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Abstract

Gait recognition is an important biometric technique for video surveillance tasks, due to the advantage of using
it at distance. In this paper, we present a persistent homology-based method to extract topological features
from the body silhouettes of a gait sequence. It has been used before in several papers for the second author
for human identification, gender classification, carried object detection and monitoring human activities at
distance. As the previous work, we apply persistent homology to extract topological features from the lowest
fourth part of the body silhouette to decrease the negative effects of variations unrelated to the gait in the
upper body part. The novelty of this paper is the introduction of the use of a metric learning to learn a
Mahalanobis distance metric to robust gait recognition, where we use Linear Discriminant Analysis. This
learned metric enforces objects for the same class to be closer while objects from different classes are pulled
apart. We evaluate our approach using the CASIA-B dataset and we show the effectiveness of the methods
proposed compared with other state-of-the-art methods.

Keywords: TDA, gait recognition, persistent homology, linear discriminant analysis, metric learning.

Resumen
El reconocimiento del andar es una  técnica biométrica  importante para  las  tareas de videovigilancia, debido a 
la ventaja de su uso a grandes distancias. En este artículo, presentamos un método basado en  la homología 
persistente para extraer caracteŕısticas topológicas de las siluetas de una secuencia del andar. Esta metodoloǵıa

ha sido utilizado anteriormente en varios art́ıculos por el segundo autor para la identificación de personas por
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la forma de caminar, clasificación de género, detección de objetos que transporta la persona y el monitoreo de
actividades humanas a una distancia determinada. Como en los trabajos anteriores, aplicamos la homoloǵıa
persistente para extraer las caracteŕısticas topológicas de la cuarta parte inferior de la silueta del cuerpo humano
con el objetivo de disminuir los efectos negativos de las variaciones no relacionadas con el andar en la parte
superior del cuerpo. La novedad de este trabajo es la introducción del uso de un aprendizaje de métrica para el
reconocimiento robusto del andar, donde se utiliza la técnica Análisis Discriminante lineal(LDA). Esta métrica
aprendida obliga a que los objetos de la misma clase estén más cerca, mientras que los objetos de diferentes
clases se separan. Evaluamos nuestro enfoque utilizando la base de datos CASIA-B y mostramos la efectividad
de los métodos propuestos en comparación con el estado del arte.

Palabras claves: TDA, reconocimiento de la marcha, homología persistente, análisis de discrim- 
inante lineal, aprendizaje de métrica.

Introduction

Gait is a behavioral biometric which has advantages over other biometrics techniques because it is available even

when the subject is at a distance from a camera because it can be recognized from a relatively low-resolution

image sequence [Mori et al. (2010)] and the gait features can be obtained without subject cooperation. Because

of these advantages, gait recognition is suitable for many applications such as surveillance, forensics, and

criminal investigation. Currently, there are good results in the state of the art for persons walking under

natural conditions [Yu et al. (2006), Lee et al. (2014), Lamar-Leon et al. (2017)]. However, it is not common

for people to walk without carrying a bag, wearing a coat or anything that changes the natural gait. The

most successful approaches in gait recognition use silhouettes-based technique to get the features and the best

results have been obtained from the methods based in Gait Energy Images (GEI) [Yu et al. (2006), Lee et al.

(2014), Rida et al. (2016),Wu et al. (2017)]. The GEI methods have been used to eliminate the effects of

carrying a bag or wearing a coat. Moreover, these methods are highly correlated with errors frequently appear

in the existing algorithms for background segmentation. This implies that GEI methods are influenced by the

shape of the silhouette instead of the relative positions among the parts of the body while walking.

In this work, the gait was modeled using a persistent-homology-based representation (called topological signa-

ture of the gait sequence)[Lamar-Leon et al. (2017)] , since it gives features of the objects that are invariant to

deformation. We start the procedure with a sequence of silhouettes obtained from a video. A simplicial com-

plex ∂K(I) which represents the human gait is then constructed (see Section ). Sixteen persistence barcodes

are then computed (see Section ) considering, respectively, the distance to eight fixed planes (2 horizontal,

2 vertical, 2 oblique and 2 depth planes) in order to completely capture the movement in the gait sequence.

