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Abstract  
This article presents in an easily reproducible way, algorithms to generate samples of the radar video-signal ruled by 

the four Swerling models, in addition to the case of non-fluctuating target. The two widely used linear and quadratic 

detectors are taken into account for samples generation and it is verified that these samples present the required 

statistical characteristics. The proposed algorithms constitute the basis to develop simulations where it is necessary to 

reproduce video signals prior to any real implementation. 

 

Keywords: Radar, Swerling models, random samples generation. 
 

Resumen  
Este artículo presenta de una manera fácilmente reproducible, los algoritmos para generar muestras de la señal de 

video del radar regidas por los cuatro modelos de Swerling, además del caso de blanco no fluctuante. Los detectores 

linear y cuadrático, ampliamente utilizados, son tenidos en cuenta para generar las muestras y se verifica que las 

mismas presentan las características estadísticas requeridas. Los algoritmos propuestos constituyen la base para 

desarrollar simulaciones donde sea necesario reproducir señales de video previamente a cualquier implementación 

real. 
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Introduction  

The Swerling models (Swerling, 1960) were proposed as part of the broad theoretical framework dedicated to modeling 

the characteristics of the received radar signal and to estimate the statistical behavior of the targets radar cross section 

(RCS), its temporal variations  as well as the detection quality. All the above elements have contributed to use these 

models as a typical reference to compare the performance of new detection techniques in simulations prior to any 

implementation. Representative examples include simulations for adaptive detection in Gaussian noise with unknown 

covariance matrix (Besson et al., 2015), the detection of fluctuating extended targets (Ding et al., 2017), the performance 

evaluation for ordered-statistic constant false alarm rate detectors (Kong et al., 2016), techniques for small and slow 

targets detection in marine clutter (Kemkemian et al., 2015), as well as the effectiveness evaluation of chaff recognition 

algorithms (Bendayan and Garcia, 2015). More recently, some generalized models have been incorporated (Meller, 

2018) and even methods based directly on electromagnetic simulation of the RCS (How and Lun, 2016), however the 

use of these is not yet widespread. 

Although several literature describes the Swerling models (Richards, 2005; Richards et al., 2010; Skolnik, 2001), most 

of them present the detection quality results and make little emphasis in the simulation of the radar video signal ruled 

by these models. Among the significant examples in this regard, we highlight the works of (Richards, 2008) and 

(Hughes, 2017), in addition to few functions offered by MATLAB software (MathWorks, 2017). However, the authors 

have not found explicit procedures and algorithms, especially useful for new researchers interested in the subject. For 

this reason, the two main objectives of this work are: to propose explicitly procedures that simulate the radar video 

signal for two types of commonly used detectors (linear and quadratic), as well as to verify that the statistical 

characteristics of the generated samples follows the Swerling models. In addition to the four fluctuating models, the 

case of non-fluctuating target is included (Marcum, 1947, 1948) because it simulation is also of interest. 

The first section of this article outlines the fundamental characteristics of the Swerling models and the detectors types. 

Then we propose the algorithms that constitute the core of the present work and proceed to verify that the generated 

samples have the statistical characteristics required by the models. 

Materials and Methods 

The Swerling models (Swerling, 1960, 1997) were created taking into account the common problem of detecting 𝑀 

received echoes. The motivation to consider this type of detection is based on the simplified model of a rotating pulse 

radar, in which the antenna have Ω degrees per second of angular velocity, with 𝜃 degrees of half power beamwidth 
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through the horizontal plane and 𝑓𝑟 Hertz of pulse repetition frequency. Although a certain amount of energy is received 

by the antenna secondary lobes, significant echoes are received only when the target is illuminated by the main lobe, 

so that for each scan of 360 degrees, a packet of 𝑀 = (𝜃 Ω⁄ )𝑓𝑟 pulses is received. 

