## ARTÍCULO ORIGINAL

# Estudo da cinética de secagem de folhas de *Bauhinia Cheilantha* (Bong.) Steud. (mororó)

Estudio de la cinética de secado las hojas de *Bauhinia Cheilantha* (Bong.) Steud. (mororó)

Study of the drying kinetics of leaves *Bauhinia cheilantha* (Bong.) Steud . (mororó)

Ing. Jorge Jacó Alves Martins, Ing. Francinalva Cordeiro de Sousa, Prof. Ana Paula Trindade Rocha, Ing. Joabis Nobre Martins, Prof. Josivanda Palmeira Gomes

Conselho Nacional de Desenvolvimento Científico e Tecnológico (*CNPq*). Universidade Federal de Campina Grande (UFCG). Campina Grande. Paraíba, Brasil.

### **RESUMO**

**Introdução:** Bauhinia cheilantha (Bong.) Steud. é uma espécie nativa da América do Sul, pertencente à família Fabaceae, cujo nome popular é mororó, e tem sido utilizada na medicina popular para o tratamento de diabetes, anti-inflamatória, distúrbio digestivo, reumatismo, sedativa.

**Objetivo:** determinar, experimentalmente, as curvas de secagem para folhas de mororó e ajustar diferentes modelos matemáticos aos dados experimentais, em função da temperatura e da velocidade do ar de secagem.

**Métodos:** o teor de água inicial das folhas foi determinado pelo método padrão da estufa,  $105 \pm 3$  °C, durante 24 h, com três repetições. Para cada tratamento de secagem foram utilizados em torno de 150g de folhas por repetição. Para o ajuste dos modelos matemáticos aos dados experimentais, realizou-se análise de regressão não linear, pelo método Quasi-Newton, através do programa computacional Statistica  $5.0\,$ ®, em que os valores dos parâmetros dos modelos foram estimados em função da temperatura e da vazão do ar de secagem.

**Resultados:** O modelo que melhor representou o processo de secagem do mororó para a faixa de temperatura de 40 a 60 °C foi o de Midilli.

**Conclusão:** Os resultados mostraram que com o acréscimo da temperatura promoveu uma maior redução no tempo de secagem.

Palavras-chave: plantas medicinais, Bauhinia cheilantha, modelagem.

### RESUMEN

Introducción: Bauhinia cheilantha (Bong.) Steud es una especie nativa de América del Sur, perteneciente a la familia Fabaceae, cuyo nombre popular es mororó. Se ha utilizado en la medicina popular para tratar la diabetes, anti-inflamatorio, trastorno digestivo, reumatismo y sedante.

**Objetivo:** determinar em experimento las curvas de secado para las hojas de mororó y ajustar diferentes modelos matemáticos a los datos experimentales, de acuerdo con la temperatura de secado y la velocidad del aire.

**Métodos:** el contenido inicial de agua de las hojas se determinó por el horno estándar,  $105~^{\circ}C~\pm~3$  durante 24 h con tres repeticiones. Para cada tratamiento de secado se utilizaron alrededor de 150 g de hojas por repetición. Para ajustar el modelo matemático a los datos experimentales, no había análisis de regresión no lineal. El método cuasi-Newton, por el software Statistica 5.0% en los valores de los parámetros del modelo se estimaron de acuerdo con la temperatura y el caudal aire de secado.

**Resultados:** el modelo que mejor representa el proceso de secado de mororó para el rango de temperatura de 40-60 °C fue Midilli.

**Conclusión:** los resultados mostraron que con el aumento de la temperatura promueve una mayor reducción en el tempo de secado.

Palabras clave: Plantas medicinales, Bauhinia cheilantha, modelado.

## **ABSTRACT**

**Introduction**: Bauhinia cheilantha (Bong.) Steud is a native species of South America, belonging to the fabaceae family, whose popular name is mororó, and has been used in folk medicine to treat diabetes, anti-inflammatory, digestive disorder, rheumatism, sedative

**Objective**: to determinate the drying curves for mororó sheets and adjust different mathematical models to experimental data, according to the drying temperature and air velocity.

