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Abstract 

Frequent approximate subgraph (FAS) mining has been successfully applied in several science domains, because in 

many applications, approximate approaches have achieved better results than exact approaches. However, there are real 

applications based on multi-graphs where traditional FAS miners cannot be applied because they were not designed to 

deal with this type of graph. Only one method based on graph transformation, which allows the use of traditional simple-

graph FAS miners on multi-graph problems was reported, but it has high computational cost. This paper aims at 

accelerating the mining process, thus a more efficient method is proposed for transforming multi-graphs into simple 

graphs and vice versa without losing topological or semantic information, that allows using traditional FAS mining 

algorithms and returning the mined patterns to the multi-graph space. Finally, we analyze the performance of the 

proposed method over synthetic multi-graph collections and additionally we show the effectiveness of the proposal in 

image classification tasks where images are represented as multi-graphs. 

Keywords: approximate mining, frequent approximate subgraphs, graph-based classification, multi-graph mining. 

 

Resumen 

La minería de subgrafos frecuentes aproximados ha sido satisfactoriamente aplicada en varios dominios de la ciencia, 

debido a que los enfoques aproximados han alcanzado mejores resultados que los exactos en muchas aplicaciones. Sin 

embargo, existen aplicaciones basadas en multi-grafos donde los algoritmos tradicionales de minería no pueden ser 

aplicados porque no están diseñados para trabajar con este tipo de grafos. Solo se ha reportado un método basado en 
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transformaciones de grafos que permite aplicar los algoritmos tradicionales para la minería de subgrafos frecuentes 

aproximados en problemas representados como multi-grafos, pero tiene la limitante de un alto costo computacional. 

En este trabajo, con el objetivo de acelerar el proceso de minería, se propone un método más eficiente para transformar 

los multi-grafos en grafos simples y vice versa. Este proceso se realiza sin perder información topológica o semántica, 

lo cual permite el uso de los algoritmos tradicionales de minería de grafos y los patrones minados se pueden retornar 

al contexto de multi-grafos. Finalmente se analiza el comportamiento del método propuesto sobre colecciones de multi-

grafos sintéticas y adicionalmente se muestra la utilidad de la propuesta en tareas de clasificación de imágenes, donde 

dichas imágenes son representadas como multi-grafos. 

Palabras claves: clasificación basada en grafos, minería aproximada, minería de multi-grafos, subgrafos frecuentes 

aproximados. 

 

Introduction 

Frequent approximate subgraph (FAS) mining has become an outstanding technique in data mining with several 

applications such as: genetic networks and biochemical structures analysis, image classification, and circuits, cites, 

social networks and links analysis, among others (Flores-Garrido et al., 2015; Jia et al., 2011; Morales-González et al., 

2014). In this research, FAS mining algorithms achieve better results than the ones reported by exact frequent subgraph 

mining algorithms. This is because the inexact matching between patterns is common in the data of a real-life application 

(Cook and Holder, 1994; González et al., 2001; Ketkar, 2005). However, the exact mining algorithms compute frequent 

patterns based on isomorphism (Yan and Huan, 2002; Zhu et al., 2007; Wang et al., 2016). 

All the aforementioned algorithms process only simple graph collections, where a simple graph is a graph with a single 

edge between a pair of vertices and without edges connecting a vertex with itself (loops). However, there are some 

applications such as pathfinder on game maps, RNA molecule analysis, dynamic network with time information, image 

processing, and event detection from Web sites, among others (Boneva et al., 2007; Björnsson and Halldórsson, 2006; 

Cazabet et al., 2015; Morales-González and García-Reyes, 2013; Terroso-Saez et al., 2015; Youssef et al., 2015) in 

which the authors highlight that using multi-graphs allow them modeling data in a better way than using simple graphs. 

A multi-graph is a graph that may contain loops and multiple edges between a pair of vertices. In these applications, 

traditional FAS miners cannot be applied because they have not been designed to work on multi-graphs. In all of these 
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applications, using multi-graphs and finding interesting patterns from multi-graphs would allow to get information 

potentially useful to solve problems that are more complex. 

As mentioned before, several researchers have focused their efforts on developing algorithms for mining FASs in simple 

graph collections and, and it has only been found one work which reports a solution, based on graph transformations, 

for using this FAS miners on multi-graph collections (Acosta-Mendoza et al., 2015). However, this method highly 

increases the size of each graph in the collection and therefore the runtime of the FAS mining process. For this reason, 

with the aim of speeding up the mining process, an alternative method is proposed, based on graph transformation, for 

mining a subset of FASs from a multi-graph collection. The proposal of this paper guarantees returning the mined FASs 

to the multi-graph space faster than the method reported in the state-of-the-art. 

Computational Methodology 

As we focus on working over a collection of undirected labeled multi-graphs, the first concepts to be defined are labeled 

graph, simple graph and multi-graph. It is important to highlight that several of the concepts presented in this section 

were obtained from (Acosta-Mendoza et al., 2012; Morales-González et al., 2014). 