Each Swerling model is a combination of two probability density functions (pdf) and two decorrelation characteristics 

for the RCS, resulting in a total of four combinations. Swerling considered two extreme cases for decorrelation 

characteristics between the 𝑀 pulses samples. The first case is known as scan-to-scan decorrelation or slow fluctuation, 

and it assumes that the 𝑀 pulses amplitudes in each scan (packet) are equals, but the new 𝑀 pulses amplitudes in the 

next scan will differ from the previous packet, so that they are independent. The second case is referred to as pulse-to-

pulse decorrelation and is applicable to rapidly fluctuating targets, so that the 𝑀 pulses amplitudes within the packet are 

independent of each other. Before the advent of the Swerling models, the non-fluctuating target model was proposed 

by Marcum (Marcum, 1947, 1948), in which the pulses amplitude remains constant, so it does not vary neither between 

pulses nor between consecutive packets. Some authors refer to this case as Swerling 0 or Swerling 5. 

The two pdf used by Swerling to describe the RCS variations are the Exponential and the 4th order Chi-square models. 

However, to simulate radar signals it is more useful to work directly with the echoes amplitude instead of doing so with 

the RCS. Since the amplitude is proportional to the square root of the RCS, it follows a Rayleigh pdf (Walck, 2007) 

and 4th order Chi (Walck, 2007) pdf as shown in Eq. (1) and (2) respectively (Richards et al., 2010), where the average 

RCS of the target is denoted as 𝜎. 

𝑝(𝐴) =
2𝐴

�̅�
𝑒𝑥𝑝 (−

𝐴2

�̅�
)                                                                                      (1) 

𝑝(𝐴) =
8𝐴3

�̅�2 𝑒𝑥𝑝 (−
2𝐴2

�̅�
)                                                                                   (2) 

The Rayleigh model describes targets composed with several independent reflectors, none of which predominates. For 

its part, the Chi model describes targets with several reflectors of similar intensity and one that predominates over the 

others. Table 1 summarizes the characteristics of the models, denoted as Swerling 1, 2, 3 and 4. 
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Table 1. Characteristics of the Swerling models 

Model Decorrelation pdf of 𝑨 pdf of RCS Geometry 

1 scan-to-scan 
 

Rayleigh 

 

 

Exponential 

 

Several independent reflectors of 

similar intensity 
2 pulse-to-pulse 

3 scan-to-scan 
4th order 

Chi 

4th order Chi-

square 

Several independent reflectors and 

one predominates 4 pulse-to-pulse 

  

Detectors Types  

The signal received by the radar is typically a narrow band signal, modulated in amplitude, frequency and phase 

depending on the target characteristics. This means that the echo signal can be written as  

𝑟(𝑡) = 𝐴(𝑡) sin(2𝜋𝑓0𝑡 + 𝜙(𝑡)) + 𝑛(𝑡)                                                                 (3) 

where 𝐴(𝑡) represents the envelope, 𝑓0 the carrier frequency (in most cases equal to the intermediate frequency of the 

receiver), 𝜙(𝑡) the phase and 𝑛(𝑡) is considered additive white gaussian noise (AWGN). The detector extracts the 

information from the received signal in order to decide if this corresponds to target or noise. In most cases, the detector 

is located after the intermediate frequency amplifier and its output is known as the video signal.  

For the most used detection schemes, the received signal is separated in two channels as shown in figure 1, the upper 

in phase channel (𝐼) and the lower quadrature (𝑄) channel, here the (𝐼 𝑄⁄ ) detector name (Skolnik, 2001). After mixing 

𝑟(𝑡) with the local oscillator and the low pass filtering (LPF), the signals 𝑟𝐼(𝑡) = 𝐴(𝑡) cos 𝜙(𝑡) and 𝑟𝑄(𝑡) = 𝐴(𝑡) sin 𝜙(𝑡) 

are combined to extract the amplitude information as indicated in the figure, depending on the detector type. For the 

linear detector, the output is directly proportional to the envelope of the received signal, while for the quadratic detector 

it will be proportional to the square of the aforementioned envelope. The following section proposes the algorithms that 

allow us to generate the samples corresponding to the video signal for both detector types. 
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Figure 1. Quadratic and linear detector. 