**Methods:** The initial water content of the leaves was determined by standard oven at 105  $\pm$  3 °C for 24 hours, with three replicates. For each treatment were used in drying about 150g per replicate leaves. To adjust the mathematical models to experimental analysis was carried out non-linear regression by the method Quasi-Newton, through software Statistica 5.0  $^{\circ}$ 8, wherein the values of parameters were estimated from the temperature and flow air drying.

**Results**: The model that best represented the drying process of mororó for the temperature range 40-60 °C was the Midilli.

**Conclusions**: The results showed that with the addition of Temperature promoted a greater reduction in drying time.

**Key words:** medicinal plants, *Bauhinia cheilantha*, modeling.

# INTRODUÇÃO

A crescente procura por plantas medicinais, aromáticas e condimentares em diversos países é derivado da tendência dos consumidores em utilizarem, preferencialmente, produtos farmacêuticos ou alimentícios de origem animal.¹ O Brasil possui a maior diversidade genética vegetal do mundo, com cerca de 55.000 espécies catalogadas de um total estimado entre 350.000 e 550.000.²

Entre as inúmeras espécies vegetais de interesse medicinal, encontram-se as plantas do gênero *Bauhinia*, pertencente à família Leguminosae ou Fabaceae, o qual compreende aproximadamente 300 espécies, sendo que no Brasil já foram catalogadas aproximadamente 250 espécies nativa.<sup>3</sup>

A *Bauhinia* é uma espécie nativa da América do Sul, com distribuição na Argentina, Paraguai, Uruguai, Bolívia e Brasil. No Brasil essa distribuição ocorre nos Estados de Alagoas, Bahia, Espírito Santo, Minas Gerais, Paraná, Pernambuco, Piauí, Rio de Janeiro, Santa Catarina e São Paulo.<sup>4</sup>

É uma planta amplamente utilizada na medicina popular, da qual seu extrato aquoso está sendo bastante estudado por pesquisadores para diversos fins fitoterápicos. Vários estudos têm sido realizados no Brasil, porém o mais pesquisado é no controle da diabete mellitus. Utilizada popularmente como hipoglicemiante.<sup>5-7</sup> Esta planta vem despertando um grande interesse científico uma vez que estudos fitoquímicos em suas folhas possibilitaram a identificação de um marcador químico, denominado kaempferitrina, o que contribui para explicar a ação hipoglicemiante agregada a esta espécie vegetal.<sup>5,8-10</sup>

*Bauhinia cheilantha* (Bong.) Steud., é uma leguminosa típica da Caatinga, principal ecossistema existente no semiárido brasileiro. Estima-se que cerca de 40% da área desse ecossistema nunca tenha sido coletada e 80% dela subamostrada.<sup>11</sup>

A espécie *B. cheilantha* possui grande relevância econômica e etnofarmacológica no semiárido brasileiro, sendo sua parte aérea amplamente empregada nas práticas caseiras da medicina popular para o tratamento de diabetes, além de possuir aplicação madeireira, forrageira e como combustível.<sup>12,13</sup> É uma espécie cuja importância nas comunidades rurais é bastante expressiva, sendo usada na produção de remédios tradicionais com ação antiinflamatória, antidiabética, para distúrbios digestivos, reumatismo e sedativa.<sup>14,15</sup> São atribuídas as suas folhas ação antiinflamatória, antidiabética, sedativa, antiparasitária, digestiva e expectorante, sendo comprovada cientificamente sua atividade antioxidante, antinociceptiva e hipoglicemiante.<sup>16</sup>

Nas espécies medicinais uma das operações unitárias mais frequentes na produção de extratos vegetais é a secagem, ela deve ser realizada imediatamente após a colheita do material minimizando com isso as perdas de substâncias farmacológicas ativas que ocorrem devido à degradação enzimática associada à presença de água. Nesta fase, o processo de secagem é mais utilizado para assegurar a qualidade e a estabilidade do material, considerando que a redução do teor de água reduz a atividade biológica e as mudanças químicas e físicas que ocorrem durante o armazenamento. 18

Na secagem de plantas medicinais, os limites da temperatura do ar de secagem são determinados em função da sensibilidade dos princípios ativos da planta medicinal. <sup>19</sup> Outro fator de extrema importância na qualidade química de plantas medicinais submetidas à secagem é a velocidade do ar no processo. Uma vez aumentada à taxa de insuflação do ar através do produto submetido à secagem,

ocorre aumento da quantidade de água removida, ocasionando diminuição do tempo de secagem.

