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Abstract 

The Discrete Element Method (DEM) is a numerical method that has achieved general acceptance as an alternative 

tool to model discontinuous media, with a wide range of practical applications. Given that spheres are not always a 

suitable shape for DEM simulations, other particle shapes need to be used. However, for shapes different from spheres, 

there are not many advancing front packing algorithms, which are, in many cases, the best algorithms that allow 

obtaining an appropriate initial set of particles for a DEM simulation. This lack of advancing front packing algorithms 

for shapes different from spheres is mostly due to the difficulty of solving the problem of placing a mobile particle in 

contact with other two (in 2D) or three (in 3D) particles. In this paper, new methods for solving the problem of the 

particle in contact are proposed. First, the problem of the particle in contact is formally defined. In the case of the 

wrappers solution method, it is applied to geometrical shapes to which has not been applied before. In the case of the 

minimization method, which is an original creation of the authors, it is shown to be a promising alternative for 

spherocylinders. 
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El Método de Elementos Discretos (MED) es un método numérico que ha alcanzado una gran aceptación como 

herramienta alternativa para modelar medios discontinuos, con un ampllio rango de aplicaciones prácticas. Dado que 

las esferas no son siempre apropiadas para simulaciones con el MED, es necesario usar otras formas de partícula. Sin 

embargo, para formas diferentes de las esferas, no se dispone de muchos algoritmos de empaquetamiento de avance 

frontal, los cuales son, en muchos casos, los mejores algoritmos que permiten obtener un conjunto inicial de partículas 

apropiado para una simulación con el MED. Esta falta de algoritmos de avance frontal para formas no esféricas se debe 

principalmente a la dificultad de resolver el problema de colocar una partícula móvil en contacto con otras dos (en 2D) 

o tres (en 3D) partículas. En este artículo son propuestos nuevos métodos para resolver el problema de la partícula en 

contacto. Primero, el problema de la partícula en contacto es formalmente definido. En el caso de la solución con 

envolventes, esta es aplicada a formas a las cuales no había sido aplicado antes. En el caso del método de minimización, 

el cual es una creación original de los autores, se muestra que es una alternativa promisoria para esferocilindros. 

Palabras clave: MED, empaquetamiento, partícula en contacto, optimización, esferocilindros 

 

 

Introduction 

The Discrete Element Method (DEM) is a numerical method that has achieved great recognition as an alternative tool 

to model discontinuous media. Several professional (2014, ITASCA Consulting Group 2014) and free software 

(Smilauer, Catalano et al. 2010) are available for this purpose. Practical applications to a wide range of problems may 

be found in the recent literature (Catalano, Chareyre et al. 2014, Lim and Andrade 2014); however most of them assume 

spherical particles. Spheres are simple to code and easy to use, but in many cases they cannot capture the basic dynamic 

mechanisms and therefore do not provide the most adequate geometric model for the particles. For instance, an 

individual disc (or sphere) will always roll down over a rough slope; however, a generic particle, such as a cluster of 

disks, may stay in static equilibrium, slide or roll, depending on the slope angle, the tangential friction coefficient and 

the particle shape (Mohammadi). Particle types other than disks or spheres used in DEM include: clusters of spheres, 

which enable to model a wide range of different shapes, polyhedra, ellipses and ellipsoids, superquadrics and 

spherocylinders, among others. 

When DEM began to be applied some years ago, one of its major problems was the cost of obtaining an initial set of 

particles with a high volume (area) fraction, which is defined as the ratio of solid volume (area) to the total volume 

(area). Most of the initial applications used some kind of dynamic algorithm, in which a loose packing of non-

overlapping particles is generated at random positions, and later the particles are rearranged by imposing some loading 
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and boundary conditions (Cheng, Guo et al. , Jia and Williams , Han, Feng et al. , Mueller , Fraige, Langston et al.). 

Dynamic algorithms are computationally costly because they require a previous DEM simulation. Hence it was 

necessary to develop constructive packing methods, which are characterized by the sequential placement of particles at 

their final positions (Feng, Han et al. 2002, Feng, Han et al. 2003, Löhner and Oñate 2004, Bagi 2005, Benabbou, 

Borouchaki et al. 2010, Pérez Morales, Pérez Brito et al. 2010, Pérez Morales, Roselló Valera et al. 2011, Valera, 

Morales et al. 2015). The class of constructive methods includes ''advancing front algorithms''.  

