
Revista Cubana de Ciencias Informáticas 
Vol. 13, No. 1, Enero-Marzo, 2019
ISSN: 2227-1899 | RNPS: 2301
Pág. 31-44
http://rcci.uci.cu

Tipo de artículo: Artículo original

Temática: Inteligencia artificial

Recibido: 29/08/2018 | Aceptado: 27/11/2018 

Classifier ensemble algorithm for learning from non-stationary 
data stream

Ensamble de clasificadores para el aprendizaje a partir de
flujos de datos no estacionarios

Alberto Verdecia Cabrera1,4*, Isvani Frías Blanco2, Agustín Ortiz Diaz3, Yanet Rodríguez 
Zarabia4, Héctor Raúl González Diez5
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Abstract
Nowadays, many sources generate unbounded data streams at high incoming rates. It is impossible to store
these large volumes of data and it is necessary to process them in real time. Because these data are acquired
over time and the dynamism of many real world situations, the target function to be learned can change over
time, a problem commonly called concept drift. This paper presents a new ensemble algorithm called Classifier
Ensemble Algorithm (CEA), able for learning from data streams with concept drift. CEA manipulates these
changes using a change detector in each base classifier. When the detector estimates a change, the classifier
in which the change was estimated is replaced by a new one. CEA combines the simplicity of the bagging
algorithm to train base classifiers and Exponentially Weighted Moving Average (EWMA) control charts to
estimate the weights of each base classifier. The proposed algorithm is compared empirically with several
bagging family ensemble algorithms able to learn from concept-drifting data. The experiments show promising
results from the proposed algorithm (regarding accuracy), handling different types of concept drifts.

Keywords: classifier ensemble, concept drift, data stream

Resumen
En la actualidad, muchas fuentes generan flujos de datos ilimitados a altas tasas de entrada. Es imposible
almacenar estos grandes volúmenes de datos por lo que es necesario procesarlos en tiempo real. Debido a que
estos datos se adquieren a lo largo del tiempo y la dinámica de muchas situaciones reales, la función objetivo
que se debe aprender puede cambiar con el tiempo, un problema que comúnmente conocido como cambio de
concepto. En este art́ıculo se presenta un nuevo algoritmo de ensamble denominado Algoritmo de Ensamble
de Clasificadores (CEA), capaz de aprender de flujos de datos con cambios de concepto. CEA manipula estos
cambios utilizando un detector de cambios en cada clasificador base. Cuando el detector estima un cambio,
el clasificador en el que se estimó el cambio se reemplaza por uno nuevo. CEA combina la simplicidad del
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algoritmo de bagging para entrenar clasificadores base y el esad́ıstico EWMA para estimar los pesos de cada
clasificador base. El algoritmo propuesto se compara emṕıricamente con varios algoritmos de ensamble basados
en bagging capaces de aprender de flujos de datos con cambios de concepto. Los experimentos muestran que
el algoritmo propuesto muestra resultados prometedores (con respecto a la precisión), manipulando diferentes
tipos de cambios de concepto.

Palabras claves: cambio de concepto, ensamble de clasificadores, flujos de datos

Introduction
The volume of data generated by sensors, Internet, location devices, cell-phones, and many others is constantly

increasing. The size of this data is potentially infinite, due to its constant generation and thus, it is necessary

to process them with limited computational resources. The use of machine learning techniques is a viable

option for this processing. Machine learning can be classified into two types, depending on how the training

examples are presented (Nishida, 2008): batch learning and online learning. A batch learning system is first

given a large number of examples and then learns them all at once. In contrast, an online learning system is

given examples sequentially and learns them one by one. In classification tasks, a data stream is commonly

defined as a very large (potentially infinite) sequence of pairs that are acquired over time. These pairs, called

instances or examples, are composed of a set of attributes and a class label. Because of the temporal dimension

of the data, and the dynamism of many real-world situations, the target function to be learned can change over

time, a problem commonly known as concept drift. Consequently, the learning algorithms must be updated

with respect to the most recent concepts (Gama et al., 2014).

Classifier ensembles have been successfully used for mining data streams (Zang et al., 2014; Ort́ız Dı́az et al.,

2014; Ghomeshi et al., 2019). Ensemble methods combine the predictions from base classifiers aiming at

improving the predictive accuracy obtained by a single classifier. Classifier ensembles require three main

components in their design (Kuncheva, 2004): (1) a method for training the base classifiers, (2) a voting

procedure, and (3) the base learning algorithms. However, in order to deal with concept drift, previous

ensemble methods have principally been focused on modifying the structure of the ensemble. They have used

performance measures to monitor the ensemble consistency regarding new data. Significant variations in the

performance values are interpreted as a concept drift, and the ensemble algorithms eliminate, reactivate or

add new base classifiers dynamically in response to these variations (Bifet et al., 2009, 2010b; Fŕıas-Blanco

et al., 2016; Verdecia-Cabrera et al., 2018).