Definition 1 (Labeled graph): Let 𝐿𝑉  and 𝐿𝐸  be two label sets for vertices and edges, respectively, a labeled graph G is 

a 5-tuple (𝑉𝐺 , 𝐸𝐺 , 𝜑𝐺 , 𝐼𝐺 , 𝐽𝐺) where: 𝑉𝐺  is a set of vertices; 𝐸𝐺  is a set of edges; 𝜑𝐺 ∶  𝐸𝐺  →  𝑉𝐺
• is a function that returns 

the pair of vertices of 𝑉𝐺  which are connected by a given edge, where 𝑉𝐺
• = {{𝑢, 𝑣}|𝑢, 𝑣 ∈  𝑉𝐺}; 𝐼𝐺: 𝑉𝐺 → 𝐿𝑉  is a 

labeling function for assigning labels to vertices in 𝑉𝐺; and 𝐽𝐺: 𝐸𝐺 → 𝐿𝐸  is a labeling function for assigning labels to 

edges in 𝐸𝐺 . 

Multi-edges are different edges connecting the same pair of vertices (i.e. 𝑒 and 𝑒′are multi-edges if 𝑒 ≠ 𝑒′ and 𝜑𝐺(𝑒) =

𝜑𝐺(𝑒′) = {𝑢, 𝑣} such that 𝑢, 𝑣 ∈ 𝑉𝐺 , 𝑢 ≠ 𝑣) (Acosta-Mendoza et al., 2015). A loop is an edge connecting a vertex to 

itself (i.e., when 𝜑𝐺(𝑒) = {𝑢} since 𝜑𝐺(𝑒) = {𝑢, 𝑣} with 𝑣 = 𝑢; in a loop |𝜑𝐺(𝑒)| = 1) (Acosta-Mendoza et al., 2015). 

Then, the concepts of simple graph and multi-graph are defined as follows: 

Definition 2 (Simple-graph and multi-graph (Acosta-Mendoza et al., 2015)): A graph G is a simple graph if it has no 

loops and no multi-edges; otherwise, G is a multi-graph. 

Definition 3 (subgraph and supergraph): Given two graphs 𝐺1 = (𝑉𝐺1
, 𝐸𝐺1

, 𝜑𝐺1
, 𝐼𝐺1

, 𝐽𝐺1
)  and 𝐺2 =

(𝑉𝐺2
, 𝐸𝐺2

, 𝜑𝐺2
, 𝐼𝐺2

, 𝐽𝐺2
), 𝐺1 is a subgraph of 𝐺2 if 𝑉𝐺1

⊆ 𝑉𝐺2
, 𝐸𝐺1

⊆ 𝐸𝐺2
, ∀𝑢 ∈ 𝑉𝐺1

, 𝐼𝐺1
(𝑢) = 𝐼𝐺2

(𝑢), ∀𝑒 ∈ 𝐸𝐺1
, 𝐽𝐺1

(𝑒) =
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𝐽𝐺2
(𝑒), and ∀𝑒 ∈ 𝐸𝐺1

, 𝜑𝐺1
(𝑒) = 𝜑𝐺2

(𝑒). In this case, we use the notation 𝐺1 ⊆ 𝐺2 and we say that 𝐺2 is a supergraph 

of 𝐺1. 

In exact graph mining, graph matching is performed by means of graph isomorphism. For both, simple graphs and multi-

graphs, isomorphism and sub-isomorphism between two graphs are defined as follow: 

Definition 4 (Isomorphism and sub-isomorphism): Given two graphs 𝐺1 = (𝑉𝐺1
, 𝐸𝐺1

, 𝜑𝐺1
, 𝐼𝐺1

, 𝐽𝐺1
)  and 𝐺2 =

(𝑉𝐺2
, 𝐸𝐺2

, 𝜑𝐺2
, 𝐼𝐺2

, 𝐽𝐺2
) , the pair of functions (𝑓, 𝑔)  is an isomorphism between these graphs iff 𝑓: 𝑉𝐺1

→ 𝑉𝐺2
 and 

𝑔: 𝐸𝐺1
→ 𝐸𝐺2

 are bijective functions, such that: ∀𝑢 ∈ 𝑉𝐺1
: 𝑓(𝑢) ∈ 𝑉𝐺2

 and 𝐼𝐺1
(𝑢) = 𝐼𝐺2

(𝑓(𝑢)); ∀𝑒1 ∈ 𝐸𝐺1
, where 

𝜑𝐺1
(𝑒1) = {𝑢, 𝑣}: 𝑒2 = 𝑔(𝑒1) ∈ 𝐸𝐺2

, and 𝜑𝐺2
(𝑒2) = {𝑓(𝑢), 𝑓(𝑣)}  and 𝐽𝐺1

(𝑒1) = 𝐽𝐺2
(𝑒2) ; and ∀𝑒1 ∈ 𝐸𝐺1

, where 

𝜑𝐺1
(𝑒1) = {𝑣}: 𝑒2 = 𝑔(𝑒1) ∈ 𝐸𝐺2

, and 𝜑𝐺2
(𝑒2) = {𝑓(𝑣)} and 𝐽𝐺1

(𝑒1) = 𝐽𝐺2
(𝑒2). If there is an isomorphism between 

𝐺1 and 𝐺2, then we say that 𝐺1 and 𝐺2 are isomorphic. Besides, if 𝐺1 is isomorphic to a subgraph of 𝐺2, then there is a 

sub-isomorphism between 𝐺1 and 𝐺2; in this case, we say that 𝐺1 and 𝐺2 are sub-isomorphic. 