 

An advancing front is a group of particles in the surroundings of the evolving system of particles under generation. A 

group of previously placed particles lie inside the advancing front, while new particles are placed in contact with the 

outer particles of the front. The packing usually starts with a set of two or three particles at any given position, or one 

or two particles in contact with the walls defining the domain (walls are also considered particles in this context). These 

particles comprise the initial advancing front. Then a new particle is generated or chosen from a repertory of particles 

to be added to the packing. Next, the new particle is placed at a position that just touches other particles in the advancing 

front. Then the advancing front is updated and the process continues. Pseudocode 1 summarizes the basic steps of a 

generic advancing front algorithm (Feng, Han et al.). 

1. Initialize the packing (usually with two or three particles). 

2. Generate or select the particle to be packed.  

3. Select an active front and determine the position at which the particle just touches the particles in the front. 

4. Check if the particle at this position overlaps with any existing particles. 

5. If no overlap occurs, accept the new particle and return to step 2 for the next particle. Otherwise go to step 6. 

6. Reject the position and repeat step 3 for another active front. 

Pseudocode 1. General steps that are common to all advancing front packing algorithms. 

In order to carry out step 3 of Pseudocode 1, the problem of placing a particle in contact with others must be solved 

(see section 3). In this sense, some authors state that a higher local density is achieved if each new particle added to the 

media is placed in contact with other two existing particles in the two-dimensional (2D) case (Feng, Han et al.). In the 

analogous three-dimensional (3D) case, the contact involves other three existing particles. For spherical particles of 

equal size, Kepler’s conjecture (Weisstein) is the solution for a maximum global volume fraction. Apollonius circle 

problem (Weisstein) is also related to placing particles in contact, but it is not exactly the problem that is solved further 

in this paper using minimization.  
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The problem of placing a particle in contact with other two (in 2D) or other three (in 3D) fixed particles has been solved 

using a direct approach, for some types of particles, as part of advancing front packing algorithms. Such direct approach 

is briefly explained in section 3.1, and the types of particles mentioned above are circles (Feng, Han et al. 2003, Bagi 

2005), polygons (Feng, Han et al. 2002), ellipses (Feng, Han et al. 2002) and spheres (Benabbou, Borouchaki et al. 

2009). The solution of the problem can be not unique, as will be seen in section 3. 

Even for simple shapes such as ellipses, the previously mentioned direct approach can be very difficult to apply, given 

the complexity of the analytical expressions that have to be obtained. That is why an alternative procedure based on 

minimization is presented in section 3.2, together with a comparison with the direct approach when possible. 

Optimization techniques have been used as an auxiliary tool in the process of packing particles for DEM. For example, 

the position and dimension of particles can be modified iteratively in order to decrease the empty space in the domain, 

and in order to eliminate the gap between the domain boundary and the particles (Labra and Oñate 2008). Also, the 

remaining heterogeneities in the packing can be removed, even without modifying the shape or dimensions of particles 

(Benabbou, Borouchaki et al. 2010). However, to the best of the authors’ knowledge, optimization has never been used 

before by other researchers in order to place a particle in contact with other two (in 2D) or other three (in 3D) fixed 

particles. 

 

Construction of a particle in contact with others 

Let 𝑝[𝐜] denote a particle in ℝ𝑛 such that 𝐜 ∈ ℝ𝑛 is a point with the property that any rotation or translation applied to 

𝑝[𝐜] must also be applied to 𝐜 and vice versa. Now consider the following problem: 

Placing a particle in contact with others 

Let 𝑝1, … , 𝑝𝑛 be 𝑛 fixed particles in ℝ𝑛 (𝑛 ∈  {2,3}), and let 𝑝𝑚𝑜𝑏[𝐜] be another particle that must be translated, without 

making rotations, in such a way that 𝑝𝑚𝑜𝑏[𝐜] be in outer contact with all the particles 𝑝𝑖  simultaneously, 𝑖 = 1, 𝑛, 

without overlapping with any of them. Find the points 𝐜 that satisfy this condition. From now on, particle 𝑝𝑚𝑜𝑏[𝐜] will 

be referred to as the “mobile particle”, in order to simplify the terminology, despite it is not actually moving. The phrase 

“without making rotations” can be better understood by looking at Figure 1(a). The mobile particle there, 𝑝𝑚𝑜𝑏[𝐜], 

changes its position but preserves its inclination, in such a way that it is not rotated. 
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Figure 1. Number of solutions for the problem of placing a particle in contact with others. 

