MEK. 30% TBP-16% TOA/ n-dodecane and 30% TBP-16% TOA/cyclohexane. The parameters were modified according to the goal of each experiment.

The aqueous and organic phases were shaken inside the 20 mL plastic syringe used as separator device. A German shaker ILMENAU-MLW was used and the shaking speed was kept constant. The volume of the aqueous phase was fixed at 3 mL, while the organic phase volume was modified.

After shaking and some resting time, three samples of 0.5 mL each were taken from aqueous phase and measured 3 times with NaI (Tl) detector joint to the ratemeter.

To evaluate the extraction yield, the extraction degree, R (%), was determined as:

$$R(\%) = \left[\frac{B - A}{B} \right] \times 100,$$

Where A (cps/mL) and B (cps/mL) are the radioactive concentrations of aqueous phase after and before extraction, respectively.

Each experiment was replicated 3 times for error estimation. Some studies were carried out using experimental design; in these cases the first experiment of the plan was performed 3 times.

Extraction of 99mTcO$_4^-$ with MEK

To study the influence on the extraction degree of the volumetric ratio of phases (V_o/V_a), NaOH concentration in the aqueous phase and time elapsed between shaking-end and phase separation (resting time), an experimental plan 23 was designed. R (%) was determined as the dependent parameter. Levels and modules (h) used for each parameter are shown in table 1. The experimental conditions were chosen taking into account previous experience [13].

Table 1. Levels and modules of the parameters used in the experimental plan for MEK

<table>
<thead>
<tr>
<th>Level</th>
<th>V_o/V_a</th>
<th>c(NaOH) (mol/L)</th>
<th>Resting time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>1</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Max</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>h</td>
<td>1.5</td>
<td>2.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Influence of shaking time on the extraction degree using MEK as solvent

Due to the short half life of 99mTc (6.02 h), it is important to reduce as much as reasonable possible the time consumed in radiotracer preparation. So, the behavior of the extraction degree was studies at the following shaking times: 1, 2, 4, 6, 8 and 10 min. NaOH concentration in the aqueous phase was 5 M, the resting time was 10 min and $V_o/V_a = 1$.

Extraction of 99mTcO$_4^-$ using 30%TBP-16%TOA/cyclohexane and 30%TBP-16%TOA/n-dodecane as solvents

To study the influence on the extraction degree of the volumetric ratio of phases, pH in the aqueous phase and time elapsed between the end of shaking and phase separation, an experimental plan 23 was designed. R (%) was again determined as dependent parameter. The aqueous solution pH was modified varying the concentration of HNO$_3$. Table 2 shows the levels and modules (h) used for each parameter.
Table 2. Levels and modules of the parameters used in the experimental plans 2\^ for 30%TBP-16%TOA/ciclohexane and 30% TBP-16% TOA/n-dodecane extraction systems

<table>
<thead>
<tr>
<th>Level</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>Resting time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>1.5</td>
<td>1.5</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Influence of pH on the extraction of 99mTcO4− using 30% TBP-16% TOA in ciclohexane and n-dodecane as solvents.

As the extraction mechanism of 99mTcO4− by TBP and TOA involves protons [7, 8, 16], the pH study was extended outside the performed experimental plans, (pH= 0.5 and 5). On the other hand, some points of the experimental designs were reproduced (pH=1, 2, 3 and 4) in order to validate the obtained mathematical models through the Kolmogorov Smirnov test. The shaking and resting times were fixed at 6 min and 10 min, respectively, and the phase volumetric relation was 1.

Influence of shaking time on the extraction of 99mTcO4− using 30% TBP-16% TOA in ciclohexane and n-dodecane as solvents.

In this case, the extraction degree was determined after shaking 3, 6, 9, 12 and 15 min. The last one was the longest time reported in the consulted literature [11]. The resting time was 10 min, pH was fixed to 1, and V_o/V_a = 1.

Results and Discussion

Extraction of 99mTcO4− with MEK

Results from the experimental plan are shown in table 3. Coefficients B1 (V_o/V_a) and B2 (NaOH concentration) resulting from the analysis of experimental data are positive, quite similar and significantly higher than B3 (resting time before phases separation), which influence on the extraction degree is also positive.