To decrease the negative effects of variations unrelated to the gait in the upper body part, we only select the
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rcci@uci.cu

18

Revista C ubana de C iencias Informáticas 
Vol. 12, No. 3, Julio-Septiembre, 2018 
ISSN: 2227-1899 | RNPS: 2301
Pág. 17-31
http://rcci.uci.cu

http://rcci.uci.cu
mailto:rcci@uci.cu


lowest fourth part of the body silhouette (legs-silhouette), (see in Section ).

Some researchers have shown that the classification can be further improved by metric learning methods, which

are important for many practical applications, such as image retrieval [Lee et al. (2008), Mensink et al. (2013),

Gao et al. (2014)], face verification [ Lu et al. (2015), Huang et al. (2015),Koestinger et al. (2012)], and person

identification [Chen et al. (2015), Liao et al. (2015), Liao and Li (2015)]. Similarity metric learning aims

to learn an appropriate distance or similarity measure to compare pairs of example. This provide a natural

solution for the verification task. The most popular way to gain robustness to covariates is to incorporate

spatial metric learning based in Mahalanobis distance. However, difficult to cover all the variations only by

spatial metric learning because the topological features are affected by covariates such as clothing and carrying

bag.

In this work we considered the Linear Discriminant Analysis(LDA) [Hastie and Tibshirani (1996)] to separate

pairs of the same subjects and different subjects well in a data-driven way (see in Section ). In the context

of metric learning, LDA computes a linear projection L that maximizes the amount of between-class variance

relative to the amount of within-class variance. Experiments were conducted on CASIA-B gait database and

the results in Section demonstrate the improvement of gait recognition performance via the combination of

topological features and metric learning.

Related Works

Gait Recognition overview

In recent years, various techniques have been proposed to solve the gait recognition problem. The appearance-

based approaches directly use input or silhouette images in a holistic way to extract gait features without model

fitting, and hence they generally work well. In particular, silhouette based representation such as gait energy

images(GEI)[Man and Bhanu (2006)], frequency domain features (FDFs)[Makihara et al. (2006)], chrono gait

images[Tao et al. (2007)], and Gabor GEIs[Wang et al. (2012)], are dominant in the gait recognition community

because of their sample yet effective properties. The appearance-based approaches, however, often suffer from

large intra-subject appearance changes due to covariates such as clothing, carrying status, view and walking

speed. Model-based methods attempt to explicitly model the human body or motion by employing the static

and dynamic body parameters to execute model matching in each frame of a walking sequence. They require

a relatively high image resolution to get reasonable human model fitting results and incur high computational

costs [Zhao et al. (2006),Ariyanto and Nixon (2011),Bodor et al. (2009)].
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Distance metric learning

Euclidean distance is usually used for simplicity, however, it has serious effects on the performance in classi-

fication, clustering and retrieval task. Many machine learning methods heavily rely on the selected distance

metric, which measures how similar two samples are. Therefore, distance metric leaning has attracted great

interest. Most of the distance metric learning algorithms explored the pairwise constrains between training

samples to keep the samples of the same class close and the samples from different classes apart.

The distance metrics are based on multivariate data distributions, such as Mahalanobis distance. The most

classical algorithm is Xing’s method [Xing et al. (2003)] which formulated distance metric learning as a con-

strained convex programming problem. Du and Zhang (2014) proposed a Mahalanobis distance based metric

learning based on a gradient descent solver with an alternative updating strategy for the purpose of maxi-

mizing the inter-class distance, and at the same time minimizing the intra-class distance. Another important

family is embedding method, i.e to transform the data set from the original space into its subspace. The most

popular way to gain robustness to covariates is to incorporate spatial metric learning such as Linear Discrimi-

nant Analysis (LDA) [Hastie and Tibshirani (1996)], general tensor discriminant analysis (GTDA) [Tao et al.