In almost all inexact-based graph mining approaches, the authors firstly define a function for comparing graphs, 

according to the application context (Cook and Holder, 1994; Jia et al., 2011; Acosta-Mendoza et al., 2012; Flores-

Garrido et al., 2015). This function is known as similarity function between two graphs, denoted by 𝑠𝑖𝑚(𝐺1, 𝐺2). Later, 

using a specific 𝑠𝑖𝑚(𝐺1, 𝐺2)  function, the approximate sub-isomorphism between two graphs and the maximum 

inclusion degree for a graph 𝐺1 in another 𝐺2 are defined (see the definitions 5 and 6). 

Definition 5 (Approximate isomorphism and approximate sub-isomorphism): Let 𝐺1, 𝐺2 and 𝐺3 be three labeled multi-

graphs, let sim(𝐺1, 𝐺2) be a similarity function, and let 𝜏 ∈ [0,1] be a similarity threshold, there is an approximate 

isomorphism between 𝐺1 and 𝐺2 if 𝑠𝑖𝑚(𝐺1, 𝐺2) ≥ 𝜏. Also, if there is an approximate isomorphism between 𝐺1 and 𝐺2, 

and 𝐺2 is a subgraph of 𝐺3, then there is an approximate sub-isomorphism between 𝐺1 and 𝐺3, denoted as 𝐺1 ⊆𝐴 𝐺3. 

Between two multi-graphs, more than one approximate similarity with different values can be computed. Thus, in order 

to have only one similarity value between two graphs, the following definition is used. 

Definition 6 (Maximum inclusion degree): Let 𝐺1 and 𝐺2 be two labeled multi-graphs, let sim(𝐺1, 𝐺2) be a similarity 

function; the maximum inclusion degree of 𝐺1 in 𝐺2 is defined as: 

 
where 𝑚𝑎𝑥𝐼𝐷(𝐺1, 𝐺2) means the maximum value of similarity at comparing 𝐺1 with all of the subgraphs of 𝐺2. 
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With Definition 7, it is possible to compute the approximate support of a subgraph in a graph collection. 

Definition 7 (Approximate support): Let 𝐷 = {𝐺1, … , 𝐺|𝐷|} be a multi-graph collection, let 𝑠𝑖𝑚(𝐺1, 𝐺2) be a similarity 

function among graphs, let 𝜏 be a similarity threshold, and let 𝐺 be a labeled multi-graph. Thus, the approximate support 

(denoted by appSupp) of 𝐺 in 𝐷 is obtained through Equation (2): 

 

By using the equation (2), frequent approximate subgraphs can be defined as follows. 

Definition 8 (Frequent approximate subgraph (FAS)): Let 𝐷 be a multi-graph collection, let 𝐺 be a multi-graph and let 

𝛿 be a support threshold, 𝐺 is a frequent approximate subgraph in 𝐷 iff 𝑎𝑝𝑝𝑆𝑢𝑝𝑝(𝐺, 𝐷) ≥ 𝛿. 

Taking into account the FAS definition, frequent approximate subgraph mining in a multi-graph collection consists in, 

given a support threshold, a similarity function between multi-graphs, and a similarity threshold, computing all the 

FASs in the multi-graph collection. 

Related work 

There are three methods reported in the literature where multi-graphs are transformed into simple graphs, the simple 

graphs are analyzed and a subset of them are returned as result to the context of multi-graphs (Acosta-Mendoza et al., 

2015; Boneva et al., 2007; Whalen and Kenney, 1990). The transformation method introduced in (Boneva et al., 2007) 

is applied for solving a problem in production systems. In (Whalen and Kenney, 1990) a transformation method for 

finding maximal link-disjoint paths in a multi-graph is proposed. In (Acosta-Mendoza et al., 2015), a method that allows 

applying FAS miner was introduced and applied on image classification tasks. 

All the aforementioned methods use the same basic trick of modifying edges (i.e. replacing edges by a vertex with two 

incident edges to the end vertices of the original edge). This transformation process is applied over all the edges of the 

multi-graphs and in this way, a multi-graph 𝐺′ is transformed into a simple graph 𝐺. 

The transformation approaches reported in (Boneva et al., 2007; Whalen and Kenney, 1990) have some drawbacks that 

make them infeasible in the context of FAS mining. In (Whalen and Kenney, 1990), the method does not transform 

graphs with loops; however, loops could be important in some applications and they should be preserved and treated in 
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a special way for FAS mining in multi-graphs. Furthermore, in (Whalen and Kenney, 1990), the authors do not provide 

a reverse transformation from directed simple graphs to directed multi-graphs. This reverse process is trivial when the 

transformation is applied on a directed multi-graph, where every vertex should be connected with at least two vertices. 

Nevertheless, other kind of multi-graphs do not have a deterministic reverse transformation, and this kind of multi-

graphs are also very common in FAS mining applications. On the other hand, the method proposed in (Boneva et al., 

2007) maintains multi-edges after transforming a multi-graph with loops. Therefore, the application of a traditional FAS 

miner over the transformed graphs is infeasible. 