For example, Oza and Russell (2001) proposed online bagging and boosting methods for training base classifiers,

assuming that concepts are stationary. Online bagging can straightforwardly be applied to learning from

concept- drifting data. In this approach, the weighting mechanism gives the same importance to all training
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instances. Examples of algorithms based on online bagging include OzaBagADWIN and LeveragingBag (Bifet

et al., 2009, 2010b), which use the ADWIN algorithm (Bifet, 2010) for change detection and error estimates.

When a change is detected, the worst classifier in the ensemble is removed and a new classifier is added to

the ensemble. Even though these algorithms are able to learn from non-stationary data, they do not handle

concept drift explicitly in the base classifiers.

This motivated us to present a new ensemble method, named Classifier Ensemble Algorithm (CEA), for data

stream classification with concept drift. CEA combines the simplicity of the online bagging algorithm (Oza and

Russell, 2001) and the EWMA (Exponentially Weighted Moving Average) method (Hunter and others, 1986)

to weight the base classifiers. To manipulate changes in concept in the base classifiers CEA uses Hoeffding-

based Drift Detection Method (HDDM) (Frias-Blanco et al., 2015) for drift detection and error estimates,

which monitors error rates in order to trigger three different drift signals during the learning process. HDDM

triggers the in-control signal when the current concept remains stable, warning when a concept drift is likely

to be approaching, and out-of-control when a concept drift is detected. So, when the detector estimates a

change, the classifier in which the change was detected is replaced by a new one. To train the base classifiers,

we use previous online bagging.

Materials and methods 
Concept drift

In online learning, a classification task is generally defined for a sequence (possibly infinite) of instances

S = e1, e2, ..., ei, ... arriving over time. Every training instance ei = (~xi, yi) is formed by a vector ~xi and a

discrete value yi. Each vector ~xi ∈ ~X has the same dimensions. Each dimension is named attribute and each

component xij ∈ ~xi is an attribute value (numeric or symbolic). The discrete value yi is named label and

taken from a finite set Y of possible class values.

It is commonly assumed that the data stream S is generated by a probability density function P ( ~X, Y ). The

classification learning task is to obtain a model from S that approximates P as P̂ , so that P̂ maximizes the

predictive accuracy (Verdecia-Cabrera et al., 2018). Concept refers to the probability distribution function of

the problem at a given time stamp . Therefore, a change in P after a time stamp entails a concept change or

concept drift. Gama et al. (2014) distinguish two main types of concept drift:

• Real concept drift refers to changes in the distribution of posterior probability of the classes P (Y | X).

These changes can occur without a change in the probability distribution of the instance space P (X).

• Virtual concept drift happens when the probability distribution of the instance space changes (P (X))
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without affecting P (Y | X).

Stanley (2003) recognizes two types of changes related to the frequency with which the instances that describe

the new concept are received: abrupt and gradual. An abrupt change occurs when the transition between

consecutive concepts is instantaneous. A gradual change occurs when the transition period between consecutive

concepts contains a certain number of training instances.

Classifier ensemble algorithm

In this section, we present a new classifier ensemble in combination with online bagging and EWMA, able to 

learn from non-stationary data streams.

Online version of the bagging algorithm

Bagging (Breiman, 1996) is an ensemble methods used to train and improve the accuracy of classifier methods.

Non-streaming (Breiman, 1996) bagging builds a set of M base models, training each model with a bootstrap

sample of size N created by drawing random samples with replacement from the original training set. Each

base model’s training set contains each of the original training examples K times where P (K = k) follows

a binomial distribution. This binomial distribution for large values of N tends to a Poisson(1) distribution,

where P (1) = exp (−λ) /k!. Using this fact, Oza and Russell (2001) proposed Online Bagging, an online

method that instead of sampling with replacement, gives each example a weight according to Poisson(1). So,

the proposed method in this paper uses online bagging algorithm to train base classifiers.

EWMA

EWMA (Exponentially Weighted Moving Average) is a method of Statistical processes control. The essential

feature of this method is that it gives more weight to the most recent observations. The statistic that is

represented in the chart is:

Ewmai →Wi = βxi + (1− β) Wi−1 (1)

where xi is a random variable, β is a constant to determine the weight of the observations, (0 < β < 1) ,Wi is

the current value of EWMA and Wi−1 is the previous value.

