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Resumen 

En las últimas dos décadas los métodos poblacionales de optimización han sido muy usados por su capacidad para 

encontrar buenas soluciones con un esfuerzo bajo, convergiendo a un único óptimo global. En muchos problemas 

prácticos, multimodales por naturaleza, es importante hallar varias soluciones óptimas, sean locales o globales. Los 

métodos de nicho permiten ubicar múltiples soluciones al mantener diversidad entre los individuos de la población. 

En este trabajo son abordados los métodos clásicos de nicho para optimización multimodal. Además, se discuten las 

principales limitaciones de estas técnicas y se presentan aspectos a considerar cuando se analiza su comportamiento. 

Palabras clave: Algoritmo evolutivo, especiación, nicho, optimización multimodal. 

 

Abstract 

In last two decades population based optimization methods has become widely used since their capability to find good 

solutions with a low effort by converging to a single global optimum. Many real-world problems are multimodal by 

nature, being very important to find all optimal solution, may it be local or global ones. Niching methods allow 

locating multiple solutions since they are capable to maintain the diversity among the individuals on the population. 
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In this work an approach to classical niching methods for multimodal optimization is made. Main drawbacks in such 

strategies are also discussed while useful topics on the performance analysis of these techniques are presented. 

Keywords: Evolutionary algorithm, niching, multimodal optimization, speciation. 

 

 
Introduction 

Population based algorithms are an efficient alternative for solving hard optimization problems. Despite they are 

capable to find high quality solutions these algorithms typically converge to a single final solution due to their global 

selection scheme. However, problems from multiple domains such as structure recognition, economic modeling and 

engineering design, are highly multimodal. The main goal of multimodal optimization is to locate several optimal 

solutions, may them be global or local, and then to choose the most appropriate solution considering practical issues. 

When dealing with multimodal problems some modifications to standard population based algorithms are needed, in 

order to provoke the formation of stable subpopulations (also known as niches) at all peaks in the search space. 

Niching methods appear from the analogy with natural ecosystems, which are often composed by different physical 

spaces (niches) that allow the formation and the maintenance of distinct types of life competing to survive (species). 

A species is then formed by agents biologically similar, which are able for interbreed, but not with any from other 

species. For each niche the physical resources are finite and must be shared among its individuals (Sareni, 1998). 

By analogy, niching promotes genetic diversity by emerging different sub-populations (niches), each corresponding to 

an optimum (peak) of the domain. The fitness represents the resources (carrying capacity) of the niche, while species 

can be defined as similar individuals in terms of certain measures. Speciation methods have been introduced in 

evolutionary algorithms (EA) to save diversity among individuals by forming and maintaining stable subpopulations 

(Cedeño, 1999). It is required to conserve highly fit individuals and also those that are different enough from them to 

be worth keeping. The result is an algorithm that maintains solutions in multiple peaks while allowing a subset of 

individuals to explore other regions of the search space. Without niching strategies, a population based algorithm 

generally concentrates on the best peak found so far (Bird, 2006), while otherwise the algorithm searches for multiple 

solutions at a time. Even on problems with a single global solution, this has benefits as reducing the risk of the 

method sticking locally; some agent will exploit the optimum, but others will explore other areas of the search space. 

In the next section a brief review on niching methods is given. Despite it is focused on the classical techniques, more 

recent ones are approached or mentioned as well. Section 3 summarizes main limitations of most niching methods 

while useful aspects on their performance analysis are detailed in section 4. Finally, conclusions are presented. 
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Briefly surveying niching methods 

Many niching methods have been reported in the EA literature. One of the first was Cavicchio’s pre-selection 

(Mahfoud, 1992), later generalized in crowding (De Jong, 1975). The sharing concept, introduced in (Holland, 1975), 

was used (Goldberg, 1987) to ease the selection pressure caused by the fitness proportionate reproduction (FPR) rule 

(Holland, 1975). The deterministic crowding (Mahfoud, 1992) deals with it by letting agents to mate with any other, 

while in restricted tournament selection (RTS) (Harik, 1995) it is done by modifying the selection and replacement 

steps of the steady state genetic algorithm (SSGA). Fitness derating (Beasley, 1993) allows unimodal optimization 

methods deal with multimodality by using the knowledge gained in a run to avoid re-searching the same area.  

