
Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

57

Tipo de artículo: Artículo original

Temática: Matemática computacional

Recibido: 19/09/2014 | Aceptado: 15/06/2015

Connected Permutations of Vertices for Canonical Form Detection

in Graph Mining

Permutaciones conexas de vértices para la detección de formas

canónicas en la minería de grafos

Andrés Gago-Alonso 1*

1 Centro de Aplicaciones de Tecnologías Avanzadas. La Habana, Cuba.

* Autor para correspondencia: agago@cenatav.co.com

Abstract

Checking redundancies is one of the most significant tasks in graph mining. Canonical forms of graphs are widely used

to guarantee and speed up this kind of task. In general, canonical form calculation requires to orderly check partial or

complete prefixes of vertex permutations for picking up the codification to unambiguously represent a graph. In this

paper, novel theoretical results are introduced for reducing the number of candidate prefixes to a specific subset

associated with connected permutations. Furthermore, several interesting mathematical properties are also described

and proved, including strong linkages among graph mining, discrete mathematics, and different kinds of canonical

forms. Although this paper does not declare a scheme for directly reducing the complexity of finding canonical

descriptions, our contributions can open novel opportunities for future improvements in graph mining by interrelating

concepts from different existing approaches.

Key words: canonical form, graph isomorphism, connected permutation, adjacency matrix, spanning tree.

Resumen

La verificación de redundancias es una de las taras más influyentes en la minería de grafos. Las formas canónicas son

ampliamente usadas para garantizar y acelerar este tipo de tarea. En general, el cómputo de una forma canónica

requiere la verificación parcial o completa de todos los prefijos de permutaciones de vértices, para seleccionar aquellas

que representa sin ambigüedad al grafo. En este artículo, se introducen nuevos resultados teóricos enfocados a reducir

el número de candidatos prefijos a un subconjunto específico con las permutaciones conexas. Adicionalmente, varias

http://rcci.uci.cu/
mailto:rcci@uci.cu
mailto:agago@cenatav.co.com

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

58

propiedades son también descritas y probadas, incluyendo fuertes vínculos entre minería de grafos, matemática

discreta, y diferentes tipos de formas canónicas. Aunque este artículo no declara un esquema para reducir directamente

la complejidad computacional para detectar formas canónicas, estas contribuciones pueden abrir nuevas

oportunidades para obtener futuras mejoras en la minería de grafos, interrelacionando conceptos provenientes de

diferentes enfoques que hasta ahora han sido propuestos de manera aislada.

Palabras clave: formas canónicas, isomorfismo de grafos, permutaciones conexas, matriz de adyacencia, árbol de

cobertura

Introduction

Graph mining is gaining more attention and significance, since advances in collecting and storing data have produced

an explosive growth in the amount of available structured data (JIANG, 2013; MANSO, 2014; LI, 2015; VO, 2015).

This situation has boosted the necessity to develop new algorithms, called graph miners, to transform this big amount

of data into useful information for decision makers. The main idea of several graph miners is to grow subgraphs into

the graph collection, adding a new edge or perhaps a new vertex at each step, calculating the quality of each grown

subgraph, and rejecting those with low scores. Thus, the development of these miners requires techniques for dealing

with the redundancy of candidates during mining process, since the same subgraph can be grown in several ways,

adding vertices and edges in different orders. This redundancy can significantly increase the execution times in graph

mining (GAGO-ALONSO, 2010a; VO, 2015).

One of the most widely used techniques, to avoid redundant search, consists in defining a canonical form of a graph

and using it for representing subgraphs during the mining process (BORGELT, 2006). Some kinds of canonical forms

have been defined as strings of labels, which are built by concatenating rows or columns of an adjacency matrix of a

graph (INOKUCHI, 2000; KURAMOCHI, 2001; HUAN, 2003). Others are defined as codes of tuples, which are

obtained from a spanning tree of a graph (YAN, 2002; NIJSSEN, 2004; BORGELT, 2006; LI, 2015, VO, 2015). All of

these approaches are focused on calculating the canonical form of a graph, by traversing the set of vertex permutations.

In this paper, novel theoretical results for enacting the significance of a specific subset of vertex permutations, called

connected ones, in canonical form calculation tasks are introduced. In fact, a theorem ensuring that only connected

permutations need to be checked during these tasks is mathematically proved. In this sense, other propositions

characterizing the cardinality of the connected permutation set of specific kind of graphs are presented. These results

give distinction to the reduction achieved by this subset regarding the whole set. Thus, a basic framework for future

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

59

improvements in graph mining is stated. Additionally, a linkage between graph mining and discrete mathematics is

described, in one of these new properties.

Additionally, a new kind of code of tuples, called underlying code, is defined. This concept is strongly linked with

adjacency matrices and spanning trees, by means of another theorem introduced and proved in this paper. Thus, this

linkage opens new research chances in graph mining by mixing the skilled features of the above mentioned kind of

canonical forms.

The rest of this paper is organized as follows. Firstly, the necessary background for understanding the proposed work

is described, including basic graph definitions, previously reported propositions, and examples of canonical forms for

graphs. Next, the novel framework for characterizing canonical forms using vertex connected permutations is presented,

including the description of the underlying code and its relationship with other canonical forms. Finally, conclusions

and future work are given.

Methodology

In this section, the necessary background (coming from the literature) for understanding the proposed theoretical

framework and the rest of the paper is presented. Examples of canonical forms for labeled graphs are also included.

Graph definitions

This paper is focused on labeled simple undirected graphs. The formal definition of this kind of graph is a classical

concept in graph theory, labeled graph (HARARY, 1969), and it is also given below.

The universe of labels is defined as a finite subset, Λ = {1,2, … , 𝜆}, of positive integer numbers, called labels. Thus, 1

and 𝜆 are the lowest and highest elements in the universe of labels, respectively.