In this work, the equation 1 is used to determine the weight of the base classifiers. In this case, Wi is the weight
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of each classifier and xi the current accuracy. As each classifier uses a change detector, it can be estimated at

any time the error εm of each base classifier and the accuracy is 1 − εm. β can be used as a factor to adjust

the weights of the base classifiers.

The new algorithm

The proposed algorithm called CEA uses the online version of the bagging algorithm to train the base classifiers

and the EWMA method to determine the weights of the classifiers. CEA manipulate concept changes in a

simple and efficient way (see algorithm 1). Each base classifier Cm (1 < m < M) uses a change detector Dm to

estimate the error rate εm of each classifier. When Dm estimate a change, the Cm classifier is replaced by a new

one. To estimate the weight of each classifier, we used the equation 1. The algorithm receives as parameters

the number of base classifiers and the factor β to adjust the weights associated in the base classifiers. The

higher value of β, greater importance is given to the most recent data.

The error rate of the base classifiers is monitored constantly as each training example arrives. Therefore, this

monitoring must also be done with resources controlled computational. In recent years have been proposed

several methods in the statistical community to detect changes online (Montgomery, 2007). However, they

assume that the input data are regulated by a known probability distribution. CEA uses HDDM (Hoeffding

Drift Detection Method) (Frias-Blanco et al., 2015) as change detector and error estimates. HDDM processes

each incoming value with a constant time and space complexity and provides mathematical guarantees for the

false positive and false negative rates.

Results and discussion
Empirical Study

This section experimentally compared CEA with various state-of-the-art ensemble algorithms for mining

concept-drifting data streams. The experiments measured the generalization power of the contending al-

gorithms by means of predictive accuracy (Bifet et al., 2010a). Performance measures related with the com-

putational cost were not considered, as the contending algorithms are able to learn with constant time and

space computational complexity per instance processed.

All the experiments were implemented and performed using the Massive Online Analysis (MOA) software

(Bifet et al., 2010a). MOA includes a collection of algorithms for processing data streams, various methods to

generate artificial data streams with the possibility of including concept drifts, and several tools to evaluate

concept drift detection algorithms.
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Algorithm 1: CEA

Input :
instance: training instances with class label yi ∈ Y = 1, . . . , k
β: factor to adjust the weights associated with base classifiers
M : ensemble size
λ: mean of poisson distribution

Output:
C (x) = argmaxy∈Y

∑
m:hm(x)=y

Wm

1 begin
2 Inicialice base classifiers Cm, detectors Dm for all m ∈ {1, 2, . . . ,M}
3 Wm ← 1 // weight vector of base classifiers
4 foreach training instances do
5 for m← 1 to M do
6 K ←P (λ) // P(λ) is the poisson distribution with mean λ
7 for j ← 1 to K do
8 Update Cm and Dm with the current example

9 Wm ← (1− β) ∗Wm + β ∗ (1− εm) // εm is the error estimated by Dm

10 if Dm detect a change then
11 reset Cm y Dm

12 Wm ← 1

Grupo Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba 
rcci@uci.cu

36

Revista Cubana de Ciencias Informáticas 
Vol. 13, No. 1, Enero-Marzo, 2019
ISSN: 2227-1899 | RNPS: 2301
Pág. 31-44
http://rcci.uci.cu

http://rcci.uci.cu
mailto:rcci@uci.cu


The algorithms under consideration were evaluated by a test-then-train approach, which is derived from the

predictive sequential error (Dawid, 1984). Test-then-train computes the predictive performance of a learning

model as each training instance arrives (test step). In the next step, the instance is presented to the learning

algorithm for learning (train step) . This methodology is based on the cumulative sum of the values of a given

function. We calculated metrics by means of a sliding window considering only the last instances (Gama et al.,

2009). Therefore, at each new instance, the classifier was first tested and then trained. During the learning

process, predictive accuracy was calculated with respect to a sliding window of size 100 (Bifet et al., 2010a).

Predictive accuracy was calculated every 100 instances processed by means of the fraction between the number

of correctly classified instances and the window’s size.

Datasets

The experiments considered both artificial (LED, SEA, RBF, WAV, AGR, STA, HYP) and real-world datasets

(see Table 1). The artificial datasets have the benefit of modeling different scenarios where the algorithms

can demonstrate their performance. We can distinguish two types of datasets, those that are oriented to test

abrupt changes, and those that introduce gradual changes. Furthermore, other characteristics can be added,

like artificial noise, irrelevant attributes, etc. Regarding abrupt datasets, the common idea that supports

their operation is the generation of distinct concepts that are active in different periods. The change between

concepts is immediate (abrupt change), although the extent of the change could simulate a gradual change

in some way. Thus, if two consecutive concepts are very similar, it could be considered that the speed of the

change is low. The artificial datasets were generated by the MOA software (Bifet et al., 2010a).