Other illustrative examples are clearing (Pétrowski, 1996) and clustering (Kennedy, 2000). Niching principles have 

also been applied to Particle Swarm Optimization (PSO), such as NichePSO (Brits, 2002) and SPSO (Parrott, 2006), 

as well as to Differential Evolution (DE), including the species-based DE (SDE) (Li, 2005) and Differential Evolution 

with  an ensemble of Restricted Tournament Selection (ERTS-DE) (Qu, 2010). Furthermore, they have addressed 

combinatorial optimization problems (Nagata, 2006 and Yang, 1998) and multi-objective ones as well (Chen, 2006 

and Kowalczuk, 2006). Research community on niching methods has dedicated great efforts to devise niching 

techniques in absence of parameters derived from a priori knowledge about the fitness landscape, like the lbest PSO 

niching algorithms using a Ring Topology (Li, 2010) and the Adaptive Species Discovery (ASD) (Della Cioppa, 

2011) as well. Other strategies have been devised to automatically estimate effective values for such parameters, for 

instance the Adaptive Niching PSO (ANPSO) (Bird, 2006) and the CMA-ES niching algorithm (Shir, 2006). Since 

their large variety, describing most niching methods is out of the scope of this work. Instead, basic principles of some 

of the ones mentioned above which are classical approaches and other relevant methods are presented below. 
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Chart 1. Chronology of relevant niching methods 

 

Crowding 

Crowding was first designed only to keep population diversity since it inserts new elements in the population by 

overwriting similar ones. In the basic scheme only a fraction of the global population (generation gap) reproduces and 

dies at each generation. It is, an offspring is compared to a small random sample taken from the current population 

and the most similar individual there is replaced. The crowding factor (CF) parameter is often used to determine the 

size of the sample. This CF model is analyzed in (Mahfoud, 1992) and attributed its inability to maintain more than 

two peaks of a multimodal landscape to stochastic errors in replacement which create genetic drift and fixation.  

 

Deterministic crowding 

Mahfoud made successive changes to crowding to reduce replacement errors, restore selection pressure and eliminate 

the crowding factor, resulting the deterministic crowding (Mahfoud, 1992), which is able to locate and maintain 

multiple peaks by competition between children and parents of equal niches. After crossover and mutation, each child 
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replaces its nearest parent if it has a higher fitness. The procedure in Chart 2 is to be performed N/2 times (N is the 

population size) and the overall process is to be repeated g generations. d is the phenotypic distance between agents. 

 

 

Chart 2. Pseudo codes for deterministic crowding 

Probabilistic crowding 

When a deterministic tournament is used crowding methods will always prefer higher fitness agents over lower fitness 

ones, thus leading to a loss of niches whenever the tournaments between global and local niches are played. To avoid 

this deterministic nature and hence to provide a restorative pressure in such cases, it was proposed the probabilistic 

crowding (Mengsheol, 1999). Here, a probabilistic replacement rule was used to permit higher fitness individuals to 

win over lower fitness individuals in proportion to their fitness. The method is essentially the deterministic crowding 

with a probabilistic replacement operator. Two similar individuals X and Y compete, being the probability of X to win: 

𝑝(𝑋) =
𝑓(𝑋)

𝑓(𝑋) + 𝑓(𝑌)
 

(1)  

Multiniche crowding genetic algorithm 

In a further approach, the multiniche crowding genetic algorithm (MNC GA) illustrated in Chart 3, both selection and 

replacement are modified by some kind of crowding to deal with the selection pressure caused by FPR and allow the 

population to keep diversity. No prior knowledge of the problem is needed and no restriction affects selection neither 

replacement. The MNC GA uses a replacement policy called worst among most similar (WAMS). Chart 4 shows a 

view of this replacement policy (Cedeño, 1999). 