A labeled graph is a 4-tuple, 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 >, where 𝑉 is a set whose elements are called vertices, 𝐸 ⊂

{𝑒|𝑒 ⊂ 𝑉, |𝑒| = 2} is a set whose elements are called edges (undirected edges are implicitly assumed), each edge is a

set with exactly two vertices, 𝐿 is a set of labels, 𝐿 ⊆ Λ, and 𝑙: 𝑉 ∪ 𝐸 → 𝐿 is a labeling function for assigning labels to

vertices and edges. A vertex 𝑣 ∈ 𝑉 such that 𝑣 ∉ 𝑒, for all edge 𝑒 ∈ 𝐸, is an isolated vertex. If for each pair of vertices

𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 there is {𝑢, 𝑣} ∈ 𝐸 then 𝐺 is named as complete graph.

Let 𝐺1 =< 𝑉1, 𝐸1, 𝐿1, 𝑙1 > and 𝐺2 =< 𝑉2, 𝐸2, 𝐿2, 𝑙2 > be two graphs. It is said that 𝐺1 is a subgraph of 𝐺2 if 𝑉1 ⊆ 𝑉2,

𝐸1 ⊆ 𝐸2, 𝐿1 ⊆ 𝐿2, and the function 𝑙1 is a restriction of 𝑙2 to 𝐿1. In this case, the notation 𝐺1 ⊆ 𝐺2 is used.

A function 𝑓 is an isomorphism between 𝐺1 =< 𝑉1, 𝐸1, 𝐿1, 𝑙1 > and 𝐺2 =< 𝑉2, 𝐸2, 𝐿2, 𝑙2 >, if 𝑓: 𝑉1 → 𝑉2 is a bijective

function where 𝑙1(𝑣) = 𝑙2(𝑓(𝑣)) for each vertex 𝑣 ∈ 𝑉1, {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸2 and 𝑙1({𝑢, 𝑣}) = 𝑙2({𝑓(𝑢), 𝑓(𝑣)}) for all

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

60

edge {𝑢, 𝑣} ∈ 𝐸1. A subgraph isomorphism from 𝐺1 to 𝐺2 is an isomorphism from 𝐺1 to a subgraph of 𝐺2; in such case,

the notation 𝐺1 ⊑ 𝐺2 is used.

A path in 𝐺 is a sequence of vertices 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑘) with {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for each 𝑖 = 1, … , 𝑘 − 1; in this case, it is

said that 𝑣1 and 𝑣𝑘 are connected. When 𝑣1 = 𝑣𝑘, it is said that the path 𝑃 is a cycle. The graph 𝐺 is connected if for

all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑣𝑖 and 𝑣𝑗 are connected by at least one path. The proposition 1 offers a good characterization,

already reported in the literature, for connected graphs.

Proposition 1. For each graph 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > with |𝑉| = 𝑛, the following statements are mutually equivalent:

1. 𝐺 is a connected graph.

2. There is a permutation 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛) of the vertices in 𝑉, such that for each 𝑣𝑖, 2 ≤ 𝑖 ≤ 𝑛, there is at least one

𝑣𝑗 ∈ {𝑣1, 𝑣2, … , 𝑣𝑖−1} where {𝑣𝑖 , 𝑣𝑗} ∈ 𝐸.

Proof. The proof of theses equivalences can be found in a book of graph theory (DIESTEL, 2000).

Vertex permutations fulfilling the statement 1 of proposition 1 are called in the scope of this paper as connected

permutation. A connected graph without cycles is known as simple tree. The proposition 2 provides relationships,

already reported in the literature, among the above mentioned concepts. Moreover, it also supports the most commonly

used canonical form definitions.

Proposition 2. For each graph 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > with |𝑉| = 𝑛, the following statements are mutually equivalent:

1. 𝐺 is a simple tree.

2. There is a permutation 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛) of the vertices in 𝑉, such that for each 𝑣𝑖, 2 ≤ 𝑖 ≤ 𝑛, there is only one 𝑣𝑗 ∈

{𝑣1, 𝑣2, … , 𝑣𝑖−1} where {𝑣𝑖, 𝑣𝑗} ∈ 𝐸.

3. 𝐺 is connected with 𝑛 − 1 edges.

Proof. The proof of theses equivalences can be found in a book of graph theory (DIESTEL, 2000).

The graph 𝑇 =< 𝑉𝑇 , 𝐸𝑇 , 𝐿𝑇 , 𝑙𝑇 > is a spanning tree of 𝐺 if 𝑇 ⊆ 𝐺, 𝑇 is a simple tree, and |𝑉𝑇| = |𝑉|. Taking it for

granted, let 𝑃 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a permutation of 𝑉𝑇 according to the statement 2 of proposition 2.

Let us suppose that the vertices 𝑢 and 𝑣 have indices 𝑖 and 𝑗, respectively, according to the permutation 𝑃. Let 𝑙𝑖 =

𝑙(𝑢), 𝑙𝑗 = 𝑙(𝑣) and 𝑙(𝑖,𝑗) = 𝑙(𝑗,𝑖) = 𝑙(𝑒) be the labels of 𝑢, 𝑣 and 𝑒 = {𝑢, 𝑣}, respectively. Without loss of generality, it

can be assumed that 𝑖 < 𝑗. The tuple of 𝑒 regarding 𝑇 is calculated as in (1).

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

61

 𝜏(𝑒, 𝑇) = {
(𝑖, 𝑗, 𝑙𝑖, 𝑙(𝑖,𝑗), 𝑙𝑗) , 𝑒 ∈ 𝐸𝑇 ,

(𝑗, 𝑖, 𝑙𝑗, 𝑙(𝑗,𝑖), 𝑙𝑖) , 𝑒 ∉ 𝐸𝑇 .
 (1)

Thus, each edge 𝑒 ∈ 𝐸 can be coded as a tuple, 𝜏(𝑒, 𝑇) ∈ 𝑊𝑛 = 𝐾𝑛
2 × Λ3, where 𝐾𝑛 = {1,2, … , 𝑛}. The set 𝑊𝑛 is the

vocabulary and it contains the available tuples in the graph 𝐺.