A cinética de secagem é de fundamental importância para a modelagem matemática da operação e projeto de secadores. É através deste estudo que se estabelecem as equações da umidade em função do tempo de secagem para os diferentes períodos e taxas de secagem, possibilitando também a determinação do mecanismo predominante na transferência de massa do material para o fluído e as respectivas equações matemáticas correspondentes.<sup>20</sup>

As curvas de secagem, em camada delgada, variam com a espécie, variedade, condições ambientais, métodos de preparo pós-colheita, entre outros fatores. Neste sentido, diversos modelos matemáticos têm sido utilizados para descrever o processo de secagem de produtos agrícolas.<sup>21</sup> Esses modelos, geralmente, baseiam-se em variáveis externas ao produto, como a temperatura e a umidade relativa do ar de secagem.

Assim, objetivou-se com o presente trabalho determinar, experimentalmente, as curvas de secagem para folhas de *B. cheilantha* e ajustar diferentes modelos matemáticos aos dados experimentais, em função da temperatura e da velocidade do ar de secagem.

# **MÉTODOS**

Foram utilizadas para a realização da cinética de secagem folhas de *B. cheilantha* (mororó) da família das leguminosas, provenientes da cidade de Campina Grande. As folhas de mororó foram coletadas manualmente pela manhã no horário das 7:30 as 8 h, no período de março a abril de 2011, apresentando teor de água em torno de 69% em base úmida (b.u.) O material foi encaminhado ao Laboratório de Química e Biomassa (LBQ) da Universidade Federal de Campina Grande (UFCG) para seleção, determinação do teor de água e secagem em estufa com circulação e renovação de ar. As exsicatas do material botânico foram depositadas no Herbário do Centro de Saúde e Tecnologia Rural da Universidade Federal de Campina Grande – Campus de Patos (Patos, PB, Brasil) sob nº 5047.

Após a colheita, antes do processo de secagem, o material foi transportado ao laboratório em sacos de polietileno, onde foram selecionadas para a retirada de partes danificadas. Depois do processo de seleção as mesmas tiveram suas extremidades inferiores e superiores cortadas manualmente, havendo o cuidado de trabalhar somente com a parte central. As plantas foram cortadas de maneira transversal em pedaços de no máximo 2 cm de espessura. Após esta etapa as plantas foram homogeneizadas e colocadas em uma cesta de material metálico, em tela de arame de malha fina.

O teor de água inicial do produto foi determinado pelo método gravimétrico, utilizando-se estufa a 105  $\pm$  3 °C, durante 24 h, até peso constante, em três repetições de acordo com Normas analíticas do Instituto *Adolfo Lutz*.<sup>22</sup>

Após a homogeneização do material, o conjunto (cesta + amostra) foi pesado em balança semi-análitica e colocada na estufa (câmara de secagem), procedendo ao início da operação. Após o equipamento ter sido ligado, foi determinada a velocidade do ar, através de um anemômetro colocado na lateral da estufa, bem como o ajuste das temperaturas a serem trabalhadas.

A secagem foi realizada em camada delgada em estufa com circulação de ar com temperatura e velocidade do ar controlada (40, 50 e 60 °C e 05, 1,0 e 1,5 m/s<sup>-1</sup>) e a umidade relativa do ar monitorada através de um termo-higrômetro. O teor de água perdido durante o processo de secagem foi obtido por pesagens descontínuas das amostras e o esquema das pesagens seguiu intervalos de 5, 10, 20, 30 e 60 min, até o final do processo. As pesagens foram realizadas até que as variações de massa fossem insignificantes.