 

Select two parents, p1 and p2, at random; 

Perform a crossover between them, yielding c1 and c2; 

Apply mutation/other operators, yielding c’1 and c’2; 

if (d(p1, c’1) + d(p2, c’2) ≤ d(p1, c’2) + d(p2, c’1)) then 

if f(c’1) ≥ f(p1)  then  Replace p1 with c’1;  end if 

if f(c’2) ≥ f(p2)  then  Replace p2 with c’2;  end if 

else 

if f(c’2) ≥ f(p1)  then  Replace p1 with c’2;  end if 

if f(c’1) ≥ f(p2)  then  Replace p2 with c’1;  end if 

end if 
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Chart 3. Pseudo code for the MNC GA 

 

Chart 4. Worst among most similar (WAMS) replacement policy  

Fitness sharing 

Fitness sharing (FS) is maybe the most common niching method (Sareni, 1998). It was moved by nature, where an 

individual has only limited resources to be shared with other ones in the same niche. Introduced in (Holland, 1975), it 

was used in (Goldberg, 1987) to part the population into various subpopulations by the similarity of the individuals.  

Typically, the shared fitness fsh(i) of an individual i is its raw fitness f(i) divided by its niche count: 

 

𝑓𝑠ℎ(𝑖) =
𝑓(𝑖)

∑ 𝑠ℎ(𝑑(𝑖, 𝑗))N
j=1

 where 𝑠ℎ(𝑑(𝑖, 𝑗)) = {1 − (
𝑑(𝑖, 𝑗)

𝜎𝑠ℎ
)

∝

    𝑖𝑓 𝑑(𝑖, 𝑗) <  𝜎𝑠ℎ,

0                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)  

 

N denotes the population size and 𝑑(𝑖, 𝑗)  is a distance measure between the individuals i and j. The sharing function 

(sh) computes the similarity between two individuals. The most used is described above, where σsh (niche radius) is a 

threshold of dissimilarity and α (scaling factor) is a constant that regulates the shape of sh. Distance is based on a 
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Generate initial population P of size N at random; 

Evaluate initial population; 

for evals = 1 to Max_Evaluations do 

Select individuals randomly and its mate by crowding; 

Apply crossover and mutation; 

Insert offsprings in P by using WAMS replacement; 

end for 
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genotypic (Hamming’s) similarity metric or a phenotypic (Euclidean) one. Sharing based on phenotypic one may give 

slightly better results (Deb, 1989). Despite its proven value, it has several difficulties, being the main not to be easy to 

set proper values for σsh and α without prior knowledge of the problems.  

 

Dynamic niche sharing 

Beyond the classic sharing there are many tries, dynamic niche sharing (DNS) (Miller, 1996), to self detect niches by 

using this scheme. DNS adopts a dynamic species identification and partitions the population by assuming that the 

number of niches of the fitness landscape is a priori known. Thus, DNS defines a fixed number of dynamic niches 

with radius and centers determined by a full population sort. The individuals not belonging to any of the previously 

identified species are grouped into a unique nonspecies class. 

Moreover, the fitness of the individuals is modified according to two different sharing mechanisms. The shared fitness 

of an individual belonging to a species is computed by dividing its raw fitness by the occupation number of the niche. 

However, for those individuals not in a niche, regular fixed sharing is used, in that the standard fitness sharing 

formula is used for individuals belonging to the nonspecies class. The authors motivate this choice in terms of 

computational cost, as the occupation number is computed only once for all the individuals of a species, while the 

niche count has to be computed for each individual in the population. It presents certain advantages over other 

nichers. However, as this method requires an estimate of the number of peaks in addition to the niche radius, its 

primary weakness is the use of fixed sharing outside the dynamic niches (Goldberg, 1997).  

 

Implicit fitness sharing 

In the implicit fitness sharing (Smith, 1993) each individual’s fitness is functionally dependent on the rest of the 

population. Sharing is done by inducing competition for limited and explicit environmental resources. For each 

resource, a set of individuals is randomly selected from the population and each one is matched against the resource. 