Let 𝑠1 = (𝑎1, 𝑎2, … , 𝑎𝑚) and 𝑠2 = (𝑏1, 𝑏2, … , 𝑏𝑛) be two tuple sequences, where 𝑎𝑖, 𝑏𝑗 ∈ 𝐾𝑛
2 × 𝐿3 for 1 ≤ 𝑖 ≤ 𝑚 and

1 ≤ 𝑗 ≤ 𝑛 and ≺ be a total order in 𝑊𝑛. It is said that 𝑠1 < 𝑠2 according ≺ if one of the following conditions is true

 ∃𝑡, ∀𝑘 < 𝑡, 𝑎𝑘 = 𝑏𝑘,  and 𝑎𝑡 ≺ 𝑏𝑡; (2)

 𝑚 < 𝑛 and ∀𝑘 ≤ 𝑚, 𝑎𝑘 = 𝑏𝑘. (3)

Canonical form based on string of labels

A graph can be represented by its canonical adjacency matrix. This kind of representation has been used in previously

reported works for graph mining (INOKUCHI, 2000; KURAMOCHI, 2001; HUAN, 2001; LI, 2015). In this section,

the string of labels is defined in a slightly different way regarding previously published works, see (4), giving priority

to vertex labels over edge ones.

Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a labeled graph with |𝑉| = 𝑛 and let 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛) be a permutation of the vertices in 𝑉.

The adjacency matrix of 𝐺 regarding 𝑃 is a lower triangular matrix 𝑋(𝐺, 𝑃) = (𝑥𝑖,𝑗)𝑖,𝑗=1
𝑛 where for each 1 ≤ 𝑖 ≤ 𝑗 ≤

𝑛:

𝑥𝑖,𝑗 = {

𝑙(𝑣𝑖)  if  𝑖 = 𝑗 (vertex entry)
𝑙(𝑒)  if  𝑒 = {𝑣𝑖, 𝑣𝑗} ∈ 𝐸 (edge entry)

0  if  {𝑣𝑖, 𝑣𝑗} ∉ 𝐸 (non-edge entry)

The adjacency matrix is not unique for 𝐺. Since each diagonal entry represents a vertex in the graph, each permutation

of the set of vertices corresponds to a different adjacency matrix. There are 𝑂(𝑛!) different adjacency matrices for 𝐺.

The string of labels of an adjacency matrix 𝑋 = 𝑋(𝐺, 𝑃) is built concatenating lower triangular rows of 𝑋, see (4). This

string is made up by labels in Λ ∪ {0}.

 string(𝑋) = 𝑥1,1𝑥2,2𝑥2,1𝑥3,3𝑥3,1𝑥3,2 … 𝑥𝑛,𝑛𝑥𝑛,1 … 𝑥𝑛,𝑛−1 (4)

A standard lexicographic order ≺ could be used to define a total order among strings, considering that their labels are

sorted as integer numbers. Thus, a canonical string of 𝐺 is usually considered as the maximal string among all its

possible strings. The adjacency matrix where such maximal string is attached is called the canonical adjacency matrix

of 𝐺. Additionally, the vertex permutation associated with this matrix is also called the canonical permutation of 𝐺.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

62

Canonical form based on code of tuples

A labeled graph can be represented by a unique sequence of edges called minimum depth-first search (DFS) code. This

kind of canonical representation is based on DFS graph traversals and it was introduced by gSpan (YAN, 2002).

Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a connected graph and let us suppose that a DFS traversal in 𝐺 is performed. A DFS tree 𝑇 =

< 𝑉𝑇 , 𝐸𝑇 , 𝐿𝑇 , 𝑙𝑇 > of 𝐺 is the rooted tree built as follow: the starting vertex in the traversal is the root of 𝑇, 𝑇 is a

spanning tree of 𝐺 (𝑉𝑇 = 𝑉)) and 𝑇 contains the edges of 𝐺 that were used for the DFS traversal (𝐸𝑇 ⊆ 𝐸).

The graph 𝐺 can have many different DFS trees because there is more than one DFS traversal. Each DFS tree 𝑇 defines

a unique order among all the vertices in 𝑉. Therefore, each vertex could be numbered according to this DFS order.

Thus, a permutation of 𝑉𝑇 according to statement 2 of proposition 2 is given. Assuming 𝑛 = |𝑉|, the root of 𝑇 is

numbered with index 1 and the last vertex in the DFS traversal is numbered with index 𝑛. The last vertex is also called

rightmost vertex of 𝑇.

Each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 is coded as a tuple 𝜏(𝑒, 𝑇) according to the DFS tree 𝑇, see (1). In addition, a linear order ≺𝑒

among the vocabulary 𝑊𝑛 could be defined as follows. Let 𝑡1 = (𝑖1, 𝑗1, …) and 𝑡2 = (𝑖2, 𝑗2, …) be two tuples, it is said

that 𝑡1 ≺𝑒 𝑡2 if and only if one of the following statements is true:

 𝑖1 < 𝑗1 ∧ 𝑖2 < 𝑗2 ∧ (𝑗1 < 𝑗2 ∨ (𝑗1 = 𝑗2 ∧ 𝑖1 > 𝑖2)),

 𝑖1 ≥ 𝑗1 ∧ 𝑖2 ≥ 𝑗2 ∧ (𝑖1 < 𝑖2 ∨ (𝑖1 = 𝑖2 ∧ 𝑗1 < 𝑗2)),

 𝑖1 ≥ 𝑗1 ∧ 𝑖2 < 𝑗2 ∧ 𝑖1 < 𝑗2,

 𝑖1 < 𝑗1 ∧ 𝑖2 ≥ 𝑗2 ∧ 𝑗1 ≤ 𝑖2,

 𝑖1 = 𝑖2 ∧ 𝑗1 = 𝑗2 ∧ 𝑡1 ≺𝑙 𝑡2.