 

Algorithms to Generate the Random Samples 

Figure 2 shows the initial procedure to establish the total number of samples to be generated 𝑁, the number of pulses 

received in each scan 𝑀, the Swerling model (SW), the target RCS, the total noise power (Npow) and the detector type 

(TD). From these parameters the arrays 𝜙, 𝑛𝐼, and 𝑛𝑄 are generated, each one with 𝑁 samples of the random variables 

corresponding to the received signal phase (with uniform distribution between 0 and 2π) and to the 𝐼 and 𝑄 channels 

AWGN, with zero mean and variance Npow/2 (equal to the average noise power). Taking as representative example the 

use of MATLAB (MathWorks, 2017), these three arrays can be generated through the functions 

Afterwards, the Swerling model is verified and the algorithm goes to generate the amplitude samples with the 

corresponding distribution and correlation characteristics. 

 

phi=random('Uniform',0,2*pi,1,N) 

nI=random('Normal',0,(Npow/2)^0.5,1,N) 

nI=random('Normal',0,(Npow/2)^0.5,1,N) 
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Figure 2. Initial parameters. 

 

If it is desired to simulate a non-fluctuating target (SW = 0), the procedure shown in figure 3 is performed. In this case, 

the amplitude 𝐴 of the echoes remains constant between consecutive pulses (samples) with a value equal to the square 

root of the RCS (Richards et al., 2010), while the phase 𝜙 is the previously generated random variable. Then the noise 

is added to the echo components 𝑠𝐼 and 𝑠𝑄 to create the received signal components 𝑟𝐼 and 𝑟𝑄 which will be detected by 

the corresponding detector in order to obtain the array with the video signal samples. 

 

Figure 3. Samples generation for non-fluctuating target. 
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For the slow fluctuation models of Swerling 1 and 3, the generated samples follow the procedure of figure 4. Depending 

on the model, the amplitude of the echo will be ruled by the Rayleigh pdf for Swerling 1, or by the 4th order Chi pdf 

for Swerling 3.  

 

 

Figure 4. Samples generation for Swerling 1 and Swerling 3 models (slow fluctuation). 

 

Taking MATLAB as example again, the amplitude samples that follow the Swerling 1 model could be generated by the 

function 

while that of Swerling 3 could be obtained by means of 

In each case the number of samples is the smallest and closest integer to 𝑁 𝑀⁄ , with the aim of simulating the packet of 

equal amplitude for each scan, which constitutes the scan-to-scan decorrelation model or slow fluctuation (Richards, 

2008; Richards et al., 2010). For the proposed procedure, the counter 𝑖 represents the packet index, 𝑗 indicates if the 

𝑀 pulses of equal amplitude within the packet were generated, while 𝑘 is used as counter for the samples total.  

Similarly, the samples for Swerling 2 and 4 models are generated following the procedure of figure 5. The difference 

with respect to the previous case is that a different sample is generated for each pulse, which constitutes the pulse-to-

pulse decorrelation or fast fluctuation model (Richards, 2008; Richards et al., 2010).  

A=random('Rayleigh',(RCS/2)^0.5,1,floor(N

/M)) 

A=(random('Gamma',2,RCS/2,1,floor(N/M))).^

0.5 
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Figure 5. Samples generation for Swerling 2 and Swerling 4 models (fast fluctuation). 