Grupo Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba 
rcci@uci.cu

37

Revista Cubana de Ciencias Informáticas 
Vol. 13, No. 1, Enero-Marzo, 2019
ISSN: 2227-1899 | RNPS: 2301
Pág. 31-44
http://rcci.uci.cu

http://rcci.uci.cu
mailto:rcci@uci.cu


Dataset A
cr

o
n
y
m

In
st

a
n

ce
s

N
o
m

in
a
l

N
u

m
er

ic

M
is

si
n

g
va

lu
es

C
la

ss
es

LED display LED 275,000 24 0 no 10

SEA SEA 275,000 0 3 no 2

Radial base functions RBF 275,000 0 10 no 2

Waveform WAV 275,000 0 40 no 3

Agrawal AGR 275,000 3 6 no 2

Stagger STA 275,000 3 0 no 2

Hyperplane HYP 275,000 0 10 no 2

Usenet 1 USE1 1,500 100 0 no 2

Usenet 2 USE2 1,500 100 0 no 2

Segment SEG 2,310 0 19 no 7

Mushroom MUS 8,124 22 0 yes 2

Spam SPA1 4,601 1 57 mo 2

Spam corpus 2 SPA2 9,323 500 0 no 2

Nursery NUR 12,960 8 0 no 5

EEG Eye State EYE 14,980 0 14 no 2

Weather WEA 18,159 0 8 no 2

Bank marketing BAN 41,188 9 7 no 2

Electricity ELE 45,312 1 7 yes 2

Connect-4 CON 67,557 21 0 no 3

KDD Cup 10% KDD 494,021 7 34 no 2

Forest Cover COV 581,012 44 10 no 7

Poker Hand POK 1,000,000 10 0 no 10

Table 1. Main characteristics of the datasets used in the experiments.

In the artificial datasets, the target concept changed 10 times. Changes occurred every 25, 000 instances.

In gradual changes, the transition period between consecutive concepts was set to 5, 000 training instances.

During the transition period, the probability that a new training instance belongs to the new concept was

increased gradually and continuously.
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Algorithm Setup

The proposed CEA algorithm was compared with the algorithms based on online bagging. The algorithms

used in the experimental study are available in MOA. Specifically, included OzaBag (online version of the

bagging algorithm) (Oza and Russell, 2001) , OzaBagAdwin (Bifet et al., 2009) and LeveragingBag (Bifet

et al., 2010b). The contending algorithms were set with the default configuration adopted by MOA (Bifet

et al., 2010a). In the case of CEA we use λ = 6, and β = 0.875 . The number of classifiers of the contending

algorithms in MOA is 10. Therefore, in CEA the number of classifiers was set to 10.

All the contending algorithms used Naive Bayes as a base classifier. Naive Bayes was chosen because it is

one of the most successful algorithms for learning from data streams (Clark and Niblett, 1989; Cestnik and

others, 1990; Domingos and Pazzani, 1997; Pereira-Toledo et al., 2017): it has a low computational cost, is

simple, has a clear semantics, and works well with continuous attributes and missing attribute values. In the

drift detection method of CEA, the size of the statistical test for the warning level was set to d = 0.005, and

the drift level was set to d = 0.001; this configuration allowed a balance between the false positive rate, false

negative rate, and delay of change detections.

Results

The Table 2 summarize the predictive performance of the algorithms over abrupt and gradual changes in

terms of the average and standard deviation. The highest levels of predictive accuracy are in bold. The

Table 2 reflects that the proposed algorithm often outperformed the algorithms LeveragingBag, OzaBag, and

OzaBagAdwin. In RBF and SEA, consecutive concepts were configured to be very similar. Additionally, the

Figure 1 reflects that CEA is often able to adapt to concept drifts more quickly than the contending algorithms.

We can also see that CEA is able to stabilize the learning when concepts are stable.

The concept drift problem can be more adverse in real-world situations. The real world datasets included in

this section have been used in several studies on concept drift (Table 1). For these datasets, there is no strong

claim about the presence or type of change. Similar to the results obtained from the synthetic datasets, CEA

often reached higher levels of predictive accuracy and when outperformed, its accuracy was very similar to

that of the winner. Figure 2 shows the ranking position of the algorithms with respect to Tables 2 and 3. To

verify significant differences, we used the Friedman test and the Holm procedure for the post hoc analysis.