The lexicographic order ≺𝑙 is used to compare the tuples 𝑡1 and 𝑡2 regarding the last three components in each tuple.

This order is determined by comparing the third component as first priority, next the fourth one, and finally the fifth

one.

The DFS code of the graph 𝐺 regarding the DFS tree 𝑇 is a sequence in 𝑊𝑛 built using ≺𝑒. All the tuples obtained from

the edges in 𝐸 are sorted using ≺𝑒 to build this sequence. Thus, a graph 𝐺 can be coded as a sequence of tuples, denoted

as code(𝐺, 𝑇), using one of its DFS trees. A canonical form code of a graph 𝐺 is defined as the minimum tuple sequence

according to ≺𝑒 among all DFS codes of 𝐺.

Other example of ways for building a canonical form codes based on tuples were presented by (BORGELT, 2006),

using BFS trees instead of DFS ones, and the proposal of (NIJSSEN, 2004), using graph backbone paths.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

63

Results and discussion

In this section, results of our research are presented, including the novel framework for characterizing canonical

forms using vertex connected permutations, the description of the underlying code and its relationship with other

canonical forms.

Novel properties for canonical adjacency matrix

It is a fact that the number of vertex permutation to be checked does not determine the efficiency of canonical

form calculations, since the most efficient algorithms, for example (MCKAY, 1981), employ topological

properties and label occurrences for pruning partial permutation prefixes. However, there is a worst case

where such algorithms require checking the 𝑛! Vertex permutations.

An interesting property for describing the set of permutations to be checked is stated in theorem 3. This

statement only uses topological properties of graphs for giving distinction to the canonical permutation.

Although the cardinality of this set can be irrelevant for graph mining, this property could be used in the future

for enriching the already mentioned pruning strategies and speeding up canonical form calculations.

Theorem 3. The canonical permutation of a connected graph is a connected permutation.

Proof. Let us suppose that 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛) is the canonical permutation of a connected graph 𝐺 and 𝑃 is

non-connected. Thence, there is 𝑖, 2 ≤ 𝑖 ≤ 𝑛, such that {𝑣𝑖, 𝑣𝑗} ∉ 𝐸 for all 𝑣𝑗 ∈ {𝑣1, 𝑣2, … , 𝑣𝑖−1}. It is easy to

verify that 𝑖 ≠ 𝑛, since 𝐺 is connected and 𝑣𝑛 cannot be an isolated vertex; thus, 2 ≤ 𝑖 ≤ 𝑛 − 1. Moreover,

there is 𝑘, 𝑖 + 1 ≤ 𝑘 ≤ 𝑛, there is at least one 𝑣𝑗 ∈ {𝑣1, 𝑣2, … , 𝑣𝑖−1} where {𝑣𝑘, 𝑣𝑗} ∈ 𝐸, since 𝐺 is connected.

Let 𝑃′ = (𝑣1, 𝑣2, … , 𝑣𝑖−1, 𝑣𝑘, … , 𝑣𝑘−1, 𝑣𝑖, … , 𝑣𝑛) be the permutation obtained from 𝑃 by swapping 𝑣𝑖 and 𝑣𝑘.

It is easy to prove that string(𝑋(𝐺, 𝑃)) ≺ string(𝑋(𝐺, 𝑃′)). In fact, the substring corresponding to the 𝑖-th row

(𝑥𝑖,𝑖𝑥𝑖,1𝑥𝑖,1 … 𝑥𝑖,𝑖−1) in 𝑋(𝐺, 𝑃) is lexicographically lesser than the one in 𝑋(𝐺, 𝑃′), since this substring in 𝑋(𝐺, 𝑃) is

𝑙00 … 0, where 𝑙 = 𝑙(𝑣𝑖), whereas in 𝑋(𝐺, 𝑃′) there is at least a non-zero element on the corresponding substring.

Therefore, 𝑃 cannot be the canonical permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the

theorem becomes true by reductio ad absurdum. 



http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

64

The following propositions illustrate the number of connected permutations in specifics kind of graphs. Proposition 4

describes the behavior of this number in paths, showing a strong and interesting linkage among graph mining, graph

theory, and some special numbers (CONWAY, 1996) coming from discrete mathematics.

Proposition 4. Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a graph representing a path; that is, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 =

{{𝑣1, 𝑣2}, {𝑣2, 𝑣3}, … , {𝑣𝑛−1, 𝑣𝑛}}, and 𝑛 ≥ 2. Then, the number of connected permutations of 𝐺 is 2𝑛−1.

Proof. Let 𝑁(𝑣𝑖) be the number of connected permutations of 𝐺 starting from 𝑣𝑖.

First of all, an interesting function sequence which will be used for counting the number of connected permutations in

the graph 𝐺 is defined. This sequence represents a strong linkage between graph theory and some special numbers.

Let 𝑇𝑘: 𝑁 → 𝑁, 𝑘 ≥ 1, be the sequence of functions defined for each 𝑛 ∈ 𝑁, according the following recurrence

formula: 𝑇1(𝑛) = 1 for 𝑘 = 1, and 𝑇𝑘(𝑛) = ∑ 𝑇𝑘−1
𝑛
𝑚=1 (𝑚) for 𝑘 > 1. In (5), the above mentioned function sequence

is shown in expanded way:

𝑇1(𝑛) = 1 = 1 (ones)
𝑇2(𝑛) = 1 + 1 + 1 + ⋯ + 1 = 𝑛 (counting numbers)

𝑇3(𝑛) = 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(
𝑛 + 1

2
) (triangular numbers)

𝑇4(𝑛) = 1 + 3 + 6 + ⋯ + 𝑛(
𝑛 + 1

2
) = 𝑛(

𝑛 + 1

2
)(

𝑛 + 2

3
) (tetrahedral numbers)