 

It has been verified in practice that in the general case, the problem of placing a particle in contact with others has at 

most two solutions when particles 𝑝1, … , 𝑝𝑛 and 𝑝𝑚𝑜𝑏[𝐜] are convex and are close enough to each other (Figure 1(a)). 

This can degenerate to only one solution when the mobile particle fits exactly in the gap between the fixed particles 

(Figure 1(b)). Obviously, there is no solution when 𝑝1, … , 𝑝𝑛 are apart from each other by a distance greater than the 

larger Feret dimension of the particle to be placed (Figure 1(c)). 

In the case of spherical particles and clusters of spheres it is possible to develop an analytical solution for the problem 

proposed above based on the concept of wrapper's intersection (Hernández Ortega 2003, Benabbou, Borouchaki et al. 

2010, Pérez Morales 2012), explained in the following section 3.1. However the analytical procedures may become too 

cumbersome in the case of polyhedra and there is no analytical solution for particles with general shape. An alternative 

methodology that may be eventually generalized for these cases is explored in section 3.2. The two solutions are 

compared when possible. 

Wrappers intersection method for placing a particle in contact with others 

Let 𝑝𝑓𝑖𝑥  be a fixed particle and 𝑝𝑚𝑜𝑏[𝐜] be a mobile particle. The locus defined by all points 𝐜 such that 𝑝𝑓𝑖𝑥  and 

𝑝𝑚𝑜𝑏[𝐜] are in outer contact, will be called wrapper. 

In two dimensions, if the fixed and mobile particles are circles with radii equal to 𝑟𝑓𝑖𝑥 and 𝑟𝑚𝑜𝑏 respectively, then the 

corresponding wrapper is obviously a circle with radius 𝑟𝑓𝑖𝑥 + 𝑟𝑚𝑜𝑏. When the two particles are described by polygons, 

the wrapper is a polygon with twice the number of sides of the fixed one. In the case of mixed particles, a circle and a 

polygon, the resulting wrapper is a polygon with rounded corners. Similar geometries are generated in the three 

dimensional case. 
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The method of wrappers intersection in ℝ𝑛, for translating a mobile particle 𝑝𝑚𝑜𝑏[𝐜] in such a way that it is in outer 

contact with other fixed particles 𝑝1, … , 𝑝𝑛, without overlapping, consists of finding the loci described by 𝐜 when sliding 

𝑝𝑚𝑜𝑏[𝐜] around each of the fixed particles, then finding the intersections of these loci, and finally translating 𝐜 to make 

it coincide with these intersections. For convex particles in 2D, the number of these intersections should be equal to 

two in the general case, equal to one in the degenerate case, or equal to zero in the case of no solution. It is important 

to notice that the choice of 𝐜 is irrelevant as long as its position remains unchanged with respect to the mobile particle. 

The wrappers intersection method has previously been applied to shapes such as circles (this case can be solved using 

a formula for finding the intersection of two circles (Wang and Liang 1997)), ellipses (Wang and Liang 1997, Feng, 

Han et al. 2002), polygons (Feng, Han et al. 2002) and spheres (Hernández Ortega 2003, Benabbou, Borouchaki et al. 

2009). Here it is shown how to apply this method to other shapes such as clusters of circles, mixes of polygons and 

circles, spheres (by a different way than (Hernández Ortega 2003, Benabbou, Borouchaki et al. 2009)), clusters of 

spheres and convex polyhedra. 

Circles 

Circles are perhaps the easiest shape for which the wrappers intersection method can be used. Let 𝐶1 and 𝐶2 be two 

circles with centers 𝐜𝟏 and 𝐜𝟐 and radii 𝑟1 and 𝑟2, respectively. Let 𝐶𝑚𝑜𝑏[𝐜] be a mobile circle of center 𝐜 and radius 

𝑟𝑚𝑜𝑏, to be placed in outer contact with 𝐶1 and 𝐶2 simultaneously. The wrappers formed by sliding 𝐶𝑚𝑜𝑏[𝐜] around 

𝐶1  and 𝐶2  are the circles 𝐶′1  and 𝐶′2  with the same centers than 𝐶1  and 𝐶2  and radii 𝑟1 + 𝑟𝑚𝑜𝑏  and 𝑟2 + 𝑟𝑚𝑜𝑏 , 

respectively. If 𝐶31 and 𝐶32 are the circles obtained by centering 𝐶𝑚𝑜𝑏[𝐜] at the two intersection points of 𝐶1 and 𝐶2 

(in case they exist), then 𝐶31 and 𝐶32 are in outer tangency with 𝐶1 and 𝐶2 simultaneously. The formula for finding 

such intersection points can be found at (Wang and Liang 1997). 