The method (allEdges) proposed in (Acosta-Mendoza et al., 2015), for allowing the application of traditional pattern 

miners over multi-graph collections, transforms multi-graphs into simple graphs. First, the multi-graph collection is 

transformed into a simple graph collection. For doing that, each loop that connects a vertex v by a new vertex w and a 

simple edge (an edge 𝑒1 ∈ 𝐸𝐺  of a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝜑𝐺 , 𝐼𝐺 , 𝐽𝐺) is a simple edge if ∀𝑒2 ∈ 𝐸𝐺 , 𝜑𝐺(𝑒1) ≠ 𝜑𝐺(𝑒2)) with 

the label of the loop, connecting 𝑣 to 𝑤. Later, each non-loop edge (i.e. simple edges or multi-edges) 𝑒 that connects a 

pair of vertices (𝑢, 𝑣 where 𝑢 ≠ 𝑣) is transformed into a new vertex 𝑤′ and two edges (𝑒1 and 𝑒2) both with the label of 

𝑒, connecting 𝑢 and 𝑣, respectively, to 𝑤′. 

Once the multi-graph collection is transformed into a simple graph collection, a traditional pattern miner is applied on 

the simple graph collection, and then, the patterns identified by the pattern miner are transformed into multi-graphs. 

Through some special labels, it is possible to perform the reverse process without losing structural or semantic 

information of the multi-graph collection. In allEdges, the simple edges and the multi-edges are transformed because 

the authors consider that a simple edge must have occurrences in the multi-edges and vice versa. However, during this 

transformation process, several vertices and edges are added. A new vertex for each edge is added and the number of 

edges is duplicated, increasing the size of each graph, and therefore, the cost of FAS mining. 

Both proposals reported in (Boneva et al., 2007; Whalen and Kenney, 1990) are focused on directed multi-graphs. The 

strategies followed by these methods require the vertex and edge label sets to be disjoint. Thus, traditional FAS miners 

cannot be used if these transformation methods are applied. On the other hand, the method proposed in (Acosta-

Mendoza et al., 2015), although it allows to apply traditional FAS miners, it builds simple graphs with the double of 

vertices and edges than those in the multi-graph collections, which increases the cost of FAS mining. Therefore, in this 

paper, we present a new reversible method for transforming an undirected multi-graph collection into an undirected 

simple graph collection considering loops. Finally, complex simple graph collections are obtained when the method 
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proposed in (Acosta-Mendoza et al., 2015) is applied, because the number of vertices and edges are duplicated in the 

transformation process. In this way, the performance of the miners is negatively affected. 

Proposed method 

In this section, we propose a solution (called onlyMulti) for mining a FAS subset from multi-graph collections taking 

advantage of the FAS miners reported in the literature. The solution proposed in this section, as we illustrate in Figure 

1, consists in transforming a multi-graph collection into a simple graph collection, mining a FAS subset from the simple 

graph collection by applying a FAS miner, and transforming the FASs into multi-graphs. 

The idea illustrated in Figure 1 has also been followed by the method (allEdges) reported in (Acosta-Mendoza et al., 

2015), but for mining all FASs from multi-graph collections, while onlyMulti is an alternative for mining a reduced 

number of FASs. 

The proposed alternative for transforming multi-graph collections into simple graph collections consists in only 

transforming loops and multi-edges while simple edges are kept without changes. In this way, less edges and vertices 

are added during the transformation process, and the FAS miner is applied over simple graph collections smaller graphs 

than those obtained by the allEdges method proposed in (Acosta-Mendoza et al., 2015). After the FAS miner is applied, 

the mined FASs are returned to the multi-graphs through the same reversing process used in allEdges. Thus, the process 

for transforming a multi-graph into a simple graph of allEdges and onlyMulti are different. 

 

Figure 1. Workflow for FAS mining by applying the proposed graph transformation method. 
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Following the proposed alternative, the process for transforming a multi-graph 𝐺′ into a simple graph 𝐺 consists in 

replacing each loop and each multi-edge by new vertices and simple edges likewise in allEdges; however, unlike in 

allEdges, the simple edges are kept without changes. In this way, a simple edge does not have occurrences in multi-

edges and vice versa and this is an important characteristic of the solution proposed to be taken into account when it is 

applied. Each loop, connecting a vertex 𝑣 of 𝐺′, is replaced by a simple edge with the label of the loop; connecting 𝑣 to 

a new vertex with a special label (𝑘). Later, each multi-edge 𝑒 in 𝐺′, with 𝜑𝐺′(𝑒)  =  {𝑢, 𝑣} and 𝑢 ≠ 𝑣, is replaced by 

two simple edges (𝑒1 and 𝑒2) both with the label of e; connecting 𝑢 and 𝑣, respectively, to a new vertex with a special 

label (𝑝). This process is shown in Figure 2 where each loop in 𝐺′ is transformed into a new vertex and a simple edge 

in 𝐺, and each multi-edge in 𝐺′ is transformed into a new vertex and two simple edges in 𝐺, obtaining the simple graph 

𝐺  from the multi-graph 𝐺′. The special label 𝑝, in the same way as 𝑘, cannot be used as label in the multi-graph 

collection and during the mining process, any other label, except by itself, cannot replace it. In this way, a non-loop 

edge will only match with other non-loop edge with the same label as well as a multi-edge will only match with other 

multi-edge with the same label. 