(2006)], discriminant analysis with tensor representation (DATER) [Xu et al. (2006)], the random subspace

method (RSM) [Guan et al. (2012)]. Zhang et al. (2009) proposed a patch alignment framework to unify PCA,

LDA, LPP, NPE and so on, and this work plays an important role in better understanding the intrinsic dif-

ference of these manifold leaning based dimension reduction algorithms. Gui et al. (2010) added discriminant

information into LPP. Gong et al. (2015) proposed deformed graph Laplacian and signed Laplacian embedding

for semi-supervised learning. In contrast to previous metric learning approaches, Gui et al. (2012) proposed a

discriminant sparse NPE and later Yang et al. (2015) gave a collaborative representation based on L2 norm

graph. In order to improve the discrimination power, Zhou et al. (2011) proposed Simultaneous Discriminant

Analysis (SDA) to gather the LR and HR images from the same class and simultaneously separate different

classes. Makihara et al. introduce a metric on joint intensity to mitigate the large intra-subject differences

and leverage the subtle inter-subject differences. They learn such a metric so as to separate pairs of the same

subjects and different subjects well in a data driven way.

Topological model of the gait: Simplicial Complexes

In this section we introduce the construction of the simplicial complexes ∂K(I) which represents the input

human gait sequence. We start the procedure with sequence of silhouettes obtained from a gait sequence.

With the intention of a fair comparison, we get the sequences from the background segmentation provided in

CASIA-B dataset.
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Figure 1. Left: Sequence of gait silhouette. Right: Simplicial complex ∂K(I)

As we did in previous paper[ Lamar-León et al. (2012), Leon et al. (2013) Lamar-Leon et al. (2014), Lamar-Leon

et al. (2016)], for obtaining the simplicial complex from a gait, we first build a 3D binary image I = (Z3, B)

by stacking k consecutive silhouettes, where B ⊂ Z3 is the foreground and Bc = Z3 − B is the background,

respectively of a subsequence of representation is built stacking silhouettes aligned by their gravity centers

(gc). Later, I is used to derive a cubical complex Q(I). The cubical complex is a combinatorial structure

constituted by a set of unit cubes with faces parallel to the coordinate planes and vertices in Z3, together with

all its faces. The 0−faces of a cube c are its 8 corners (vertices), its 1−faces are its 12 edges, its 2−faces are its

6 squares and, finally, its 3−faces is the cube itself. Then, a cube with vertices V = {(i, j, k), (i+1, j, k), (i, j+

1, k), (i, j, k+ 1), (i+ 1, j+ 1, k), (i+ 1, j, k+ 1), (i, j+ 1, k+ 1), (i+ 1, j+ 1, k+ 1)}, with (i, j, k) ∈ Z3, is added

to Q(I) together with all its faces if and only V ⊆ B. The simplicial representation ∂K(I) of I is obtained

from Q(I) by subdividing each square of Q(I) in 2 triangles together with all their faces (vertices and edges).

Finally, coordinates of the vertices of ∂K(I) are normalized to coordinates (x, y, t), where 0 ≤ x, y ≤ 1 and t

is the number of silhouette of the sub-sequence of representation.

To decrease the negative effects of variations unrelated to the gait in the upper body start (related, for example,

to hand gestures like talking on cell), we selected the lowest fourth part of the body silhouette (legs-silhouette).

This selection is endorsed by the result given in [Bashir et al. (2010)] , which shows that this part of the body

provides most of the necessary information for classification. We start the procedure with a sequence of

silhouettes obtained from a video. With the intention of a fair comparison, we get the sequences from the

background segmentation provided in CASIA-B dataset.
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Figure 2. Left: Sequence of legs-silhouettes. Right: Simplicial complex ∂K(I) of a legs-silhouette sequence

Filtration of the Simplicial Complex

The next step in this process is to sort the simplices of ∂K(I) in order to obtain a filtration, which is a partial

ordering of the simplices of ∂K(I) dictated by a filter function f : ∂K(I)→ R, satisfying that if a simplex σ

is a face of another simplex σ′ in ∂K(I) then f(σ) ≤ f(σ′) (i.e., σ appears before or at the same time that σ′

in the ordering).