 

Clusters of circles and clusters of spheres 

Now consider the case at which 𝑝1 , 𝑝2  and 𝑝𝑚𝑜𝑏[𝐜] are clusters of circles. Due to the difficulty of explicitly 

representing the wrappers, the method here will be different. Instead of a general formulation, an example with three 

composite particles, each one formed by a cluster of only two circles, will be used for a better understanding.  

Let 𝐜𝐢𝐣 (𝑟𝑖𝑗) be the center (radius) of the j-th circle comprising the i-th particle. It can be seen in Figure 2 that the 

composite particle 𝑝3 = 𝑝𝑚𝑜𝑏[𝐱] has been placed by a translation 𝐱 of 𝑝𝑚𝑜𝑏[𝐱] in such a way that it is in outer contact 

with composite particles 𝑝1 and 𝑝2 simultaneously. 
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Figure 2. Left: particle 𝑝𝑚𝑜𝑏[𝐜] is translated in such a way that it is in contact with 𝑝1 and 𝑝2 simultaneously. Right: Cluster of 

spheres in contact with other three. 

It can also be seen that the contact between particles 𝑝1 and 𝑝3 occurs between circle 2 of 𝑝1 and circle 1 of 𝑝3, and that 

the contact between particles 𝑝2 and 𝑝3 occurs between circle 1 of 𝑝2 and circle 2 of 𝑝3. Knowing this beforehand and 

denoting by 𝐱 the translation that puts 𝑝𝑚𝑜𝑏[𝐜] in contact with 𝑝1 and 𝑝2 simultaneously, this translation can be found 

by solving the following system: 

‖𝐱 + 𝐜𝟑𝟏 − 𝐜𝟏𝟐‖2 = (𝑟12 + 𝑟31)2 (1) 

‖𝐱 + 𝐜𝟑𝟐 − 𝐜𝟐𝟏‖2 = (𝑟21 + 𝑟32)2 (2) 

where ‖ ‖ denotes the Euclidean norm of a vector. Equations (1) and (2) form a system with two unknowns, the 

coordinates of vector 𝐱. The solution is the same as the intersection of two circles centered at points 𝐜𝟏𝟐 − 𝐜𝟑𝟏 and 

𝐜𝟐𝟏 − 𝐜𝟑𝟐 with radii equal to 𝑟12 + 𝑟31 and 𝑟21 + 𝑟32, respectively, and can be calculated in a straightforward manner 

(Wang and Liang 1997). 

Given that in practice it is not possible to know beforehand between which circles the contacts will take place, it is 

necessary to verify, in the worst case, all the possible combinations of circles comprising each pair of clusters, discarding 

solutions for which the translated particle overlaps with some of the fixed ones. The time for performing all these checks 

has an order of time 𝑂(𝑛1𝑛2𝑛3
2), where 𝑛1, 𝑛2 and 𝑛3 are the number of circles comprising the fixed and mobile 

particles respectively. In practice, calculations can be stopped when two solutions are obtained. The procedure for 

constructing a cluster of spheres in contact with other three composite particles (Figure 2 right) is analogous to the case 

of clusters of circles, so details will not be given. 

Combination of different particle shapes: mix of circles and polygons 
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A possible case of application of the wrappers intersection method in ℝ2 is when 𝑝1, 𝑝2 and 𝑝𝑚𝑜𝑏[𝐜] can be circles or 

convex polygons. The wrappers obtained here are circles, polygons, or circumpolygons, which are formed by line 

segments and arcs of circles interleaved. A circumpolygon can be obtained when sliding a mobile circle around a fixed 

polygon or vice versa.  

Finally, the intersection of two circumpolygons is reduced to finding intersections between sets of line segments and 

arcs of circles. A search should be made to test the intersections between all segments and arcs defining each wrapper 

(circumpolygon). An example of a mobile circle placed in contact with a fixed circle and a fixed polygon, as well as a 

packing of circles and polygons, can be seen at ¡Error! No se encuentra el origen de la referencia.. The area fraction 

and coordination number of such packing are equal to 0,69 and 3,98 respectively. 

 

Figure 3. Left: mobile circle centered at the intersection of the wrapper circumpolygons. Right: packing of circles and polygons. 