Definiu-se a temperatura e a velocidade do ar como variáveis do processo de secagem, estudando-as em 3 níveis, codificados como -1, 0 e +1; os valores reais correspondentes a esses níveis, foram 40 °C (-1), 50 °C (0) e 60 °C (+1) para a temperatura e 0,5 m.s<sup>-1</sup> (-1), 1,0 m.s<sup>-1</sup> (0) e 1,5 m.s<sup>-1</sup> (+1) para a velocidade. O número de experimentos foi  $2^n$  (n é o número de variáveis) com três repetições no ponto central. Na tabela 1, encontram-se os valores reais e codificados para o planejamento fatorial.

Tabela 1. Variáveis independentes e seus níveis para o planejamento experimental

| Variávois Indonandantes | Níveis reais e codificados |     |     |
|-------------------------|----------------------------|-----|-----|
| Variáveis Independentes | -1                         | 0   | +1  |
| Temperatura (°C)        | 40                         | 50  | 60  |
| Velocidade do ar (m.s¹) | 0,5                        | 1,0 | 1,5 |

Para determinação da razão de teor de água das folhas de mororó para as diferentes condições de secagem foi utilizada a seguinte **equação**:

$$RX = \frac{X_{bs} - X_{e}}{X_{bs\,inicial} - X_{e}}$$

Onde:

RX: razão de umidade (adimensional).

Xe: teor de água de equilíbrio em base seca.

Xbs: teor de água em base seca.

Xbs (inicial): Umidade inicial em base seca.

Os valores de RX observados para cada temperatura do ar de secagem foram analisados por sete diferentes equações empíricas e semiempírica de regressão não linear, conforme a tabela 2.

**Tabela 2.** Modelos matemáticos de regressão não linear, avaliados para predizer o fenômeno de secagem de folhas mororó

| Designação do<br>modelo | do Equação                                                                     |   |
|-------------------------|--------------------------------------------------------------------------------|---|
| Cavalcanti Mata         | $RU = a1 \cdot exp((a2 \cdot (t^{a3})) + a4 \cdot exp(a2 \cdot (t^{a5})) + a6$ | 2 |
| Henderson e<br>Pábis    | $RU = a \cdot exp(-k \cdot t)$                                                 | 3 |
| Logarítmico             | $RU = a \cdot \exp(-k \cdot t) + c$                                            | 4 |
| Midilli                 | $RU = a \cdot \exp(-k \cdot t^n) + b \cdot t$                                  | 5 |
| Newton                  | $RU = \exp(-k \cdot t)$                                                        | 6 |
| Page                    | $RU = \exp(-k \cdot t^n)$                                                      | 7 |
| Wang e Sing             | $RU = 1 + a \cdot t + b \cdot t^2$                                             | 8 |

t: tempo de secagem (min). k: constantes de secagem. a, b, c, n: coeficientes dos modelos.

Para o ajuste dos modelos matemáticos (tabela 2) (Equação 2,3,4,5,6,7,8) aos dados experimentais, realizou-se análise de regressão não linear, pelo método Quase-Newton, empregando-se o programa computacional Statistica 5.0®. Os critérios usados para determinação do melhor ajuste dos modelos aos dados experimentais foram: coeficiente de determinação (R²) e desvio quadrático médio (DQM), calculado pela equação 9.

$$RU = a1 \cdot \exp\left(\left(a2 \cdot (t^{a3})\right) + a4 \cdot \exp\left(a2 \cdot (t^{a5})\right) + a6$$

$$RU = a \cdot \exp\left(-k \cdot t\right)$$

$$RU = a \cdot \exp(-k \cdot t) + c$$

$$RU = a \cdot \exp(-k \cdot t^{n}) + b \cdot t$$

$$RU = \exp\left(-k \cdot t\right)$$

$$RU = \exp\left(-k \cdot t\right)$$

$$RU = \exp\left(-k \cdot t^{n}\right)$$

$$RU = 1 + a \cdot t + b \cdot t^{2}$$

$$DQM = \sqrt{\frac{\sum(RX_{exp} - RX_{pre})^{2}}{N}}$$

## **RESULTADOS**

Na tabela 3 está apresentado o resumo do ajuste dos modelos por meio de regressão não linear aos dados experimentais da secagem de folhas de *B. cheilantha* em camada delgada, considerando as diferentes temperaturas e velocidade do ar de secagem.