𝑇5(𝑛) = 1 + 4 + 10 + ⋯ + 𝑛(
𝑛 + 1

2
)(

𝑛 + 2

3
) = 𝑛(

𝑛 + 1

2
)(

𝑛 + 2

3
)(

𝑛 + 3

4
) (pentatope numbers)

⋮ ⋮ ⋮ ⋮
𝑇𝑘(𝑛) = 1 + (𝑘 − 1) + ⋯ = 𝐶𝑘−1

𝑛+𝑘−2 (𝑘 − tope numbers)

⋮ ⋮ ⋮ ⋮

 (5)

where 𝐶𝑟
𝑛 represents a binomial coefficient or the number of combinations of 𝑟 items that can be selected from a set of

𝑛 items. Next, the following property of binomial coefficients is underlined:

 ∑ 𝐶𝑘
𝑘+𝑖

𝑛

𝑖=0

= 𝐶𝑘+1
𝑘+𝑛+1 (6)

which can be proved by mathematical induction. For the base case 𝑛 = 1, it is verified that 𝐶𝑘
𝑘 + 𝐶𝑘

𝑘+1 = 𝑘 + 2 =

𝐶𝑘+2
𝑘+1. The inductive step is also achieved since ∑ 𝐶𝑘

𝑘+𝑖𝑛+1
𝑖=0 = ∑ 𝐶𝑘

𝑘+𝑖𝑛
𝑖=0 + 𝐶𝑘

𝑘+𝑛+1 = 𝐶𝑘+1
𝑘+𝑛+1 + 𝐶𝑘

𝑘+𝑛+1 = 𝐶𝑘
𝑘+𝑛+2.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

65

After that, it is easy to prove that 𝑇𝑘(𝑛) = 𝐶𝑘−1
𝑛+𝑘−2 using mathematical induction. For the base cases 𝑛 = 1, 𝑛 = 2, 𝑛 =

3, 𝑛 = 4, and 𝑛 = 5, the fact is already known (CONWAY, 1996), and it can be verified in (5). The inductive step is

also checked, using (6), since 𝑇𝑘(𝑛) = ∑ 𝑇𝑘−1
𝑛
𝑚=1 (𝑚) = ∑ 𝐶𝑘−2

𝑚+𝑘−3𝑛−1
𝑚=0 = 𝐶𝑘−1

𝑛+𝑘−2.

Returning to the graph 𝐺, it can be seen that there is only one connected permutations starting from 𝑣1, since 𝑣2 must

be the second permutation element, and so on. By symmetry, this fact is also true for 𝑣𝑛. For 𝑛 ≥ 3, it can be checked

manually that there are 𝑛 − 1 connected permutations starting from 𝑣2; this fact is also true for 𝑣𝑛−1 by symmetry.

Thus, the symmetry 𝑁(𝑣𝑖) = 𝑁(𝑣𝑛−𝑖+1), for each 1 ≤ 𝑖 ≤ 𝑛, can be proven easily. Besides, it is easy to prove that

𝑁(𝑣𝑖) = 𝑇𝑖(𝑛 − 𝑖 + 1), for 𝑖 ≤ ⌈𝑛/2⌉, and it can be calculated, by symmetry, for the remaining vertices. Thus, 𝑁(𝑣𝑖) =

𝐶𝑖−1
𝑛−1, for each 1 ≤ 𝑖 ≤ ⌈𝑛/2⌉. Finally, the number of connected permutations of 𝐺 is 2𝑛−1, using properties of binomial

coefficients.

The Proposition 4 is entirely irrelevant for graph mining, since there are 𝑂(1) strategies (NIJSSEN, 2004) for detecting

path canonical forms, taking into account the string of labels. Nevertheless, it is presented for illustrating the contrast

between connected and non-connected permutation sets in a family of graphs (2𝑛−1 << 𝑛!), without considering labels.

This fact emphasizes the usefulness of theorem 3 for distinguishing the canonical permutation in paths. Similar results

can be stated for cycles, see proposition 5.

Proposition 5. Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a graph representing a cycle; that is, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 =

{{𝑣1, 𝑣2}, {𝑣2, 𝑣3}, … , {𝑣𝑛−1, 𝑣𝑛}, {𝑣𝑛, 𝑣1}}, and 𝑛 ≥ 3. Then, the number of connected permutations of 𝐺 is 𝑛2𝑛−2.

Proof. For the first position in a permutation, there are 𝑛 possibilities. For the subsequent 𝑛 − 2 positions, there are

only two possibilities that guarantee a connected permutation. For the last position, there is only one option for the last

unselected vertex. Thus, the number of connected permutations of 𝐺 is 𝑛2𝑛−2.

Until now, analytical formulae for more topologically complex graphs are not given. For example in complete graphs,

every permutation is connected. However, even in barely complete graphs, a remarkable number of non-connected

permutations (see proposition 6) can be detected.

Proposition 6. Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a complete graph with 𝑛 vertices. The number of connected permutations of 𝐺

and the number of vertex permutations, 𝑛!, are the same. Let 𝑒 ∈ 𝐸 be an edge of 𝐺; then, the graph obtained from 𝐺

by removing 𝑒 has 𝑛! − 2(𝑛 − 2)! connected permutations.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

66

Proof. The first statement is easy to check since any vertex permutation of 𝐺 is connected due to completeness. Let us

suppose that 𝑒 = {𝑢, 𝑣}. Permutations starting with 𝑢 and 𝑣 are non-connected ones. There are 2(𝑛 − 2)! permutations

in this case. The remaining ones are connected. Therefore, the proof was concluded.

In this way, theorem 3 could be used, in the future, for speeding up algorithms for canonical form calculation. They

only need to check connected permutation prefixes, diminishing somehow the number of iterations.