 Once discussed how a loop and a multi-edge is transformed into simple edges, we can introduce the algorithm 

(M2Simple) for transforming a multi-graph into a simple graph. This algorithm traverses the edges in the input multi-

graph searching the loops and multi-edges. The identified loops and multi-edges are replaced by simple edges following 

the ideas above discussed. Applying this transformation process over each graph in a given multi-graph collection, we 

can transform it into a simple graph collection. The computational complexity of this process is O(qd), where q is the 

average number of edges in the multi-graphs of the collection, and d is the number of multi-graphs in the collection. 

This complexity is obtained considering that, for each multi-graph, all its edges should be visited. 

Figure 2. Example of the transformation of a multi-graph (G0) with three multi-edges and two loops into a simple graph (G). 
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Given a multi-graph collection, through the process above described, a transformed simple graph collection is obtained. 

Then, a conventional FAS miner can be applied, and the same process introduced in (AcostaMendoza et al., 2015) can 

be used for transforming the returnable FASs into multi-graphs. Notice that, for obtaining the FASs from the multi-

graph collection, this reverse transformation process is required. 

For transforming a FAS 𝐺 (a simple graph) into a multi-graph 𝐺′, each edge 𝑒 ∈ 𝐸𝐺  with 𝜑𝐺(𝑒) = {𝑢, 𝑣} that has a 

vertex 𝑣 with label 𝑘 is transformed into a loop 𝜑𝐺′(𝑒′) = {𝑢} keeping the label of 𝑒. Each pair of edges 𝑒1 and 𝑒2 with 

𝜑𝐺(𝑒1) = {𝑢, 𝑤} and 𝜑𝐺(𝑒2) = {𝑣, 𝑤} that have a common vertex 𝑤  with label 𝑝 are replaced by an edge 𝑒′ with 

𝜑𝐺′(𝑒′) = {𝑢, 𝑣} keeping the label of 𝑒1 and 𝑒2, which have the same label. 

Following the aforementioned idea, by traversing the edges of a FAS G and replacing those edges that contain vertices 

with label 𝑝 or 𝑘 by multi-edges or loops, respectively, we can transform a simple graph into a multigraph. Notice that 

only vertices with label 𝑘 or 𝑝 are removed from the simple graph, together with the simple edges connecting those 

vertices. However, as discussed in (Acosta-Mendoza et al., 2015), not all the mined FASs should be transformed into 

multi-graphs because some of them do not represent subgraphs in the original multi-graphs. Then, with the aim of 

identifying the FASs from the original multi-graph collection, some conditions that the mined simple graph FASs must 

fulfill for being susceptible to be transformed into a multi-graph (i.e. to be a returnable FAS) were introduced in (Acosta-

Mendoza et al., 2015). In Definition 9, the aforementioned conditions are presented. 

Definition 9 (Returnable graph) Let k and p be the special labels used for representing loops and multi-edges, 

respectively. A simple graph G is returnable to a multi-graph if it fulfills the following conditions: 

1. Each vertex v ∈ VG with IG(v) = p has exactly two incident edges e1 and e2, such that JG(e1) = JG(e2) 

2. Each vertex v ∈ VG with IG(v) = k has exactly one incident edge. 

The process of transforming a simple graph FAS into a multi-graph (S2Multi) has a computational complexity O(r), 

where r is the number of edges of the input FAS. When this process is applied over a FAS set C, it has a computational 

complexity O(sc), where c is the number of FASs in C and s is the average number of edges in the FAS in C. 

Results and Discussions 

With the purpose of studying the performance of the proposed method as well as its effectiveness, in this section, two 

experiments are presented. First, the performance of the proposed method over synthetic and real collections is 

evaluated. Later, the usefulness of the FASs computed by our proposed transformation method from real images for 
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image classification is shown. All experiments were carried out on a personal computer with an Intel(R) Core(TM) i7-

3820 CPU @ 3.60 GHz with 64 GB of RAM. The algorithms S2Multi and M2Simple were implemented in ANSI-C. 

In the following experiments, several synthetic multi-graph collections are used for evaluating the performance of the 

proposed method. These synthetic collections were generated using the PyGen1 graph emulation library. 

In addition, two real image collections were used: COIL (Nene et al., 2008) and ETH (Leibe and Schiele, 2003), which 

contain images of real objects taken from different viewpoints. In these cases, each image is represented as a multi-

graph following the approaches described in (Morales-González and García-Reyes, 2013) and (Morales-González and 

García-Reyes, 2010), respectively. In COIL, we use the same 25 objects used by Morales-González and García-Reyes 

(Morales-González and García-Reyes, 2013). This collection is split into 198 (11%) images for training and 1602 (89%) 

for testing, as in (Morales-González and García-Reyes, 2013). This collection has 144 as average graph size, 19 as 

average of multi-edges per graphs and 25 classes. In ETH, we use the same 6 categories employed in (Morales-González 

and García-Reyes, 2010) (apples, cars, cows, cups, horses and tomatoes). This collection is split into 615 (25%) images 

for training and 1845 (75%) for testing, as in (Morales-González and García-Reyes, 2010). This collection has 179 as 

average graph size, 25 as average of multi-edges per graphs and 6 classes. 