The individual with the highest score is then rewarded. Such a procedure is repeated a given number of times, through 

which the score of individuals is updated. At each generation, the discovered niches are obtained by selecting the 

minimal set of individuals needed to match all the resources. Therefore, niching is implicit in that the number of 

peaks is determined dynamically and there is no specific limitation on the distance between peaks. 

Hence, it is avoided the difficulty of appropriately choosing the niche radius and the method may to deal with 

problems in which the peaks are not equally spaced. This method introduces other parameters to be set; it is the size 

of the sample of individuals that compete, the number of competition cycles and the definition of a matching 

procedure. Moreover, it can be applied, at best, on problems in which explicit and finite resources are available.  
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Dynamic fitness sharing 

Dynamic fitness sharing (DFS) (Della Cioppa, 2007) is another attempt to automatically identify the niches in the 

population during the evolution. As shown in Chart 5, it is based on a dynamic explicit identification of the species 

 

 

Chart 5. Pseudo code of dynamic species identification (at left) and an algorithmic skeleton of an EA with DFS  

discovered at each generation and their localization in the fitness landscape, which assumes proper values for σsh and 

N as to entirely discern the peaks and to maintain all the actual niches. Hence, it has the same snag as FS when wrong 

values for any of both. DFS is free of the EA used, of the values of its inner parameters and of the encoding applied. 

 

Coevolutionary sharing 

Sort the current population according to the raw fitness; 

v(t) = 0; (number of niches at generation t) 

DSS = Ø ; (dynamic species set) 

for i = 1 to N do 

if the i-th individual is not in any species then 

countv(t)+1 =  1; (individuals in the current niche) 

for j = i + 1 to N do 

if (d(i, j) < σsh) and (j-th individual not marked)) then 

Mark the j-th individual as in the v(t)+1-th  species; 

countv(t)+1 = countv(t)+1 + 1; 

end if 

end for 

if(countv(t)+1  > 1) then 

Make i-th individual master of the v(t)+1-th  species; 

Insert the pair (i-th individual, countv(t)+1) in DSS; 

v(t)+1 = v(t)+1 + 1; 

end if 

end if 

end for 

t = 0; 

Randomly initialize a population of N individuals; 

while (is not the maximum allowed generation) do 

Evaluate the raw fitness of each individual; 

Apply the dynamic species identification; 

for i = 1 to v(t) do 

apply FS to individuals from the v-th species; 

end for 

Copy the species masters in the new population; 

Apply the selection mechanism; 

Apply the crossover operator; 

Perform mutation on the offsprings; 

t = t + 1; 

end while 
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The coevolutionary sharing model (Goldberg, 1997) attempts to avoid the estimation of niche radius. It uses two 

coevolving populations: customers and businessmen. Customers are served by the nearest businessman. By using a 

sharing function, customer fitness is derated in proportion to the total number of other customers served by the nearest 

businessman. Thus, there is pressure to find businessmen serving relatively few customers.  

The customer evolves under a traditional GA. In contrast, the businessmen attempt to maximize the number of 

customers served, having more customers yields higher fitness. To prevent convergence of the businessmen to a 

single global optimum, they are separated at least by a distance dmin. This population evolves by a mechanism that 

converts the best customers into businessmen. For each businessman, n customers are randomly selected. The first 

customer that is both more fit than it and at dmin away from other businessmen, replaces the original businessman. 

 

Sharing via niche identification techniques 

A sharing scheme based on niche identification techniques (NIT) is proposed in (Lin, 2002). It is capable of 

determining the center location and the radius of each of existing niches based on fitness topographical information of 

designs in the population. Genetic algorithms with NIT were compared to GAs with traditional sharing scheme and 

sharing with cluster analysis methods. Results of numerical experiments showed that the sharing scheme with NIT 

improved both search stability and effectiveness of locating multiple optima. 