Figure 3. Eight planes used for computing the eight filtrations for ∂K(I): two vertical planes, two horizontal planes
and four oblique planes

In this work, we use eight filtrations obtained from eight planes. For each plane π, it defines the filter function

fπ : ∂K(I) → R which assigns to each vector vertex of ∂K(I) its distance to the plane π, and to any other

simplex of ∂K(I), the biggest distance of its vertices to π. Ordering the simplices of ∂K(I) according to the

values of fπ, we obtain the filtration ∂Kπ for ∂K(I) associated to the plane π.

Observe that, the filtration associated to each plane is obtained in a different way: By adding one simplex

at each time (i.e., a total ordering of the simplices is constructed). Nevertheless, the filtration presented in

[Lamar-Leon et al. (2016)] and in this paper, is constructed by adding a bunch of simplices with possible
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different cardinalities, which makes the method robust to variation in the amount of simplices of the simplicial

complex and therefore, robust to noise.

Persistent homology and topological signature

The topological signature of a gait sequence is obtained by the compute the persistent homology of each

filtration. Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It

is built on top of homology, which is a topological invariant that captures the amount of connected components

(0−cycles), tunnels (1−cycles), cavities (2−cycles) and similar in higher dimensions of a shape. Small size

features in persistent homology are often categorized as noise, while large size features describe topological

properties of shapes [Edelsbrunner and Harer (2010)].

Formally, let K be a simplicial complex. A p−chain is denoted by a Cp(K). Let us define the homomorphism:

∂p : Cp(K) → Cp−1(K) called boundary operator such that for each p−simplex σ of K, ∂p(σ) is the sum of

its faces. For example, if σ is a triangle, ∂2(σ) is the sum of its edges. The kernel of ∂p+1 is called the group

of p−cycles in Cp(K) and the image of ∂p+1 is called the group of p−boundaries in Cp(K). The p−homology

Hp(K) of K is the quotient group of p−cycles relative to p−boundaries. Then, 0−homology classes represents

the connected components of K, 1−homology classes its tunnels and 2−homology classes its cavities.

To explain the concept of persistent homology, consider a filtration (i.e., a list of sorted simplices) Kp =

(σ1, σ2, · · · , σm) for a simplicial complex K obtained from a given filter function fp : K → R. Suppose that

the simplices of the filtration are added in order (i.e., exactly one simplex is added each time). If σi completes

a q−cycle (q is the dimension of σi) when σi is added to Ki−1 = (σ1, · · · , σi−1), then a q−homology class γ is

born at time fp(σi); otherwise, a (q−1)−homology class dies at time fp(σi). The differences between the birth

and death time of a homology class is called its persistence, which quantifies the significance of a topological

attribute. If γ never dies, we set its persistence to infinity. For a q−homology class that is born at time fp(σi)

and dies at time fp(σj), we draw a segment with endpoints fp(σi) and fp(σj) to get the q−persistence barcode

of the filtration.

Topological Signature for a Gait Sequence

Now, the topological signature is computed from the persistence barcodes obtained for ∂Kπ for each plane π.

Observe that fixed a reference plane π, the length of each interval in the persistence barcode obtained for ∂Kπ

is : a) less or equal than 1 if π is an horizontal or vertical plane, and b) less or equal than
√

2 if π is an oblique

plane. Now for computing the topological signature, for each plane π, the 0−persistence barcode (i.e., the
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lifetime of connected components) and the 1−persistence barcode (i.e., the lifetime of tunnels) of the filtration

∂Kpi are explored according to a uniform sampling. More precisely, given a positive integer n (being n = 24

in our experimental results, obtained by cross validation), we computer the integer h = [ kn ], which represents

the width of the ”window” we use to analyze the persistence barcode, being k the biggest distance of a vertex

in ∂K(I) to the given plane π.