The best result (99.76 ± 0.04) % was obtained when all parameters had been fixed at maximum levels. If the resting time is reduced to 5 min, the extraction degree just decreases in 0.87%. This behavior agrees with the results obtained by Karpeles and Rivera [13] using MEK to separate 99mTc and 99Mo from alkaline solutions. They found out the best extraction when NaOH concentration of aqueous solution was between 3 and 5 M. The design parameters were uncodified according to their modules and the model which describes its relationship with the extraction degree was established as (eq. 2):

\[
R(\%) = 85.33 - 1.86 \left(\frac{V_o}{V_a} \right) + 0.38 \times c(NaOH) + 0.46t - 0.09 \left(\frac{V_o}{V_a} \right)^2, \tag{2}
\]

Table 3. Results from the experimental plan 2\^ using MEK as solvent

<table>
<thead>
<tr>
<th>Exp.</th>
<th>R(%)</th>
<th>Coefficients</th>
<th>Variance: S^2= 0.011</th>
<th>Degrees of freedom: 2</th>
<th>Probability: 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89.8 ± 0.1</td>
<td>B0 = 95.11</td>
<td>Significant coefficients: B0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>94.73 ± 0.04</td>
<td>B1 = 2.048</td>
<td>B1 B2 B3 B13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>94.3 ± 0.1</td>
<td>B2 = 2.258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>98.89 ± 0.04</td>
<td>B3 = 0.685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>91.6 ± 0.4</td>
<td>B12 = -0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>95.2 ± 0.1</td>
<td>B13 = -0.338</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>96.5 ± 0.1</td>
<td>B23 = 0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>99.76 ±0.04</td>
<td>B123 = 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEK is a neutral extractant [14]. So, it is quite probably that extraction mechanism of 99mTcO4− will be the hidratation solvatation (eq.3), through the coordination water [15].

\[
Na^{+\cdot}99mTcO_4^{-\cdot}pH_2O + qMEC \rightarrow Na^{99mTc}O_4\cdot pH_2O.qMEC, \tag{3}
\]

Extraction of 99mTcO4− using 30% TBP-16% TOA/ ciclohexane and 30% TBP-16% TOA/ n-dodecane as solvents

Table 4 shows results from the experimental design. All of the coefficients are statistically significant for a significance level of 0.05. The most important parameter is pH, which has a great negative influence in R (%). The lowest extraction degrees were obtained when pH was equal to 4 (experiments 3, 4, 7 and 8 from table 4). This perfectly matches with the roll of protons in the extraction mechanism for both extractants. Pruett et al. [7], El-Kot [16] and Kwan-Wook [8] stated that proton transferred by HNO\textsubscript{3} bonds to the phosphoric oxygen in TBP and 99mTcO4− joins to the proton as a counter ion.

On the other hand, TOA is a tertiary amine with a pair of non-shearing electrons at nitrogen atom, which participate in the extraction mechanism. In this case, besides the protonation mechanism, extraction goes by ionic exchange [8].

For both extractant systems, the phase volumetric relationship influences in a positive way but, its effect on the extraction degree is only important only for pH = 4. Even using the higher phase volumetric relationship (V_o/V_a = 4) in experiments 2, 4, 6, and 6 from table 4, R(%) does not reach the values obtained when pH = 1 (exp. 1, 2, 5 and 6), no matter the phase of volumetric relationship used. It seems that as the total amount of active protons available for the extraction is smaller at pH = 4, the total amount of extractant molecules becomes a limiting factor.
In fact, from all over the coefficients that represent interactions between parameters, B12 (phase volumetric relationship-pH) is the highest, even a little bigger than the influence of phase volumetric relationship itself. When \(V_o/V_a = 1 \) and \(pH = 4 \), the lowest extraction degree (91.4 ± 0.2) % was obtained.

As expected, the behavior of \(^{99m}\text{TcO}_4^-\) extraction using n-dodecane as diluent instead of ciclohexane is similar. Nevertheless, the first one could be considered a little more efficient under the worst conditions (\(pH = 4 \) and \(V_o/V_a = 1 \)), revealing a higher extraction degree ((95.93 ± 0.02) %).

Finally, the extraction degree could reach (99.91 ± 0.01) % for ciclohexane and (99.86 ± 0.01) % for n-dodecane, if \(pH \) of aqueous solution is fixed to 1 with \(\text{HNO}_3 \), shaking time is 15 min and resting time is 10 min.