 

Clearing 

The clearing procedure (Pétrowski, 1996) is alike fitness sharing. If an individual belongs to a given subpopulation, 

then its dissimilarity with the dominant (individual with the best fitness) is less than a given threshold σ (the clearing 

radius). Instead of evenly sharing the resources among the individuals of a sub-population as in fitness sharing, 

clearing attributes them only to the best members (the winners) of each sub-population. Its reliability is similar to that 

of the sharing method with lower complexity but, like sharing, it requires a priori knowledge of the niche radius. 

Pseudo code of a simplified version of the clearing procedure is presented in Chart 6, where population P is seen as an 

array of N agents, the capacity (κ) is the maximun number of winners that a niche can accept, while nbWinners is the 

number of winners of the subpopulation associated with the current niche. Clearing allows dosing the niching effect 

between the maximum capacity (κ = 1) and its absence (κ = N). Its major weakness is the need for estimate σ (Sareni, 

1998), while a great assets is that its complexity is O(C N) (being C the number of peaks) instead of sharing’s O(N 2).  
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Chart 6. Algorithmic frame of clearing and fuzzy clearing 

 

Fuzzy clearing 

While in standard clearing an individual dominates those within a range σ, in a further approach (Sacco, 2004) the 

individuals were clusterized before submitting them to clearing, dominance is seen within a cluster. Each individual is 

allotted solely to a single cluster by the KMEAN adaptive algorithm. Since it classifies in a deterministic way, being 

far from ideal in functions with unknown behavior or several nearby optima, in real world problems it has a high 

degree of uncertainty. The use of fuzzy logic to clusterize the individuals naturally appears. Thus, they used as fuzzy 

class separation algorithm the fuzzy clustering means (FCM). It uses the concept of pertinence that denotes the degree 

of association of an individual to a given class. Authors made a combination of an efficient niching technique with a 

clustering method free of previous knowledge of the problem. A pseudo code to be applied after clustering is shown 

in Chart 6. 

 

Genetic Algorithm with Sharing and Fuzzy Clustering 

With fuzzy clustering, in the Genetic Algorithm with Sharing and Fuzzy Clustering (GASH-FC) (El Imrani, 2000), 

the number of niches is automatically determine by continuously updating the radius of each niche until finding an 

SortFitness(P); (by decreasing values) 

for i = 0 to N-1 

if (Fitness(P[i]) > 0) 

nbWinners = 1; 

for j = i + 1 to N-1 

if (Fitness(P[j]) > 0 and SecondCondition) 

if (nbWinners < κ) 

nbWinners = nbWinners + 1; 

else 

Fitness(P[j]) = 0.0; 

end if 

end if 

end for 

end if 

end for 

For clearing SecondCondition is: Distance(P[i], P[j]) < σ 

For fuzzy clearing SecondCondition is: cluster(P[i]) = cluster(P[i]) 
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optimal solution. It is a three-layer strategy (Chart 7) that can be seen as a generalization of hard clustering, with the 

gain of efficiently dealing with overlapping clusters. Each cluster represents a niche while their centers correspond to 

the desired optima. As this method uses a self-learning procedure, the number of clusters (C) is computed by itself. 

Niches merge by using the center and the radius of each cluster while a GASH handles the evolution of each sub-

population to identify a non-found niche in the previous iteration. 

 

 

Chart 7. Structure of the GASH-FC 

Sequential niching 

Sequential niching (Beasley, 1993) works by iterating a simple GA and maintaining the best solution of each run off-

line. To avoid converging to the same area of the search space multiple times whenever a solution is located it 

depresses the fitness landscape at all points within some radius of that solution. This ensures that on subsequent runs 

the same peak will not be rediscovered. This technique has many similarities with fitness sharing. However, instead of 

the fitness of an individual being reduced because of its proximity to other members of population (sharing), 

individuals have their fitness reduced because their proximity to peaks located in previous runs. This approach suffers 

similar limitations about choosing appropriate values for the niche parameters. 