 

Polyhedra 

The wrappers intersection method has a high computational cost when applied to polyhedra. When sliding a mobile 

polyhedron around a fixed one, the obtained wrapper is another more complex polyhedron, whose shape is 

determined by that of the fixed and mobile polyhedra. The number of faces of the wrapping polyhedron is equal to 

the sum of the number of faces, edges and vertices of the fixed polyhedron.  

 

The faces of the wrapping polyhedron can be obtained in the following ways: 

1) Sliding mobile vertices over fixed faces (Figure 4 left). 

2) Sliding mobile faces over fixed vertices (Figure 4 center). 

3) Sliding mobile edges over fixed edges (Figure 4 right). 
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Figure 4. Left: Slide of a mobile vertex 𝐰 over a fixed face 𝐹. Center: Slide of a mobile face 𝐹 over a fixed vertex 𝐯. Right: Slide 

of a mobile edge 𝐰𝟏𝐰𝟐 over a fixed edge 𝐯𝟏𝐯𝟐. 

When carrying out each of the previous steps, the center of mass 𝐜 of the mobile polyhedron describes a polygon which 

is a face of the wrapper polyhedron.  

 

Figure 5. Example of wrappers intersection with polyhedra. (a) Fixed polyhedra, wrappers and mobile polyhedron placed at one 

of the two intersection points of the three wrappers. (b) The same as (a) without the wrappers. The mobile polyhedron is in outer 

contact with the three fixed polyhedra. 

Figure 5 shows the process of placing a polyhedron in contact with other three, translated according to the previous 

formulations. 

Potential minimization method for placing a particle in contact with others 

The method corresponding to this section uses an optimization approach to solve the problem of the particle in contact. 

In some cases, it can be easier to apply than wrappers intersection because it only requires the definition of a continuous 

function 𝜔(𝑝1, 𝑝2) for a pair of particles (𝑝1, 𝑝2) such that: 

𝜔(𝑝1,  𝑝2) {
≤ 0 𝑖𝑓 𝑝1⋂𝑝2 ≠ ∅ 

> 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 
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Function 𝜔(𝑝1,  𝑝2) is a measure of the gap between the surfaces of the two particles. Condition (3) implies that 𝑝1 and 

𝑝2 are in outer contact without overlapping if and only if 𝜔(𝑝1,  𝑝2) = 0. Function 𝜔 is usually not unique. Explicit 

formulas for function 𝜔(𝑝1,  𝑝2) will be given in next sections for the cases of disks, spheres and spherocylinders. 

Once the gap function 𝜔 has been chosen, the solution to the problem of placing a particle in contact with others can 

be obtained by solving the following optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝜔(𝑝1, 𝑝𝑚𝑜𝑏[𝐱])| + ⋯ + |𝜔(𝑝𝑛, 𝑝𝑚𝑜𝑏[𝐱])|

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐱 ∈ ℝ𝑛  (4) 

Condition (4) means that a particle is in simultaneous outer contact with other two particles in 2D (or three in 3D) when 

the sum of the gaps is minimized (in this case the minimum should be zero). Since two solutions for problem (4) are 

being searched in most cases (see Figure 1), such problem has to be solved twice each time in practice, with an additional 

restriction that indicates which solution is being searched. Such restriction is based on the fact that the centers of the 

two solution particles usually lie on different half-spaces defined by the centers of the fixed particles. In the 2D case, 

the half-spaces are the half-planes determined by the line joining the centers of the two fixed particles, while in the 3D 

case the half-spaces are determined by the plane containing the centers of the three fixed particles. In order to solve the 

minimization problem the authors used the Nelder-Mead method (Nelder and Mead 1965) already validated and 

included in a commercial software for the 2D cases, and the same method available in a free C++ library (2015), for 

the 3D cases. This method was initially chosen because it requires relatively few evaluations to reach the global 

minimum, and does not require derivative information of the objective function. 

Circles or spheres 

For any two circles or spheres 𝑝1 and 𝑝2, 𝜔(𝑝1, 𝑝2) can be defined by the equality 

𝜔(𝑝1, 𝑝2) =  ‖𝐜𝟏 − 𝐜𝟐‖2  −  (𝑟1 + 𝑟2)2 (5) 

where 𝐜𝟏 and 𝐜𝟐 are the coordinates of centers of the particles and 𝑟1 and 𝑟2 their radii, respectively. It is possible to 

verify that expression (5) satisfies (3).  