Performance evaluation over synthetic collections 

Three kinds of synthetic multi-graph collections were used for evaluating the performance of both algorithms. In this 

case, we use multi-graph collections generated varying only one parameter at a time. First, we fix |D| = 1000 and |E| = 

200, varying |V | from 200 to 1000, with increments of 200. Next, we fix |V | = 200, maintaining |D| = 1000 and varying 

|E| from 200 to 1000, with increments of 200. Finally, we vary |D| from 1000 to 5000, with increments of 1000, keeping 

|V | = |E| = 200. Then, we assign a descriptive name for each synthetic collection, for example, D1kV1kE200 means that 

the collection has |D| = 1000, |V | = 1000 and |E| = 200. 

In Table 1, the performance results, in terms of runtime, and the average of vertices and edges obtained by the 

transformation algorithms (M2Simple and S2Multi) are shown. It is important to highlight that we denoted by 

M2Simple’ the algorithm for transforming multi-graphs into simple graph proposed in (Acosta-Mendoza et al., 2015). 

In this table, the runtime for mining the frequent approximate subgraphs (FASs) from the transformed simple graph 

collections is also shown. These results were achieved by transforming each multi-graph collection into a simple graph 

                                                             
1 PyGen is a graph emulation library (available in http://pywebgraph.sourceforge.net). It can be used to simulate, generate, and store different 

types of graphs and data structures.  
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collection using M2Simple or M2Simple’. The average of vertices and edges for the simple graph collections obtained 

are shown, as well as the runtime required for computing the FASs from these transformed simple graph collections. 

Finally, each pattern obtained from the simple graph collection was transformed into a multi-graph using S2Multi. 

Table 1 is split into three sub-tables according to the collection type. In these sub-tables, the first column shows the 

collection. The other two consecutive blocks, with five columns each one, show the results obtained by applying the 

transformation method specified on top. The first three columns of each block show the runtime in seconds of 

M2Simple, the FASs mining process, and S2Multi applied over the mined FASs. The other two columns specify the 

average number of the vertices and edges of each collection after the transformation from multi-graphs into simple 

graphs. 

According to the results shown in Table 1, the runtime of the transformation process grows with the increment of |D|, 

|V | and |E|, however, when the amount of edges increases, this process grows faster than by increasing the number of 

vertices and the number of graphs. The number of graphs in the collection is an important variable to take into account, 

because it affects the performance of M2Simple (M2Simple’) and S2Multi when it grows. Furthermore, S2Multi 

receives many more vertices and edges than M2Simple (M2Simple’) for the same multi-graph collection, since 

M2Simple (M2Simple’) creates an additional vertex and an additional edge for each transformed edge or loop. In this 

sense, as M2Simpleóf the method proposed in (Acosta-Mendoza et al., 2015) adds more vertices and edges in these 

collections than M2Simple of onlyMulti, then allEdges required more time over the same collections than onlyMulti, 

for both, mining patterns and returning the patterns to multi-graphs. Finally, as it can be seen in Table 1, onlyMulti 

allows mining patterns in less time than the method reported in (Acosta-Mendoza et al., 2015). 

Table 1. Performance of the method proposed in this paper and the method proposed in (Acosta-Mendoza et al., 2015), in 
terms of runtime, over different synthetic multi-graph collections. The symbol “*” means that the runtime required for the 

process was more than 48 hours, and the symbol “–” specifies that the transformation cannot be performed because 
patterns were not mined. 
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Performance evaluation over real-world collections 

In Table 2, the performance of onlyMulti over the two real image collections (COIL and ETH) is shown, represented as 

multi-graphs. In this experiment, the performance of M2Simple over the whole multi-graph collection was evaluated 

while the performance of S2Multi was evaluated over the simple graph subsets generated after applying VEAM to the 

results of M2Simple, by testing different values for the support threshold. 

Table 2. Performance of the proposed method, in terms of runtime and number of identified patterns, over two real image 

collections. 

    No. Identified  No. Returnable 

Collection Support (δ) M2Simple VEAM Patterns S2Multi Patterns 

 0.5  79s 265 0.002s              91 

COIL 0.4 1.17s 300s 867 0.008s             256 

 0.3  1143s 4156 0.041s            2163 

 0.2  15768s 82551 1.027s 62476 

 0.8  1332s 138 0.001s              90 

ETH 0.7 5.05s 5508s 883 0.008s             479 

 0.6  44208s 4717 0.040s            3824 
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 0.5  153288s 22723 0.234s 15912 

 

The first column of Table 2 shows the collection name. The second column contains the support threshold value (δ) 

used by VEAM to get a subset of patterns when it is applied to the result of M2Simple. The third column shows the 

runtime of M2Simple when it is applied over the whole collection specified in column one. The time spent by VEAM 

is shown in the fourth column, while the amount of patterns computed by VEAM appears in the fifth column. The sixth 

column contains the runtime of S2Multi for transforming the mined patterns (simple graphs) to multi-graphs. In the last 

column, we show the amount of returnable patterns. As it can be seen in this Table, the number of returnable patterns 

identified by VEAM grows as the support threshold decreases. However, it is important to highlight that the runtime of 

the proposed transformation algorithms is too small regarding the runtime required by VEAM for mining FASs. 