For example, let us suppose an scenario in which m j-homology classes are born in [s ·h, (s+ 1) ·h] and persist

or die at the end of [(s+ 1) · h, (s+ 2) · h] and not any other j-homology class is born, persists or dies in these

intervals. Then, we put 0 in entries 2s and 2s + 3, and m in entries 2s + 1 and 2s + 2. On the other hand,

let us suppose that m j-homology classes are born and die in [s · h, (s + 1) · h] and in [(s + 1) · h, (s + 2) · h]

and not any other j-homology class is born, persists or dies in these intervals. Then, we put 0 in entries 2s

and 2s + 2 and m in entries 2s + 1 and 2s + 3. Observe that only considering (a) and (b) separately, we can

distinguish both scenarios. This way, fixed a plane π, we obtain two 2n-dimensional vectors for Kπ, one for

the 0-persistence barcode and the other for the 1-persistence barcode associated to the filtration Kπ. Since

we have eight planes, {π1, · · · , π8}, and two vectors per plane, {V 0
πi , V

1
πi}i=1,··· ,8, we have a total of sixteen

2n-dimensional vectors which form the topological signature for a gait sequence.

Metric Learning Approach

Selecting an appropriate distance metric is critical to many learning algorithms, such as k-means, nearest

neighbor searches, and others. However, the choice of such a measure is very specific problem and, ultimately

dictates the success or failure of the learning algorithm. The distance metric learning approach has been

proposed for both unsupervised and supervised problems. In this section, we first introduce the general idea

of Mahalanobis metric learning and then give an overview of the approach used in this study.

Mahalanobis distance learning is a prominent and widely approach for improving classification results by

exploiting the structure of the data. Given n data points xi ∈ Rm, the goal is to estimate a matrix M such

that:

dM (xi, xj) = (xi − xj)TM(xi − xj)

describes a pseudo-metric. In fact, this is assured if M is positive semi-definite. If M =
∑−1(i.e.,the inverse

of the sample covariance matrix), then dM is referred to as the Mahalanobis distance. Thus, given a pair pf

samples (xi, xj) we break down the original multi-class problem into a two-class problem in two steps. First,

we transform the samples from the data space to the label difference space X = {xij = xi − x − j} which is

inherently given by the metric definitions. Moreover, X is invariant to the actual locality of the samples in

the feature space. Second, the original class labels are discarded and the samples are arranged using pairwise
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equality and inequality constrains, where obtain the classes same S and different D:

S = {(xi, xj)|y(xi) = y(xj)}

D = {(xi, xj)|y(xi) 6= y(xj)}

In our particular case the pair (xi, xj) consists of the topological descriptor associated to each sample.

Linear Discriminant Analysis: Different ways have been proposed to estimate Mahalanobis distance met-

rics to compute distance in k-NN classification. This approach has been used to discover informative linear

transformations of the input space, which can be seen as inducing a Mahalanobis distance metric in the original

space.

Let xi ∈ Rm be a sample and c its corresponding class label. Then, the goal of Linear Discriminant Anal-

ysis(LDA) Hastie and Tibshirani (1996) is to compute a classification function g(x) = LTx such that the

Fisher-criterion

Lopt = argmaxL
|LTSbL|
LTSwL

, (1)

where Sw and Sb are the within-class scatter and between-class scatter matrices, is optimized.

In fact, LDA is to project the high-dimensional samples into a low-dimensional subspace using linear mapping,

which has the maximum inter-class distance and minimum intra-class distance between the projected samples

in the low dimensional subspace through searching for an optimized projection matrix. It operates in a

supervised setting and uses the class labels of the inputs to derive informative linear projections. In the

context of metric learning, LDA computes a linear projection L that maximizes the amount of between-class

variance relative to the amount of within-class variance. The linear transformation L is chosen to maximize

the ratio of between-class to within-class variance, subject to the constraint that L defines a projection matrix.