Spherocylinders 

A spherocylinder is a capsule-like body determined by a line segment and a positive real number called radius, and is 

defined as the set of all points that lie at a distance from the segment equal to or smaller than the radius. For this type 

of particle, the potential minimization method is perhaps the most suitable in order to build the particle in contact. If 𝑝1 

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 10, No. Especial UCIENCIA, Noviembre, 2016 

ISSN: 2227-1899 | RNPS: 2301 

http://rcci.uci.cu 

Pág. 224-238 

 

 

Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu 

234 

and 𝑝2  are two spherocylinders defined by segments 𝒔𝟏  and 𝒔𝟐 , and radii 𝑟1  and 𝑟2  respectively, then the function 

𝜔(𝑝1, 𝑝2) can be defined by the following equality: 

𝜔(𝑝1, 𝑝2 )  = 𝑑1(𝒔𝟏, 𝒔𝟐)2  −  (𝑟1 + 𝑟2)2 (6) 

where 𝑑1(𝒔𝟏, 𝒔𝟐) = inf{𝑑(𝛌𝟏, 𝛌𝟐):  𝛌𝟏 ∈  𝒔𝟏, 𝛌𝟐 ∈  𝒔𝟐} is the distance between segments 𝒔𝟏  and 𝒔𝟐  (a procedure for 

calculating the distance between two line segments can be seen in (Eberly 2015)), being 𝑑 the usual distance in ℝ𝑛.  

Given that for spherocylinders the wrappers were very complicated to describe, especially in 3D, a preliminary 

comparison in 2D between wrappers and minimization (Figure 6 left) was carried out by approximating spherocylinders 

with clusters of 4 disks each in the case of wrappers. In (Löhner and Oñate 2004) the reader can find approximations of 

some simple shapes with clusters. A packing of spherocylinders in 3D was also obtained (Figure 6 right). 

The two packings can be seen in Figure 6 left. In both packings, contained in squares of side equal to 20 units, the 

particles have an aspect ratio equal to 0,5, and circumscribed radii following the 𝑈[1, 2] distribution. The packing of 

73 clusters (Figure 6 left (a)), obtained by wrappers intersection, was generated at a speed of 1,05 particles per second, 

while the packing of 77 spherocylinders (Figure 6 left (b)) obtained by minimization, was generated at a speed of 0,0094 

particles per second. This suggests that if generation of spherocylinders using wrappers was possible, it would be by 

far faster than generation using minimization. However, as was already mentioned, the formulation of wrappers 

intersection for spherocylinders, especially in 3D, is not a trivial task. The area fractions of the packings were equal to 

77,21% and 82,20% for the cases of Figure 6 left (a) and Figure 6 left (b), respectively. 

The packing of spherocylinders generated in 3D can be seen in Figure 6(b). It comprises 5901 particles generated at a 

speed of 3,90 particles per second, and is contained within a cube of side equal to 40 units. This speed is so much higher 

than the analogous speed in 2D, because in this case an efficient implementation in C++ was used. Each particle has an 

aspect ratio of 0,5, and the circumscribed radii of the particles follow the 𝑈[1,2] distribution. The volume fraction of 

the packing, measured with respect to the circumscribed box, is equal to 45,77%. 

For the sake of comparison, another packing of 4778 spherocylinders approximated with clusters was generated (Figure 

6(a)). Given that in this case the generation speed with wrappers was very slow, an approximate wrappers method was 

implemented, producing a packing with a much less volume fraction equal to 36,68%, but generated at the convenient 

speed of 172,30 particles per second. This packing is also contained in a cube of side equal to 40 units. It is interesting 

that not only in this case, but also in all packings presented in this paper, the volume fraction of packings obtained with 

minimization is higher than the volume fraction of analogous packings obtained using wrappers. 
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Figure 6. Left: Comparison between wrappers and minimization in 2D spherocylinders. (a) packing of spherocylinders 

approximated with clusters of disks and generated with wrappers intersection; (b) packing of spherocylinders generated with 

minimization. Right: comparison between wrappers and minimization in 3D spherocylinders. (a) Packing of 4778 

spherocylinders approximated with clusters; (b) Packing of 5901 spherocylinders generated with minimization. 

 

Conclusion 

The problem of placing a mobile particle in contact with other two (in 2D) or three (in 3D), as part of advancing front 

particle packing algorithms in the context of DEM simulations, has been little studied in the available literature. The 

geometric solution of such problem only exists for a few particle shapes, and is only based on the direct approach. In 

this paper, the existing solution method has been applied to cases in which it had not been used. Moreover, a new 

solution method, based on minimization has been proposed. This new method was shown to be a promising alternative 

for packing spherocylinders. 
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