The parameters of the design were uncoded according to their modules and the model which describes its relationship with the extraction degree was established for 30% TBP-16% TOA/ciclohexane (eq. 4) and 30% TBP-16%TOA/n-dodecane (eq.5).

\[
R(\%) = 106.1 - 1.74 \left(\frac{V_o}{V_a} \right) - 5.9pH - 0.24t + 1.38 \left(\frac{V_o}{V_a} \right)^* pH + 0.69 \left(\frac{V_o}{V_a} \right)^* t + 0.23 pH^* t - 0.06 \left(\frac{V_o}{V_a} \right)^* pH^* t, \tag{4}
\]

\[
R(\%) = 102.1 - 0.52 \left(\frac{V_o}{V_a} \right) - 2.3pH - 0.0007t + 0.5 \left(\frac{V_o}{V_a} \right)^* pH + 0.02 \left(\frac{V_o}{V_a} \right)^* t + 0.06 pH^* t - 0.02 \left(\frac{V_o}{V_a} \right)^* pH^* t, \tag{5}
\]

Influence of \(pH \) on the extraction of \(^{99m}\text{TcO}_4^-\) using 30% TBP-16% TOA in ciclohexane or n-dodecane as solvents

For 30% TBP-16% TOA/ciclohexane system (figure 1a), the experimental standard deviation varied between 0.001 and 0.036. When n-dodecane was used as a diluent (figure 1b), values ranged between 0.02 and 0.12.

For both systems, the extraction degree decreases from \(pH = 1 \) to \(pH = 5 \) in approximately 4%. Nevertheless, \(R(\%) \) is always higher than 95%, which could be enough for some radiotracings applications.

![Figure 1. Behavior of R (%) versus pH using 30% TBP-16% TOA in ciclohexane (a) or n-dodecane (b) as solvents.](image-url)
No significant differences were observed in the extraction degree at pH = 0.5 and 1. This increase on NO₃⁻ concentration does not induce yet, any significant negative effect on ⁹⁹mTcO₄⁻ extraction due to the competition of nitrates ions for TBP and TOA molecules [17, 18]. The Kolmogorov Smirnov test, for 95% of probability, demonstrated that there are not significant differences between experimental data and models.

Influence of shaking time on the extraction degree

Figure 2 shows the behavior of the extraction degree versus the increase on shaking time, when MEK was used as solvent. From 6 min on, no more significant increase in R (%) is observed and the value is about 96.5%. This matches with experiment 7 (table 3) where Vₒ/Vₐ was also 1. The standard deviations of the calculated extraction degrees oscillate between 0.05 and 0.20.

When using 30% TBP-16% TOA/ciclohexane, there are no significant changes on the extraction degree from 6 min on (figure 3a). The standard deviations ranged between 0.001 and 0.01. For 30% TBP-16% TOA/ n-dodecane system (figure 3b), the standard deviations are in the same range, and the increase in the extraction degree from 6 to 15 min is just about 0.05%. So also in this case, 6 min of shaking time is enough for a successful extraction.

When MEK was used as solvent, the best degree of extraction was obtained by fixing NaOH concentration in aqueous phase to 5 M, volumetric relationship (Vₒ/Vₐ) to 4, shaking time to 6 min and the resting time before phase separation to 10 min. The reduction of the resting time to 5 min provokes a diminishing of extraction degree just in a 0.87%. For 30% TBP-16% TOA/ ciclohexane and 30% TBP16% TOA/ n-dodecane solvents, the best results were obtained by fitting the aqueous phase pH to 1 with nitric acid, shaking the phases during 6 min and separating them after 10 min of rest.

The solvent extraction of ⁹⁹mTcO₄⁻, eluted from ⁹⁹Mo/⁹⁹mTc generator, using MEK and 30% TBP-16% TOA in n-dodecane or ciclohexane as solvents, could be used to get a radiotracer in organic phase for industrial applications. The selection of the solvent will depend on the nature of the system that will be traced and the cost-benefit analysis. Furthermore, it should be previously validated.
Acknowledgements

The authors would like to thank the IAEA for its partial financial support.

References

Recibido: 22 de marzo de 2012
Aceptado: 30 de mayo de 2012