Groups of classifiers that are not significantly different (at p = 0.05) are connected. This figure shows that, in

general, CEA ranked significantly better than the contending algorithms, excepting LeveragingBag.
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Algorithm CEA LeveragingBag OzaBag OzaBagAdwin

Abrupt Changes

LED 73,56±02,64 70,16±08,86 46,87±20,45 71,34±06,46
AGR 83,94±12,40 82,98±13,29 63,38±15,64 80,57±17,28
HYP 92,98±02,79 85,45±13,87 65,77±23,49 85,41±15,59
RBF 72,00±01,50 72,00±01,48 71,95±01,51 71,98±01,50
SEA 87,69±01,60 87,69±01,56 84,42±03,65 87,04±02,03
STA 99,95±00,27 87,10±19,18 65,78±20,05 87,28±18,98
WAV 80,49±01,28 80,49±01,28 80,48±01,30 80,48±01,30

Gradual Changes

LED 70,28±08,84 71,10±06,69 46,75±17,64 71,20±06,47
AGR 81,52±12,76 81,74±12,68 63,51±14,79 81,73±12,81
HYP 90,19±06,16 90,18±06,30 64,69±21,19 90,14±06,37
RBF 71,99±01,53 71,99±01,51 71,97±01,52 71,99±01,51
SEA 87,19±01,97 86,86±02,05 84,38±03,37 86,72±02,06
STA 96,16±08,37 96,05±08,80 66,11±19,20 95,92±09,08
WAV 80,47±01,29 80,47±01,29 80,48±01,31 80,48±01,31

Table 2. Predictive performance of the algorithms in abrupt and gradual changes.

Algorithm CEA LeveragingBag OzaBag OzaBagAdwin

ADU 83,49±03,84 83,49±03,84 83,29±03,89 83,29±03,89
BAN 89,76±10,89 89,94±11,17 89,15±12,58 89,79±11,39
CON 75,73±12,55 75,07±13,72 69,17±17,33 74,87±13,99
COV 87,81±07,43 83,20±11,92 60,55±21,76 83,07±11,96
ELE 85,29±06,20 78,84±11,97 74,26±14,63 78,91±12,13
EYE 98,23±03,65 90,61±17,88 47,31±46,41 90,91±18,26
KDD 99,81±01,13 99,62±03,14 97,88±11,01 99,66±02,88
MUS 98,83±01,72 99,28±01,45 98,41±02,29 98,65±02,17
NUR 92,90±05,95 91,19±08,13 84,11±14,18 90,30±09,27
POK 77,62±08,79 73,08±12,58 59,55±21,95 73,48±12,35
SEG 77,79±06,89 77,83±06,88 77,58±07,19 77,58±07,19
SPA1 98,19±05,22 97,64±05,75 83,55±14,46 98,00±05,19
SPA2 93,03±05,98 91,67±10,08 90,44±10,97 90,53±10,84
USE1 78,00±10,55 65,67±20,78 62,87±23,92 64,07±20,50
USE2 77,53±08,68 73,27±10,40 71,93±11,43 72,33±11,38
WEA 73,71±09,51 71,20±11,73 69,95±11,90 72,26±11,06

Table 3. Predictive performance of the algorithms in real datasets.
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Figure 1. Accuracy of the contending algorithms with abrupt changes. Changes occur every 25,000 instances.

Figure 2. Comparison of all classifiers against each other with the Friedman test and the Holm method for the post hoc
analysis. Groups of classifiers that are not significantly different (at p = 0.05 ) are connected. The ranks were

computed in accordance with Tables 2 and 3.
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C..........
In this paper we have presented Classifier Ensemble Algorithm (CEA), a new algorithm able to learn from

non- stationary data streams. The new algorithm combines the simplicity of online bagging to train base

classifiers and the EWMA method to estimate the weights of the base classifiers. The new algorithm process

stream data in constant time and space computational complexity, and can learn with a single scan over

the training data. CEA uses an online change detector for drift detection and error estimates. When the

detector estimates a change, the classifier in which the change was detected is replaced by a new one. CEA

was compared empirically with ensemble algorithms based on online bagging. All the algorithms were tested

against the common types of changes (abrupt and gradual), different noise levels and irrelevant attributes.

The experiments showed that the new algorithm is an efficient alternative for learning from data streams.

We plan to continue with this research by using other learning algorithms as base classifiers in CEA, such as

Hoeffding trees and Perceptron.
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