 

Species conserving genetic algorithms 

The species conserving genetic algorithms (SCGA) (Li, 2002) evolve parallel subpopulations by using species 

conservation. According to their similarity, population is divided into several species, each of which is built around a 

dominating individual (the species seed). Species seeds found in the current generation are saved to the next one.  

The definition of a species and the operation of the SCGA depend on the species distance (σs), the upper bound on the 

distance between two individuals for which they are considered to be similar. This parameter determines which 

individuals are worth preserving from one generation to the next. The distance between any two individuals in a 

species is less than σs while any two individuals within a distance less than σs are not forced to be in the same species. 

The algorithm builds Xs (the set of species found in generation t) by successively considering each individual in t, in 

decreasing order of fitness. Considering an individual means it is compared to the current species seeds. If Xs does not 

contain any seed that is closer than half the species distance (σs/2) to the individual considered, then the individual 

Random initial 

population 

GASH’s 

population 

Genetic Algorithm with 

Sharing (GASH) 

Spatial Separation (SS) 

Fuzzy Clustering 

Layer (FC) 

SS’s population 

ok? 
Optima 

C-hard partition 

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 7, No. 2, Abril-Junio, 2013  

ISSN: 2227-1899 | RNPS: 2301 

Pág. 110-126  

http://rcci.uci.cu 

Grupo Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu                                                                                                                                                         
121 

 

will be added to Xs. Once all the species are found the new population is constructed by applying the typical genetic 

operators. Since some species might not survive after such operations, they are directly saved to the new population. 

 

Relevant drawbacks of niching algorthims  

Near all these methods depend on parameters usually hard to set as such prior knowledge is often unavailable in real-

world problems. Many tries to deal with such drawback are reported (Bird, 2006 and Shir, 2006). In addition, most 

niching methods perform poorly when the dimensionality of the problem or the number of optima increases, while for 

some ones it is hard to maintain found solutions. Also, some niching techniques only play to find all global optima, 

while ignoring local ones.  

Furthermore, a regular drawback is the high computational complexity. As regards this, sharing has a complexity of 

O(N 2), being N the population size. Clearing has a complexity of C x N, where C is the number of subpopulations. 

For RTS it is w x N, being w the window size (its niching parameter) and for DFS it is between O(N) and O(N 2). 

With O(N), both deterministic and probabilistic crowding are the less complex among methods included in this work. 

 

 

On the performance evaluation of niching methods 

The behavior of niching methods is assessed by analyzing specific measures over the optimization process of well 

known benchmark multimodal functions. Some topics on both functions and measures are presented next. 

 

Test functions 

While illustrative multimodal benchmark problems widely studied as M1, M2 and M6 are presented, further examples 

can be found in (Della Cioppa, 2011; El Imrani, 2000; Li, 2005; Qu, 2010 and Sareni, 1998). 

   

Chart 8. Test functions (from left to right: M1, M2 and M6) 
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M1 and M2 were firstly proposed in (Goldberg, 1995) and are the simplest among the ones proposed in the literature 

for studying the behavior of a niching method. The aim in using such functions is particularly devoted to analyze the 

ability of the method to maintain the discovered niches rather than its searching ability. M1 is defined as follows: 

𝑀1(𝑥) = 𝑠𝑖𝑛6(5𝜋𝑥)     with 𝑥 ∈ [0, 1] (3)  

It has five peaks at 𝑥 = 0.1, 0.3, 0.5, 0.7 𝑎𝑛𝑑 0.9 all with a height equal to 1.0. M2 is the same than M1 regarding the 

optima values but the heights of the peaks are 𝑥 = 1.0, 0.917, 0.707, 0.459 𝑎𝑛𝑑 0.250 respectively. It is defined as: 

𝑀2(𝑥) = 𝑒
−(2(𝑙𝑜𝑔2)(

𝑥−0.1

0.8
)

2
)
𝑠𝑖𝑛6(5𝜋𝑥)     with 𝑥 ∈ [0, 1] (4)  