Classification results 

For showing the usefulness of the patterns identified by using onlyMulti, the results obtained by it in the context of 

image classification using COIL and ETH collections are shown A new classifier in not being proposed, so the design 

of a specialized classifier for images represented as multi-graphs is out of the scope of this paper. In this experiment, 

the idea of the proposed method for the FAS mining in multigraph collections is followed, where all the FASs computed 

by the proposed method are used for building an attribute vector for each image. In the same way as (Acosta-Mendoza 

et al., 2012), the vectors are described through the bag-of-word technique using the patters computed after applying the 

proposed transformation algorithm M2Simple. Finally, once we have the vector representation of the images, a 

conventional classifier is applied. As in previous experiments, the FAS mining algorithm used for this experiment was 

VEAM, but fixing to 0,66 the similarity threshold, as recommended in (Acosta-Mendoza et al., 2012). 

One of the most recent works reported in literature based on FAS for image classification is the one reported in (Morales-

González et al., 2014). Thus, the onlyMulti image classification results are contrasted against those obtained by this 

method. Since in (Morales-González et al., 2014), the best image classification results were achieved with SVM 

classifier, we used this classifier for this experiment. The SVM classifier was taken from Weka v3.6.6 (Hall et al., 2009) 

with the default parameters.  

 

 

 

 

 

 

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 12, No. 3, Julio-Septiembre, 2018 

ISSN: 2227-1899 | RNPS: 2301  

Pág. 1-16 
http://rcci.uci.cu 

14 

Grupo Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu 

Table 3. Classification results (%) using the SVM classifier over multi-graph collections representing images, which are 

represented as vectors by means of the FASs computed using several support (δ) values. 

 

δ 
0.2 

0.3 

0.4 
0.5 

COIL 
Accuracy F-measure 

94.13                       94.00 
90.32                       

92.80 83.58                       

84.85 
74.72                       58.70 

δ 
0.5 

0.6 

0.7 
0.8 

ETH 
Accuracy      F-measure 

67.48             67.50 
65.63             66.10 
64.93             80.37 
64.39             69.76 

 
 

The classification results (accuracy and F-measure results) are shown in Table 3. This table is split into two subtables 

showing the results obtained over COIL and ETH, respectively. The first column of each table shows the support 

threshold values used in each experiment. In this case, we use δ = 0,2, 0,3, 0,4 and 0,5 for COIL and δ = 0,5, 0,6, 0,7 

and 0,8 for ETH because, in both collections, if greater or smaller values of δ are used, useful patterns could not be 

identified. The second and third columns show the classification results (accuracy or F-measure), using all FASs 

computed by VEAM. 

In (Morales-González and García-Reyes, 2013), an image classification method, not based on FASs, which uses the 

same image collections (COIL and ETH) represented as multi-graphs in a similar way as in the current paper, was 

introduced. Comparing onlyMulti against the method reported in (Morales-González and García-Reyes, 2013), the 

proposal, using a simple pattern based classifier, obtained better results over the COIL collection, since in (Morales-

González and García-Reyes, 2013) an accuracy of 91,60 was reported while onlyMulti scored 94,13. In the case of the 

ETH collection, we did not improve upon the results reported in (Morales-González and García-Reyes, 2013) where 

the authors reported an accuracy of 88,0; while the onlyMulti best result was 67,48. In spite of these results, this 

experiment shows the usefulness of onlyMulti, which allows transforming a multi-graph collection into a simple graph 

collection for applying traditional FAS miners. Although onlyMulti can be applied in different contexts where data are 

represented as multi-graphs in order to find out interesting patterns which could be useful for solving different problems. 

Conclusions 

In this paper, a new method (onlyMulti) for frequent approximate subgraph (FAS) mining in multi-graph collections by 

transforming multi-graphs into simple graphs and vice versa is proposed. OnlyMulti, as a first step, transforms a multi-
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graph collection into a simple graph collection, then over this collection a FASs mining algorithm is applied and 

onlyMulti transforms the patterns found to multi-graphs. 

From the experiments reported in this paper, we can conclude that onlyMulti is able to mine FASs from multi-graph 

collections in a shorter time, producing smaller simple graphs than the only alternative option reported in literature. 

This is very important in order to reduce the cost of the FAS mining step. Based on the experiments we can conclude 

that the time required for mining multi-graphs using onlyMulti is smaller than applying the closest state-of-the-art 

transformation method. In addition, the usefulness of the FASs computed over multi-graph collections by applying 

onlyMulti in an image classification problem was shown, where in some cases the results obtained by the patterns 

computed by using the proposed method outperform the results obtained by state-of-the-art classifiers non-based on 

FASs. 

Acknowledgment 

This work was partly supported by the National Council of Science and Technology of Mexico (CONACyT) through 

the scholarship grant 287045. 

References 

N. Acosta-Mendoza, A. Gago-Alonso, and J.E. Medina-Pagola. Frequent approximate subgraphs as features for graph-based image 

classification. Knowledge-Based Systems, 27:381–392, 2012. 