**Tabela 3.** Valores de R<sup>2</sup> e desvio quadrático médio, calculados para verificação do ajuste dos modelos matemáticos aos valores experimentais

| Modelos           | Temperaturas<br>(°C) | Velocidade do ar     | R <sup>2</sup> | DQM    |
|-------------------|----------------------|----------------------|----------------|--------|
|                   |                      | (m.s <sup>-1</sup> ) |                |        |
|                   | 40                   | 0,5                  | 0,9979         | 0,0000 |
|                   | 40                   | 1,5                  | 0,9981         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9996         | 0,0000 |
| Cavalcanti Mata   | 50                   | 1,0                  | 0,9990         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9987         | 0,0000 |
|                   | 60                   | 0,5                  | 0,9988         | 0,0000 |
|                   | 60                   | 1,5                  | 0,9991         | 0,0000 |
|                   | 40                   | 0,5                  | 0,9784         | 0,0021 |
|                   | 40                   | 1,5                  | 0,9848         | 0,0020 |
|                   | 50                   | 1,0                  | 0,9928         | 0,0019 |
| Henderson e Pabis | 50                   | 1,0                  | 0,9891         | 0,0016 |
|                   | 50                   | 1,0                  | 0,9903         | 0,0014 |
|                   | 60                   | 0,5                  | 0,9849         | 0,0022 |
|                   | 60                   | 1,5                  | 0,9856         | 0,0021 |
|                   | 40                   | 0,5                  | 0,9904         | 0,0000 |
|                   | 40                   | 1,5                  | 0,9905         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9969         | 0,0002 |
| Logarítmico       | 50                   | 1,0                  | 0,9957         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9959         | 0,0000 |
|                   | 60                   | 0,5                  | 0,9857         | 0,0000 |
|                   | 60                   | 1,5                  | 0,9953         | 0,0000 |
|                   | 40                   | 0,5                  | 0,9991         | 0,0002 |
|                   | 40                   | 1,5                  | 0,9994         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9996         | 0,0000 |
| Midilli           | 50                   | 1,0                  | 0,9993         | 0,0000 |
|                   | 50                   | 1,0                  | 0,9989         | 0,0000 |
|                   | 60                   | 0,5                  | 0,9991         | 0,0000 |
|                   | 60                   | 1,5                  | 0,9991         | 0,0000 |
|                   | 40                   | 0,5                  | 0,9798         | 0,0016 |
|                   | 40                   | 1,5                  | 0,9723         | 0,0016 |
|                   | 50                   | 1,0                  | 0,9798         | 0,0017 |

| Newton      | 50 | 1,0 | 0,9786 | 0,0017 |
|-------------|----|-----|--------|--------|
|             | 50 | 1,0 | 0,9786 | 0,0017 |
|             | 60 | 0,5 | 0,9757 | 0,0020 |
|             | 60 | 1,5 | 0,9759 | 0,0020 |
|             | 40 | 0,5 | 0,9976 | 0,0022 |
|             | 40 | 1,5 | 0,9977 | 0,0021 |
|             | 50 | 1,0 | 0,9982 | 0,0019 |
| Page        | 50 | 1,0 | 0,9981 | 0,0020 |
|             | 50 | 1,0 | 0,9959 | 0,0029 |
|             | 60 | 0,5 | 0,9973 | 0,0022 |
|             | 60 | 1,5 | 0,9977 | 0,0020 |
|             | 40 | 0,5 | 0,9955 | 0,0015 |
|             | 40 | 1,5 | 0,9955 | 0,0015 |
|             | 50 | 1,0 | 0,9972 | 0,0016 |
| Wang e Sing | 50 | 1,0 | 0,9961 | 0,0020 |
|             | 50 | 1,0 | 0,9977 | 0,0003 |
|             | 60 | 0,5 | 0,9958 | 0,0017 |
|             | 60 | 1,5 | 0,9953 | 0,0022 |

Em todos os tratamentos os modelos matemáticos ajustados aos dados experimentais, apresentaram coeficientes de determinação (R²) superiores a 0,95 e valores de DQM inferiores a 0,01 (tabela 3). Em relação ao coeficiente de determinação (R²) as equações de *Midilli*,²3 *Cavalcanti Mata*,²4 *Logarítmico*,²5 *Page*²6 e *Wang* e *Sing*²7 apresentaram valores elevados para todos os tratamentos, estando acima de 99 %.