A linkage between Adjacency Matrices and Spanning Trees

The question of establishing connections between adjacency matrices and spanning trees has already been treated. In

fact, several variants of constructing a code from an adjacency matrix preserving the equivalence to a spanning tree can

be described (BAPAT, 1996). This section contains an example for illustrating the connection with a kind of code only

based on tuples describing edges and structurally similar to the already known DFS code.

Let 𝐺 =< 𝑉, 𝐸, 𝐿, 𝑙 > be a connected graph with 𝑛 vertices and 𝑃 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a connected permutation of 𝑉.

The first edge of 𝑣𝑖, 1 < 𝑖 ≤ 𝑛, in 𝑃 is defined by us as the edge {𝑣𝑗, 𝑣𝑖} ∈ 𝐸 such that 1 ≤ 𝑗 < 𝑖 and {𝑣𝑘 , 𝑣𝑖} ∉ 𝐸 for

all 𝑘, 1 ≤ 𝑘 < 𝑗. The spanning tree of 𝐺, made up by the first edges of any vertex of 𝑉 in 𝑃, is called by us the underlying

spanning tree of 𝐺 in 𝑃.

Let 𝑇 be the underlying spanning tree of 𝐺 in 𝑃, coding each edge of 𝐺 by means of 𝜏(𝑒, 𝑇), see (1). Now, a total order

in 𝑊𝑛 using 𝑃 is defined. Let, 𝑡1 = (𝑖1, 𝑗1, 𝑎1, 𝑏1, 𝑐1) and 𝑡2 = (𝑖2, 𝑗2, 𝑎2, 𝑏2, 𝑐2) be two tuples. It is said that 𝑡1 ≺𝑢 𝑡2 if

and only if one of the following statements is true:

 𝑖1 < 𝑗1 ∧ 𝑖2 < 𝑗2 ∧ (𝑗1 < 𝑗2 ∨ (𝑗1 = 𝑗2 ∧ 𝑖1 < 𝑖2)),

 𝑖1 ≥ 𝑗1 ∧ 𝑖2 ≥ 𝑗2 ∧ (𝑖1 < 𝑖2 ∨ (𝑖1 = 𝑖2 ∧ 𝑗1 < 𝑗2)),

 𝑖1 ≥ 𝑗1 ∧ 𝑖2 < 𝑗2 ∧ 𝑖1 < 𝑗2,

 𝑖1 < 𝑗1 ∧ 𝑖2 ≥ 𝑗2 ∧ 𝑗1 ≤ 𝑖2,

 𝑖1 = 𝑖2 ∧ 𝑗1 = 𝑗2 ∧ 𝑡1 ≺𝑙 𝑡2.

The lexicographic order ≺𝑙 is used to compare the tuples 𝑡1 and 𝑡2 regarding the last three components in each tuple.

This order is determined comparing the third component as first priority, next the fifth one, and finally the fourth one.

The underlying code of 𝐺 given 𝑃 is defined as a sequence in 𝑊𝑛 constructed using ≺𝑢. All of the tuples 𝜏(𝑒, 𝑇) obtained

from the edges 𝑒 ∈ 𝐸 are sorted using ≺𝑢 to build this sequence. Thus, a graph 𝐺 can be coded asa sequence of tuples,

denoted as u-code(𝐺, 𝑃), using one of its DFS trees. A canonical underlying code of a graph 𝐺 is defined as the

minimum underlying code according to ≺𝑢 among all vertex permutations of 𝐺.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

67

Underlying code becomes a novel kind of canonical form, preserving a semantics coming from adjacency matrices and

showing syntax based on tuples like DFS codes. The following theorem boosts such affirmation.

Theorem 7. Let us suppose that 𝑃 is the canonical permutation of 𝐺. Let 𝐺′ =< 𝑉, 𝐸, 𝐿′, 𝑙′ > be a graph obtained from

𝐺 by relabeling vertices and edges, according to 𝑙′(𝑥) = 𝜆 − 𝑙(𝑥), for each 𝑥 ∈ 𝑉 ∪ 𝐸 and 𝐿′ = {𝑙′(𝑥)|𝑥 ∈ 𝑉 ∪ 𝐸},

where 𝜆 is the highest element in the universe of labels Λ. The tuple sequence u-code(𝐺′, 𝑃) is the canonical underlying

code of 𝐺′.

Proof. Let us suppose that u-code(𝐺′, 𝑃) = (𝑏1, 𝑏2, … , 𝑏𝑚) is a non-canonical underlying code of 𝐺′ and 𝑚 is the

number of edges in 𝐺. Thence, there is a permutation 𝑃′ such that u-code(𝐺′, 𝑃′) = (𝑎1, 𝑎2, … , 𝑎𝑚) < (𝑏1, 𝑏2, … , 𝑏𝑚),

according to ≺𝑢. Thus, there is natural number 𝑡, 1 ≤ 𝑡 ≤ 𝑚, such that 𝑎𝑘 = 𝑏𝑘, for all 𝑘, 𝑘 < 𝑡, and 𝑎𝑡 ≺𝑢 𝑏𝑡. Let us

denote 𝑎𝑡 = (𝑖1, 𝑗1, 𝛼1, 𝛽1, 𝛾1) and 𝑏𝑡 = (𝑖2, 𝑗2, 𝛼2, 𝛽2, 𝛾2).

If 𝑡 = 1 then 𝑎1 = (1,2, 𝛼1, 𝛽1, 𝛾1) ≺𝑙 (1,2, 𝛼2, 𝛽2, 𝛾2) = 𝑏𝑡. In this case, the string of labels of the matrices 𝑋(𝐺, 𝑃)

and 𝑋(𝐺, 𝑃′) starts with the labels of 𝐿, where (𝜆 − 𝛼1, 𝜆 − 𝛾1, 𝜆 − 𝛽1, …) > (𝜆 − 𝛼2, 𝜆 − 𝛾2, 𝜆 − 𝛽2, …). Therefore, 𝑃

cannot be the canonical permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the theorem becomes

true by reductio ad absurdum in this case.