M6 (Shekel’s Foxholes) was firstly introduced in (De Jong, 1975). Although not deceptive, it is more complex than 

the previous. The independent variables range in [−65.536, 65.535] and its 25 equidistant peaks are located in 

correspondence of the coordinates [16𝑖, 16𝑗], where i and j are integer variables ranging in the interval [−2, 2]. The 

peaks heights range in [476.191, 499.002] and the highest peak is located at (−32, 32). Its analytical form is: 

𝑀6(𝑥, 𝑦) =  500 −
1

0.002 + ∑
1

1 + 𝑖 + (𝑥 − 𝑎(𝑖))
6

+ (𝑦 − 𝑏(𝑖))
6

24
𝑖=0

 
(5)  

where 𝑎(𝑖) = 16((𝑖𝑚𝑜𝑑5) − 2) and 𝑏(𝑖) = 16(⌊𝑖/5⌋ − 2). 

 

Performance criteria 

When assessing niching methods, different criteria concerning with their ability to identify the optima might be used. 

Perhaps the most widely used criteria is the effective number of peaks maintained (in literature ENPM or EPM), that 

means the ability of a method to locate and maintain individuals at peaks for long periods of time. It is often just 

tracked the number of peaks maintained as a function of the number of evaluations run (Sareni, 1998). The maximum 

peaks ratio (MPR) is also commonly used. It gives both the quality and the number of the optima reached: 

𝑀𝑃𝑅 =
∑ 𝑓𝑖

𝐶
𝑖=1

∑ 𝑓𝑘
𝑞
𝑘=1

 (6)  

where Fi is the fitness of identified optimum i and fk is the fitness of the actual optimum k. C is the number of reached 

peaks, which contain the identified optima, and q is the number of real optima. An optimum is as detected if its fitness 

value is at least 80% of the actual. Besides, some authors (Sareni, 1998) also check that the optimum is within a niche 

radius of the real optimum. If not found, the local optimum value is set to zero. Hence, the top value for the MPR is 1. 

Other criteria (Della Cioppa, 2011; El Imrani, 2000; Li, 2005 and Sareni, 1998) are the ENPM and MPR saturation 

values (GE and GM respectively), that reveal the generations after which the 99% of such saturation values are 

reached; the number of fitness function evaluations (NFE) required for the population convergence; the accuracy, 

http://rcci.uci.cu/
mailto:rcci@uci.cu


Revista Cubana de Ciencias Informáticas  

Vol. 7, No. 2, Abril-Junio, 2013  

ISSN: 2227-1899 | RNPS: 2301 

Pág. 110-126  

http://rcci.uci.cu 

Grupo Editorial “Ediciones Futuro” 

Universidad de las Ciencias Informáticas. La Habana, Cuba 

rcci@uci.cu                                                                                                                                                         
123 

 

which gives the proximity of fittest solutions to all actual optima; the convergence speed, that measures the number of 

evaluations needed to reach certain accuracy; the success rate, meaning the percentage of runs in which all optima are 

successfully located and the chi-square-like deviation, that reveals the method’s ability to evenly populate the niches. 

 

Conclusions 

Since the large the number of niching techniques is, after presented some relevant issues about basics of multimodal 

optimization, niching methods are briefly surveyed. It regards classical ones, including fitness sharing, crowding, 

clearing and clustering; extensions to previous methods are presented as well. It must be noted that there is still a need 

for devise methods out of niching parameters, which is maybe the most regular difficulty in such methods. 

Moreover, nearly all niching techniques have a low performance when either the dimensionality of the search space or 

number of the optima increases. Besides, it is often hard to maintain found solutions along generations; whereas some 

niching approaches only search for locating all global optima, while ignoring local optima. Conversely, some real 

domains demands to obtain both global and local optima at a time. Also, the frequent estimation of information from 

the whole population requires around O(N 2) computational complexity. All reported drawbacks define the current 

and future research lines on niching methods. Finally, they are presented some benchmark functions from multimodal 

problems test suite while main criteria used when assessing the performance of niching methods are also depicted. 
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