Para melhor análise do modelo ajustado aos dados experimentais, a figura foi elaborada, comparando os valores observados e estimados da razão de teor de água pelo modelo de *Midilli*<sup>23</sup> durante a secagem das folhas de mororó nas temperaturas entre 40 e 60°C, em que se verifica que os dados encontram-se próximos da curva que passa pela origem dos pontos, que teoricamente representa a igualdade entre os valores observados e estimados.

Na figura estão apresentadas as curvas de secagem das folhas de mororó obtidas sob diferentes condições de temperatura (40, 50 e 60°C) e velocidade do ar de secagem entre 0,5 a 1,5 m.s<sup>-1</sup>, conforme matriz experimental apresentada na tabela 1.

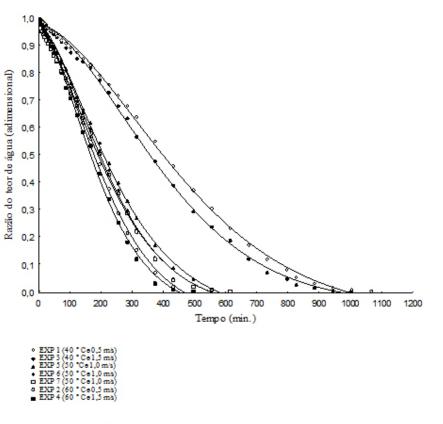



Fig. Modelo de Midilli ajustado aos dados experimentais da secagem de folhas de mororó.

Como previsto, o tempo de secagem decresce com o aumento da temperatura do ar. Para a faixa de velocidade do ar de secagem estudada (0,5 a 1,5 m.s<sup>-1</sup>) os resultados mostram que esta teve um pequeno efeito significativo sobre o processo, apenas quando se trabalhou com a velocidade de 1,5 m.s<sup>-1</sup>, contribuindo para que a secagem ocorresse de forma mais rápida nesta condição. Para as curvas referentes ao ponto central (50 °C) da matriz experimental, observa-se uma não superposição das mesmas, devido ao fato de que as amostras foram secas em dias alternados e que variáveis como umidade relativa do ambiente e teor de água inicial das mesmas são incontroláveis.

# **DISCUSSÃO**

De acordo com os resultados apresentados acima, e conforme os coeficientes de determinação ajustados e os desvios quadráticos médios estimados, a equação de *Midilli*,<sup>23</sup> foi a que melhor representou aos dados experimentais para descrever o processo de secagem de folhas de mororó para a faixa de temperatura (40 a 60 °C) e velocidade estudada (0,5 a 1,5 m.s<sup>-1</sup>). Porém vale ressaltar que todas as equações estudadas podem ser utilizadas para predizer a cinética de secagem das folhas de mororó, por apresentar coeficiente de determinação superior a 0,95.

Os tempos médios necessários para completar o processo de secagem foram 1095, 615 e 495 minutos para as temperaturas de 40, 50 e 60 °C, respectivamente. Comportamento similar foi observado por Martinazzo, ¹ com tempos médios de

secagem de 4, 7, 20 e 75 h para as temperaturas de 60, 50, 40 e 30 °C avaliando as características da secagem de folhas de capim – limão e *Randuz*<sup>19</sup> encontraram para a avaliação da cinética de secagem de folhas de sálvia tempos médios de secagem de 780, 495, 255, 190, 80 e 60 min para as temperaturas 40, 50, 60, 70, 80 e 90 °C.