Now, let us assume that 𝑡 > 1, and 𝑖 = min { max { 𝑖1, 𝑗1}, max { 𝑖2, 𝑗2}}. Then, it is not difficult to check that the

matrices 𝑋(𝐺, 𝑃) and 𝑋(𝐺, 𝑃′) have the same (𝑖 − 1)-main minor, and the first difference between them takes place at

the 𝑖-th row.

Taking into account the definition of ≺𝑢, five cases where 𝑎𝑡 ≺𝑢 𝑏𝑡 are given. Each one of these cases will be

individually analyzed.

The first subcase of the first case, 𝑖1 < 𝑗1, 𝑖2 < 𝑗2 and 𝑗1 < 𝑗2, never takes place in connected permutations of the same

graph. In fact, the tuple of the first edge of 𝑣𝑗1
 in 𝑃 is always located between 𝑏𝑡−1 and 𝑏𝑡.

Let us suppose the first case, but in the second subcase 𝑖1 < 𝑗1, 𝑖2 < 𝑗2, 𝑗1 = 𝑗2 and 𝑖1 < 𝑖2. In this case, 𝑖 = 𝑗1 = 𝑗2

and the 𝑖-th row of 𝑋(𝐺, 𝑃′) has a non-zero element in a position lesser than the one the 𝑖-th row of 𝑋(𝐺, 𝑃). Therefore,

𝑃 can not be the canonical permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the theorem

becomes true by reductio ad absurdum in this case.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

68

Now, let us assume that 𝑡 > 1, and 𝑖 = min { max { 𝑖1, 𝑗1}, max { 𝑖2, 𝑗2}}. Then, it is not difficult to check that the

matrices 𝑋(𝐺, 𝑃) and 𝑋(𝐺, 𝑃′) have the same (𝑖 − 1)-main minor, and the first difference between them takes place at

the 𝑖-th row.

Taking into account the definition of ≺𝑢, five cases where 𝑎𝑡 ≺𝑢 𝑏𝑡 are given. Each one of these cases will be

individually analyzed.

The first subcase of the first case, 𝑖1 < 𝑗1, 𝑖2 < 𝑗2 and 𝑗1 < 𝑗2, never takes place in connected permutations of the same

graph. In fact, the tuple of the first edge of 𝑣𝑗1
 in 𝑃 is always located between 𝑏𝑡−1 and 𝑏𝑡.

Let us suppose the first case, but in the second subcase 𝑖1 < 𝑗1, 𝑖2 < 𝑗2, 𝑗1 = 𝑗2 and 𝑖1 < 𝑖2. In this case, 𝑖 = 𝑗1 = 𝑗2

and the 𝑖-th row of 𝑋(𝐺, 𝑃′) has a non-zero element in a position lesser than the one the 𝑖-th row of 𝑋(𝐺, 𝑃). Therefore,

𝑃 can not be the canonical permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the theorem

becomes true by reductio ad absurdum in this case.

The first subcase of the second case, 𝑖1 ≥ 𝑗1, 𝑖2 ≥ 𝑗2, and 𝑖1 < 𝑖2, never takes place in connected permutations of the

same graph. In fact, the tuple of the first edge of 𝑣𝑖2
 in 𝑃 is always located between 𝑏𝑡−1 and 𝑏𝑡.

Let us suppose the second case, but in the second subcase 𝑖1 ≥ 𝑗1, 𝑖2 ≥ 𝑗2, 𝑖1 = 𝑖2, and 𝑗1 < 𝑗2, takes place. In this case,

𝑖 = 𝑖1 = 𝑖2 and the 𝑖-th row of 𝑋(𝐺, 𝑃′) has a non-zero element in a position lesser than the one the 𝑖-th row of 𝑋(𝐺, 𝑃).

Therefore, 𝑃 cannot be the canonical permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the

theorem becomes true by reductio ad absurdum in this case.

In the third case 𝑖1 ≥ 𝑗1 and 𝑖2 < 𝑗2, and 𝑖1 < 𝑗2, it is verified that 𝑖 = 𝑖1. Furthermore, the 𝑖-th row of 𝑋(𝐺, 𝑃′) has a

non-zero element in a position lesser than the one the 𝑖-th row of 𝑋(𝐺, 𝑃). Therefore, 𝑃 cannot be the canonical

permutation of 𝐺. This fact contradicts the initial assumption. Therefore, the theorem becomes true by reductio ad

absurdum in this case.

The fourth case, 𝑖1 < 𝑗1, 𝑖2 ≥ 𝑗2, and 𝑗1 ≤ 𝑖2, never takes place in connected permutations of the same graph. In fact,

the tuple of the first edge of 𝑣𝑖2
 in 𝑃 is always located between 𝑏𝑡−1 and 𝑏𝑡.

In the last case, 𝑖1 = 𝑖2, 𝑗1 = 𝑗2, and 𝑡1 ≺𝑙 𝑡2, the matrices 𝑋(𝐺, 𝑃) and 𝑋(𝐺, 𝑃′) have the first difference between them

at the same cell position. In addition, it is verified that 𝑎1 = 𝑎2, since both matrices have the same (𝑖 − 1)-main minor.

Therefore, 𝑐1 ≤ 𝑐2. Now, if 𝑐1 < 𝑐2, then 𝑃 cannot be the canonical permutation of 𝐺. Otherwise, 𝑐1 = 𝑐2, it is verified

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

69

that 𝑏1 < 𝑏2, and then 𝑃 cannot be the canonical permutation of 𝐺. Thus, the theorem becomes true by reductio ad

absurdum.