 

From the figure, the meaning of 𝑖 is clear as index for the individual samples. With MATLAB, the functions that could 

be used to generate the array of 𝑁 elements for Swerling 2 could be  

whereas in the case of Swerling 4 it could be 

As before, once generated the samples the detector type is determined. Depending on the selected detector type (TD = 

0 for linear and TD = 1 for quadratic) and taking into account the diagram of figure 1, the received signal components 

are combined as indicated in figure 6 to obtain the video signal 𝑣𝑠. The 𝑣𝑁 array contains only noise samples that could 

be used with other purposes in simulations. An example of the latter would be the DRACEC method (Chávez and 

Guillén, 2018), where separate noise samples are required to simulate the background and anomaly classes. 

A=random('Rayleigh',(RCS/2)^0.5,1,N) 

A=(random('Gamma',2,RCS/2,1,N)).^0.5 
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Figure 6. Detector type selection. 

 

Verification of the Samples Statistical Characteristics 

Figures 7 and 8 show the estimated pdfs of the pulse amplitude generated with the above mentioned functions through 

MATLAB (MathWorks, 2017). It is shown in blue the pdfs estimate by histograms, while in red its fit to Eq. (1) and 

Eq. (2). Besides table 2 shows the fit quality of all the generated random variables taking into account several numeric 

indicators described below. 

 

Figure 7. Pulse amplitude pdf estimated by histograms (blue) and its fit (red) to the Rayleigh pdf of Eq. (1) (Swerling 1 and 2). 
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Figure 8. Pulse amplitude pdf estimated by histograms (blue) and its fit (red) to 4th order Chi pdf of Eq. (2) (Swerling 3 and 4). 

 

Table 2. Numerical indicators of the fit quality  

Random 

Variable - pdf  
SSE RMSE NRMSE NMSE 

 𝜙 - Uniform 0.0010 0.0041 -∞ -∞ 

𝑛𝐼 - Gaussian 0.0062 0.0066 0.9662 0.9988 

𝑛𝑄 - Gaussian 0.0053 0.0057 0.9711 0.9991 

𝐴 - Rayleigh 0.0074 0.0079 0.9687 0.9990 

𝐴 - 4th order Chi 0.0092 0.0084 0.9714 0.9992 

The coefficient SSE is the sum of squared errors of the fit and is defined by Eq. (4) (MathWorks, 2017), so a value 

close to zero indicates that the estimated pdf is well fitted (see table 2). Henceforward 𝑦𝑖 represents the estimated pdf 

values while �̂�𝑖 denotes the fit values.  

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1                                                                                 (4) 

The RMSE is the root mean square error of the fit and is determined by Eq. 5 (MathWorks, 2017). A value close to zero 

indicates a good fit quality (see table 2). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                                                              (5) 

Finally, the NRMSE and NMSE indicators are calculated using Eq. (6) and Eq. (7) (MathWorks, 2017), which take 

values between  -∞ (bad fit) and unity (perfect fit). The value of these coefficients is not useful to analyze the fit quality 
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of 𝜙 to the uniform pdf, because when the fit is a constant, it coincides with its average value �̅̂�𝑖, causing the denominator 

of both equations going to zero and therefore both indicators tend to -∞ (see table 2).  

𝑁𝑅𝑀𝑆𝐸 = 1 − √
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (�̂�𝑖−�̅̂�𝑖)
2𝑛

𝑖=1

                                                                                 (6) 

𝑁𝑀𝑆𝐸 = 1 −
∑ (�̂�𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (�̂�𝑖−�̅̂�𝑖)
2𝑛

𝑖=1

                                                                   (7) 

 

Conclusions  

Through the proposed algorithms it is possible to generate samples of the video signal following the four Swerling 

models in addition to the non-fluctuating target case. Although the functions to generate the random samples were 

exemplified using MATLAB, the algorithms implementation is not limited to this tool, since its general nature makes 

it possible to develop them in any software platform. 

On the other hand, the probability densities of the amplitude and phase of the simulated echoes, as well as the AWGN 

noise taken as interference, were fitted with a high quality to the assumed models. In addition, the provided procedures 

are easily reproducible, which decreases the development time of the simulations prior to any real implementation, 

especially for new researchers interested in generating samples of the video signal for the linear and quadratic detectors. 