N. Acosta-Mendoza, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, A. Gago-Alonso, and J.E. Medina-Pagola. A New Method Based 

on Graph Transformation for FAS Mining in Multi-graph Collections. Acepted. In Pattern Recognition, pages 13–22. Springer, 

2015. 

Y. Björnsson and K. Halldórsson. Improved Heuristics for Optimal Pathfinding on Game Maps. In American Association for 

Artificial Intelligence, page 9, 2006. 

I. Boneva, F. Hermann, H. Kastenberg, and A. Rensink. Simulating Multigraph Transformations Using Simple Graphs. Electronic 

Comunications of the EASST, 6, 2007. 

R. Cazabet, H. Takeda, and M. Hamasaki. Characterizing the nature of interactions for cooperative creation in online social 

networks. Social Network Analysis and Mining, 5(1):1–17, 2015. 

D.J. Cook and L.B. Holder. Substructure discovery using minimum description length and background knowledge. Journal of 

Artificial Intelligence Research, 1:231-255, 1994. 

M. Flores-Garrido, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trinidad. AGraP: an algorithm for mining frequent patterns in a single 

graph using inexact matching. Knowledge and Information Systems, 42(2): 1–22, 2015. doi: 10.1007/s10115-014-0747- x. 

J.A. González, L.B. Holder, and D.J. Cook. Graph-Based Concept Learning. In Proceedings of the Fourteenth International Florida 

Artificial Intelligence Research Society Conference, pp. 377-381, Key West, Florida, USA, 2001. AAAI Press. 

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 12, No. 3, Julio-Septiembre, 2018 

ISSN: 2227-1899 | RNPS: 2301  

Pág. 1-16 
http://rcci.uci.cu 

16 

Grupo Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu 

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The WEKA Data Mining Software: An Update. 

Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Explorations, 11:10–18, 2009. 

Y. Jia, J. Zhang, and J. Huan. An efficient graph-mining method for complicated and noisy data with real-world applications. 

Knowledge Information Systems, 28(2):423–447, 2011. 

N.S. Ketkar. Subdue: compression-based frequent pattern discovery in graph data. In OSDM’05: Proceedings of the 1st international 

workshop on open source data mining, pp. 71-76. ACM Press, 2005. 

B. Leibe and B. Schiele. Analyzing Appearance and Contour Based Methods for Object Categorization. In IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR’03), pages 409–415. Madison, WI, USA, June 16–22 2003. 

A. Morales-González and E. B. García-Reyes. Assessing the Role of Spatial Relations for the Object Recognition Task. In The 15th 

Iberoamerican Congress on Pattern Recognition (CIARP’10), volume 6419 of Lecture Notes in Computer Science, pages 549–

556. Springer, Heidelberg, 2010. 

A. Morales-González and E. B. García-Reyes. Simple object recognition based on spatial relations and visual features represented 

using irregular pyramids. Multimedia tools and applications, 63(3):875–897, 2013. 

A. Morales-González, N. Acosta-Mendoza, A. Gago-Alonso, E.B. García-Reyes, and J.E. Medina-Pagola. A new proposal for 

graph-based image classification using frequent approximate subgraphs. Pattern Recognition, 47(1):169–177, 2014. ISSN 0031-

3203. 

S. Nene, S. Nayar, and H. Murase. Columbia Object Image Library (COIL-100). Structural, Syntactic, and Statistical Pattern 

Recognition, Joint IAPR International Workshop, SSPR & SPR 2008, 2008. 

F. Terroso-Saez, M. Valdés-Vela, and A.F.. Skarmeta-Gómez. Online Urban Mobility Detection Based on Velocity Features. In 

Proceeding of The 17th International Conference of Big Data Analytics and Knowledge Discovery, volume LNCS 9263, pages 

351–362. Valencia, Spain, 2015. 

K. Wang, X. Xie, H. Jin, P. Yuan, F. Lu, and X. Ke. Frequent Subgraph Mining in Graph Databases Based on MapReduce. In G. 

Wang, Y. Han, and G. Martínez, editors, Advances in Services Computing - 10th Asia-Pacific Services Computing Conference, 

APSCC 2016, Zhangjiajie, China, November 16-18, 2016, Proceedings, pp. 464-476, Cham, 2016. Springer International 

Publishing. 

J.S. Whalen and J. Kenney. Finding maximal link disjoint paths in a multigraph. Global Telecommunications Conference and 

Exhibition. ’Communications: Connecting the Future’, 1:470–474, 1990. 

X. Yan and J. Huan. gSpan: Graph-Based Substructure Pattern Mining. In International Conference on Data Mining, Japan, 2002. 

Maebashi. 

R. Youssef, A. Kacem, S. Sevestre-Ghalila, and C. Chappard. Graph Structuring of Skeleton Object for Its HighLevel Exploitation. 

Image Analysis and Recognition, LNCS 9164:419–426, 2015. 

F. Zhu, X. Yan, J. Han, and P.S. Yu. gPrune: A Constraint Pushing Framework for Graph Pattern Mining. In Advances in Knowledge 

Discovery and Data Mining, 11th Pacific-Asia Conference, PAKDD 2007, Nanjing, China, May 22-25, Proceedings, volume 

4426 of LNCS, pp. 388-400. Springer, 2007. 

http://rcci.uci.cu/
mailto:rcci@uci.cu