Theorem 2 enacts an interesting linkage between adjacency matrices and spanning trees. Additionally, a new

kind of code of tuples is defined keeping the semantics of adjacency matrices. This fact opens new skylines

for mixing graph mining results coming from algorithms based on string of labels, for example:

FSG (KURAMOCHI, 2001), FFSM (HUAN, 2001), grCAM (GAGO-ALONSO, 2010b), VEAM (ACOSTA-

MENDOZA, 2012) and REAFUM (LI, 2015), and other ones based on codes of tuples, for example:

gSpan (YAN, 2002) Gaston (NIJSSEN, 2004), MoFa (BORGELT, 2006), and gdFil (GAGO-ALONSO,

2010a).

Conclusions

The main conclusion of this paper is that only connected permutations need to be checked for calculating a kind the

canonical adjacency matrix. A theorem supporting such affirmation was stated and mathematically proved. In addition,

a characterization of the cardinality of the connected permutation subset was given for specific kind of graphs;

including: path, cycles, and complete graphs without only one edge. Thus, the reduction of the cardinality achieved by

this subset regarding the whole set of permutations was emphasized. Additionally, the proof of this characterization for

paths shows a relationship among graph mining, graph theory and 𝑘-tope numbers coming from discrete mathematics.

These properties could be used, in future work, for speeding up the redundancy checking in graph mining, since a

reduction of the number of iterations could be attained.

Additionally, the main idea of a previously published work (BORGELT, 2006), establishing connections between two

existing kinds of canonical form based on tuple code, is expanded by including the link with canonical adjacency matrix.

This fact was supported by a new theorem stated and proved in this paper. Moreover, the above linkage is achieved by

means of the underlying code, a novel codification strategy for labeled graphs.

Future work will be devoted to implement computational algorithms for canonical form detection, taking advantage of

the novel mathematical framework. In this sense, we are trying to enrich the already reported pruning strategies, for

example the proposed one in the Nauty algorithm (MCKAY, 1981), by considering connected permutation prefixes.

Besides, some hybrid approaches between string of labels and tuple codes will be designed and tested.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

70

References

ACOSTA-MENDOZA, N.; GAGO-ALONSO, A.; MEDINA-PAGOLA, J.E. Frequent approximate

subgraphs as features for graph-based image classification. Knowledge-Based Systems, 2012, 27, 381-392.

BORGELT, C. Canonical forms for frequent graph mining. In: 30th Annual Conference of the German

Classification Society, Universitat Berlin, Springer-Verlag, 2006, 337-349.

CONWAY, J.; GUY, R. The Book of Numbers. New York, Copernicus, Springer-Verlag, 1996. 310 pages.

BAPAT, R. Graphs and Matrices. New Delhi, Hindustan Book Agency, India, 2010. 171 pages

DIESTEL, R. Graph Theory. Electronic Edition, Springer-Verlag, New York, 2000.

GAGO-ALONSO, A.; MEDINA-PAGOLA, J.E.; CARRASCO-OCHOA, J.A.; MARTÍNEZ-TRINIDAD,

J.F. Full duplicate candidate pruning for frequent connected subgraph mining. Integrated Computer-Aided

Engineering, 2010a, 17(3): 211-225.

GAGO-ALONSO, A.; PUENTES-LUBERTA, A.; CARRASCO-OCHOA, J.A.; MEDINA-PAGOLA, J.E.;

MARTÍNEZ-TRINIDAD, J.F. A new algorithm for mining frequent connected subgraphs based on

adjacency matrices. Intelligence Data Analysis, 2010b, 14 (3), 385-403.

HARARY, F.: Graph Theory. Addison-Wesley, Reading, MA, 1969, 178-180.

HUAN, J.; WANG, W.; PRINS, J. Efficient mining of frequent subgraphs in the presence of isomorphism.

In: 3rd IEEE International Conference on Data Mining, Melbourne, FL, IEEE Computer Society, 2003,

549-552.

INOKUCHI, A.; WASHIO, T.; MOTODA, H. An apriori-based algorithm for mining frequent substructures

from graph data. In: 4th European Conference on Principles of Data Mining and Knowledge Discovery,

Lyon, France, Springer-Verlag, 2000, 13-23.

JIANG, C.; COENEN, F.; ZITO, M. A survey of frequent subgraph mining algorithms, The Knowledge

Engineering Review, 2013, 28: 75-105.

http://rcci.uci.cu/
mailto:rcci@uci.cu

Revista Cubana de Ciencias Informáticas

Vol. 9, No. 4, Octubre-Diciembre, 2015

ISSN: 2227-1899 | RNPS: 2301

http://rcci.uci.cu

Pág. 57-71

Editorial “Ediciones Futuro”

Universidad de las Ciencias Informáticas. La Habana, Cuba

rcci@uci.cu

71

KURAMOCHI, M.; KARYPIS, G. Frequent Subgraph Discovery. In: 1st IEEE International Conference on

Data Mining, San Jose, CA, IEEE Computer Society, 2001, 313-320.

LI, R.; WANG, W.: REAFUM: Representative Approximate Frequent Subgraph Mining. In: SIAM

International Conference on Data Mining, Vancouver, BC, Canada, 2015. ISSN 2167-0099.

MANSO, M.; PELLINO, S.; PETROSINO, A.; ROZZA, A. A Novel Graph Embedding Framework for

Object Recognition. In: Computer Vision - ECCV 2014 Workshops, 2014, 341-352.

MCKAY, B. D. Practical graph isomorphism. Congressus Numerantium, 1981, 30: 45-87.

NIJSSEN, S.; KOK, J.N. A quickstart in frequent structure mining can make a difference. In: 10th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, ACM,

2004, 647-652.

VO, B.; NGUYEN, D.; NGUYEN, T.L. A Parallel Algorithm for Frequent Subgraph Mining. In:

International Conference on Computer Science, Applied Mathematics and Applications, Metz, France,

2015, 163-173.

YAN, X.; HAN, J. gSpan: Graph-based substructure pattern mining. In: International Conference on Data

Mining, Maebashi, Japan, IEEE, 2002, 721-724.

http://rcci.uci.cu/
mailto:rcci@uci.cu