References 

BENDAYAN, M., AND GARCIA, A. (2015). Signal Modeling of Chaff in Naval Environment Simulation. 

IEEE Transactions on Aerospace and Electronic Systems, 51(4), 3161-3166.  

BESSON, O., CHAUMETTE, E., AND VINCENT, F. (2015). Adaptive detection of a Gaussian signal in 

Gaussian noise. Paper presented at the 6th International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP), Cancun, Mexico.  

CHÁVEZ, N., AND GUILLÉN, C. (2018). Radar Detection in the Moments Space of the Scattered Signal 

Parameters. Digital Signal Processing, 83 (December), 359-366. 

DING, S., CHEN, D., AND CAO, H. (2017). Performance Analysis of Energy Detector for Fluctuating 

Extended Targets. Paper presented at the International Conference on Signal Processing, Communications 

and Computing (ICSPCC), Xiamen, China.  

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 13, No. 2, Mes Abril-Junio, 2019  

ISSN: 2227-1899 | RNPS: 2301 

Pág. 1-12  

http://rcci.uci.cu 

 

Grupo Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu 

12 

HOW, T. M., AND LUN, Y. H. (2016). Radar Detector Performance Analysis Using EM Simulations of 

Targets’ RCS. Paper presented at the Radar Conference, Philadelphia, USA.  

HUGHES, E. J. (2017). Piecewise Cumulative Weibull Modelling of Radar Cross Section. Paper presented 

at the International Conference on Radar Systems, Belfast, UK.  

KEMKEMIAN, S., LUPINSKI, L., NOUVEL, M., CORRETJA, V., AND COTTRON, R. (2015). Slow and 

Small Target Detection in High Sea States. Paper presented at the Radar Symposium (IRS 2015), Dresden, 

Ukraine.  

KONG, L., WANG, B., CUI, G., YI, W., AND YANG, X. (2016). Performance Prediction of OS-CFAR for 

Generalized Swerling-Chi Fluctuating Targets. IEEE Transactions on Aerospace and Electronic Systems, 

52(1), 492-500.  

MARCUM, J. I. (1947). A Statistical Theory of Target Detection by Pulsed Radar: The RAND Corporation,. 

MARCUM, J. I. (1948). A Statistical. Theory of Target Detection by Pulsed Radar: Mathematical Appendix: 

The RAND Corporation, . 

MATHWORKS. (2017). Matlab Help (Version R2017a).  

MELLER, M. (2018). On Bayesian Tracking and Prediction of Radar Cross Section. IEEE Transactions on 

Aerospace and Electronic Systems, Early Access Article.  

RICHARDS, M. A. (2005). Fundamentals of Radar Signal Processing. New York, USA: McGraw-Hill. 

RICHARDS, M. A. (2008). Generating Swerling Random Sequences. Revised: August 8th, 2017. Available 

at:  https://radarsp.weebly.com/uploads/2/1/4/7/21471216/generating_swerling_random_sequences.pdf 

RICHARDS, M. A., SCHEER, J. A., AND HOLM, W. A. (2010). Principles of Modern Radar Vol. I: Basic 

Principles. Raleigh, NC, USA: SciTech Publishing. 

SKOLNIK, M. I. (2001). Introduction to Radar Systems (3rd ed.). New York, USA: McGraw-Hill. 

SWERLING, P. (1960). Probability of Detection for Fluctuating Targets. IRE Trans (IT-6), 269-308.  

SWERLING, P. (1997). Radar Probability of Detection for Some Additional Fluctuating Target Cases. IEEE 

Trans AES-22, 698-709.  

WALCK, C. (2007). Hand-book on Statistical Distributions for experimentalists. Stockholm, Sweden: 

University of Stockholm. 

 

http://rcci.uci.cu/
mailto:rcci@uci.cu