Os resultados encontrados estão de acordo com os obtidos por *Randunz*<sup>28</sup> que estudando a cinética de secagem da carqueja, observaram que o modelo matemático de *Midilli*<sup>24</sup> foi o que melhor se ajustou aos dados experimentais para a faixa de temperatura de 40 a 90 °C. Já para a secagem de folhas de sálvia *Randunz*<sup>19</sup> observaram que o modelo de *Henderson* & *Pabis* <sup>29</sup> modificado e o de Midilli. Se mostraram adequados para descrever o processo de secagem para a faixa de temperatura de 40 a 90 °C.

Martinazzo¹ que avaliaram as características da secagem de folhas de capim-limão em camada delgada para a faixa de temperatura de 30 a 60 °C, concluíram que o modelo de Midillí²⁴ foi o que melhor se ajustou aos dados experimentais, apresentando o maior coeficiente de determinação.

Portanto de acordo com *Randunz*<sup>19</sup> o ajuste do modelo matemático depende da espécie vegetal, devendo ser realizados estudos individuais para as diversas espécies de plantas medicinais, aromáticas e condimentares existentes.

Nas condições em que a pesquisa foi realizada pode-se concluir que a cinética de secagem das folhas de *B. cheilantha* decresce com o acréscimo da temperatura do ar e que o modelo de *Midilli*<sup>23</sup> se mostrou adequado para descrever o processo de secagem das folhas de mororó para a faixa de temperatura de 40 a 60 °C.

# REFERENCIAS BIBLIOGRÁFICAS

- 1.Martinazzo AP, Corrêa PC, Resende O, Melo EC. Análise e descrição matemática da cinética de secagem de folhas de capim-limão. Rev Bras Eng Agríc Ambiental. 2007; 11(3):301-06.
- 2. Rodrigues W, Nogueira JM. Competitividade da Cadeia Produtiva de Plantas Medicinais no Brasil: uma perspectiva a partir do comércio exterior. Informe Gepec. 2008; 2(2): 91-105.
- 3. Engel LC, Ferreira RA, Cechinel-Filho V, Meire-Silva C. Controle de qualidade de drogas vegetais a base de *Bauhinia forficata* Link (Fabaceae). Rev Bras Farmacogn. 2008; 18(2):258-64.
- 4. Vaz AMSF, Tozzi AMGA. Sinopse de *Bauhinia* sect. *Pauletia* (Cav.) D.C. (Leguminosae: Caesalpinoideae: Cercideae) no Brasil. Rev Bras Bot. 2005; 28(3):477-91.
- 5. Menezes FS, Mintto ABM, Ruelas HS, Kuster M, Sheridan H, Frankish N, et al. Hypoglycemic activity of two Brazilian *Bauhinia* species: *Bauhinia forfi cata* L. and *Bauhinia monandra* Kurz. Rev Bras Farmacogn. 2007;17(1):08-13.
- 6. Silva MIG, Gondim APS, Nunes IFS, Sousa FCF. Utilização de fitoterápicos nas unidades básicas de atenção à saúde da família no município de Maracanaú (CE). Rev Bras Farmacogn. 2006;16(4):455-62.