The traditional LDA algorithm is still attractive compared to several recently developed metric learning [Liao

et al. (2014)].

Discussions and Results

In this section we show the results in two experiments using CASIA-B dataset. The CASIA-B dataset has 124

persons, and 10 samples for each of 11 different angles at which a person is taken. For each angle there are

six samples walking under natural conditions (CASIA-Bnm), there are two samples of persons carrying some

sort of bag (CASIA-Bbg) and the remaining two samples for persons wearing coat (CASIA-Bcl). CASIA-B

provides image sequences with background segmentation for each person. In the first experiment we used
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four sequences by person from the CASIA-Bnm to train and we used the other two sequences by person from

CASIA-Bnm, CASIA-Bbg and CASIA-Bcl to test. Our results for side view (90 degrees) are reported in Table

1, where the experiment was repeated 5 times using 200 PCA components, which provide the best results.

The result of our previous method using cosine distance and angle distance was also evaluated using always

the lowest fourth part of the body silhouette.

Table 1. Accuracy (in %) using training sets consisting of samples under similar covariate conditions (without carrying
a bag or wearing a coat).

Methods CASIA-Bbg CASIA-Bcl CASIA-Bnm Average

Yu et al. (2006) 52.0 32.73 97.6 60.8
Bashir et al. (2010) 78.3 44.0 100 74.1

Singh and Biswas (2009) 74.58 77.04 93.44 81.7
Rida et al. (2016) 81.70 68.80 93.60 81.40

Lishani et al. (2014) 76.90 83.30 88.70 83.00
Previous Method Lamar-Leon et al. (2017)

using cosine 80.5 81.7 92.4 84.9
using angle 84.2 87.6 94.1 88.6

Our Method 87.1 87.9 94.35 89.78

In the second experiment, we considered a mixture of normal, carrying-bag and wearing-coat sequences, since

it models a more realistic situation where persons do not collaborate while the samples are being taken. We

take six sequences to train: four sequences from CASIA-Bnm, one sequence from CASIA-Bbg and one sequence

from CASIA-Bcl, the rest was used to test. Using this training data we generated 123 topological signatures,

one for each person in the database, this gave us 246 sequences for testing: 123 persons times 2 sequences by

person. The experiment was repeated 5 times using 200 PCA components too. Table 2 shows the result of

the accuracy. As it can be seen in tables, in general to introduce a metric learning to replace the cosine and

angle distance achieve better results.

Table 2. Accuracy (in %) using training sets consisting of samples under different covariate conditions (walking-normal,
carrying-bag and wearing-coat).

Methods CASIA-Bbg CASIA-Bcl CASIA-Bnm Average

Bashir et al. (2010) 55.6 34.7 69.1 53.1
Previous Method Lamar-Leon et al. (2017) 92.3 94.3 94.7 93.8

Our Method 95.16 90.32 96.37 93.95
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Conclusion

In this paper we have presented an algorithm for gait recognition, a technique with special attention in

tasks of video surveillance. We have used persistent homology to model the gait, similar, as we did in our

previous approaches. The algorithm presented here is slightly different to previous works in the final step

(classification), where, we introduced the use of metric learning to learn a Mahalanobis distance metric to

robust gait recognition. This learned metric enforces objects for the same class to be closer while objects

from different classes are pulled apart. We conducted experiments using CASIA-B database, and showed the

effectiveness of the methods proposed compared with other state-of-the-art methods. Besides, the topological

features have been tested here using only the lowest fourth part of the body silhouette. Then, the effects of

variations unrelated to the gait in the upper body part, which are very frequent in real scenarios, decrease

considerably. This confirms that the highest information in the gait is in the motion of the legs and to learn

the similarity from data improves the results .
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