- 7. Agra MF, França PF, Barbosa-Filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn. 2007;17(1):114-40.
- 8. Cunha AM, Menon S, Menon R, Couto AG, Burger C, Biavantti MW, et al. Hypoglycemic activity of dried extracts of *Bauhinia forficata* Link. Phtyomedicine. 2010;17(1):37-41.
- 9. Pepato MT, Baviera AM, Vendramini RC, Brunetti IL. Evaluation of toxicity after one-months treatment with *Bauhinia forficate* decoction in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2004;4(8):1-7.
- 10. Souza E, Zanatta L, Seifriz I, Creczynski-Pasa TB, Pizzolatti MG, Szpoganicz B, et al. Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7- *O*-(r)-dirhamnoside from *Bauhinia forficata* Leaves. J Nat Prod. 2004;67(5):829-32.
- 11. Tabarelli M, Silva AV. Conhecimento sobre plantas lenhosas da Caatinga: lacunas geográficas e ecológicas. In: SILVA JMC, TABARELLI M, FONECA MT. 8A. (Org.). Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Brasília: Ministério do Meio Ambiente e Universidade Federal de Pernambuco. 2004;101-12.
- 12. Barbosa-Filho JM, Vasconcelos THC, Alencar AA, Batista LM, Oliveira RAG, Guedes DN, et al. Modesto-Filho, J. Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Rev Bras Farmacognosia. 2005;15(4):392-413.
- 13. Guimarães-Beelen PM, Berchielli TT, Beelen R, Araújo-Filho J, Oliveira SG. Characterization of condensed tannins from native legumes of the Brazilian northeastern semi-arid. Sci. Agric. 2006;63(6):522-28.
- 14. Albuquerque UP, Andrade LHC, Silva ACO. Use of plant resources in a seasonal dry forest (Northeastern Brazil). Acta Bot. Bras. 2005;19(1):27-38.
- 15. Almeida CFCBR, Silva TCL, Amorim ELC, Maia MBS, Albuquerque UP. Life strategy and chemical composition as predictors of the selection of medicinal plants from the caatinga (Northeast Brazil). J Arid Environ. 2005;62(1):127-42.
- 16. Lorenzi H, Matos FJA. Plantas medicinais no Brasil: Nativas e exóticas cultivadas. 2ª ed. Nova Odessa: Plantarum; 2008. p. 544.
- 17. Souza TP, Lionzo MIZ, Petrovick PR. Avaliação da redução da carga microbiana de droga vegetal através do processamento tecnológico: decocção e secagem por aspersão. Rev. bras. Farmacog. 2006;16(1):94-8.
- 18.Resende O, Ullmann R, Siqueira VC, Chaves TH, Ferreira LU. Modelagem matemática e difusividade efetiva das sementes de pinhão-manso (Jatropha curcas L.) durante a secagem. Eng Agríc. 2011;31(6):1123-35.
- 19. Radunz LL, Mossi AJ, Zakrzevski CA, Amaral ASRP, Grassmann L. Análise da cinética de secagem de folhas de sálvia. Rev Bras Eng Agríc Ambiental. 2010;14(9):979–86.
- 20. Martinazzo AP. Secagem, armazenamento e qualidade de folhas de cymbopogon citratus (D.C.) Stapf. 2006. [Tese Doutorado em Engenharia Agrícola]. Minas Gerais: Universidade Federal de Viçosa; 2006.

- 21. Resende O, Corrêa PC, Goneli ALD, Botelho FM, Rodrigues S. Modelagem matemática do processo de secagem de duas variedades de feijão (*Phaseolus vulgaris* L.). Rev Bras Prod Agro. 2008;10(1):17-26.
- 22. Brasil. Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos. 4ª ed. Instituto Adolfo Lutz, São Paulo, Brasil; 2005. p. 1018.
- 23. Midilli A, Kucuk H, Yapar ZA. A new model for single-layer drying. Drying Technology. 2002; 20(7): 1503-13.
- 24. Cavalcanti Mata MERM, Almeida FAC, Duarte MEM. Tecnologia de armazenamento em sementes. Campina Grande: UFCG; 2006. p. 271-370.
- 25. Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristics of laurel leaves under different conditions. Proceeding of the 7th International Congress on Agricultural Mechanization and Energy; 1999. p. 565-9.
- 26. Page GE. Factors influencing the maximum rates of air-drying shelled corn in thin layers. 1949. Thesis (M.Sc.) Purdue University, West Lafayette, 1949.
- 27. Wang CY, Singh RP. Use of variable equilibrium moisture content in modeling rice drying. Transaction of ASAE. 1978;11n.a.
- 28. Radunz LL, Amaral AS, Mossi SJ, Melo EC, Rocha RP. Avaliação da cinética de secagem da carqueja. Reveng. 2011;19(1):19-2.
- 29. Henderson SM, Pabis S. Grain drying theory. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research. 1961;6:169-74.

Recibido: 30 de julio de 2014. Aprobado: 16 de junio de 2015.

Francinalva Cordeiro de Sousa. Conselho Nacional de Desenvolvimento Científico e Tecnológico (*CNPq*). Universidade Federal de Campina Grande (UFCG). Campina Grande. Paraíba, Brasil.

Correo electrónico: francis\_nalva@yahoo.com.br