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ABSTRACT: Given the importance of knowing the mechanical response of the soil as one of the
variables to be taken into account in the design of implements and machines capable of preserving the
physical qualities of the soil, several constitutive models have been developed that represent the soil as
a non-linear material elastic or elastoplastic. The objective of this paper was to analyze the current
state of the constitutive models used in the modeling of agricultural soils in order to define which of
them is the most adequate to simulate the mechanical response of agricultural soils with clay texture
(Oxisol, Inceptisol and Vertisol). Constitutive models that are used in the simulation of the mechanical
response of agricultural soils by means of the finite element method are analyzed critically, taking into
account the properties and parameters of input, determination of these and their implementation in the
softwares for simulation using the finite element method. Finally, it is concluded that the Drucker
Prager Extended model as the most adequate to simulate the mechanical response of an Oxisol,
prioritizing in this decision its simplicity, convenience when determining its parameters, accuracy in
estimating the stress-strain relationship of the soil , and inclusion in most commercial software.

Keywords: simulation, mechanical answer, finite elements.

RESUMEN: Dada la importancia que tiene conocer la respuesta mecanica del suelo como una de las
variables a tener en cuenta en el disefio de los aperos y maquinas capaces de conservar las cualidades
fisicas del suelo se han desarrollado varios modelos constitutivos que representan al suelo un material
no lineal elastico o elastoplastico. El presente trabajo tuvo como objetivo analizar el estado actual de
los modelos constitutivos empleados en la modelacion de suelos agricolas. Permitiendo definir cuél de
ellos es el mas adecuado para simular la respuesta mecanica de suelos agricolas con textura arcillosa
(Oxisol, Inceptisol y Vertisol). En el mismo se analizan criticamente los modelos constitutivos que se
emplean en la simulacion de la respuesta mecanica de los suelos agricolas mediante el método de
elementos finitos, teniendo en cuenta las propiedades y parametros de entrada, determinacion de estos
y su implementacion en los softwares para la simulacion mediante el método de elementos finitos.
Finalmente, se concluye que el modelo Drucker Prager Extendido como el més adecuado para simular
la repuesta mecanica de un Oxisol, primando en esta decision su sencillez, conveniencia a la hora de
determinar sus parametros, exactitud en la estimacion de la relacion esfuerzo-deformacion del suelo, y
la inclusion en la mayoria de los software comerciales.
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INTRODUCTION

Several constitutive models for the simulation
of the mechanical response of the soil using the
finite elements method have been developed,
since the material behavior of the soil is quite
difficult to describe, due to the great variety of
existing soils and to their non-linear response
when subjected to stress, in both the loading and
the discharge process (Wulfsohn & Adams,
2002).

Shen and Kushawaha (1998), classified the
constitutive models used to describe the stress-
strain relation of the soil as linear and non-linear
models (taking into account the shape of the
stress-strain ~ curve), elastic, plastic and
elastoplastic models (depending on the plasticity
of the material), static and dynamic models
(depending on the inclusion, or not, of time).

Within these, linear models find their greatest
application in analysis in
elements, being the nonlinear models the ones of
greatest use in studies related to agricultural soil
mechanics. Considering the elements that define
the elasticity and plasticity of soils, the
elastoplastic models are the most used ones in
simulating their mechanical response when being
interacted by the working organs of farming
tools, because, they assume that the soil can
undergo plastic, elastic or elastoplastic strain
depending on the magnitude of the applied loads
(Shen y Kushawaha, 1998).

At international level,
models that show the soil as a non-linear elastic
or elastoplastic material have been developed.
The ones that have reached greatest use are the
elastoplastic models of Morh-Coulomb (1776),
mentioned by Drucker and Prager (1952) in their
extended and modified versions. Besides, Cam
Clay or Cambridge developed by Roscoe et al.
(1958) and later modified by Roscoe & Burland
(1968); the elastic nonlinear model initially
developed by Kondner & Zelasko (1963) and
modified by Duncan & Chan (1970); the
elastoplastic of Lade (1977), and the plastic
model of Bailey ef al. (1984).

Therefore, the present paper aimed to analyze
the current state of the constitutive models used
in modeling the mechanical response of
agricultural soils in order to define which of them

stress structural

several constitutive

is the most suitable to simulate the mechanical
response of agricultural soils with clay texture
(Oxisol, Inceptisol and Vertisol). All that with the
premise of the predictions accuracy, their
advantages and disadvantages as well as their
inclusion or not in professional programs for this

purpose.

CONSTITUTIVE MODELS

Mohr-Coulomb Model. It is based on the
linear failure criterion of Mohr-Coulomb, which
is widely used in investigations of both clay and
sandy soils, as well as in rock and concrete
studies as a result of its simplicity and comfort
(Hong-Cai et al.., 2012; Herrera et al., 2013;
Consoli et al., 2014; Camacho & Ramos, 2016;
Molnar, 2016; Chang & Konietzky, 2018;
Sekhavatian & Janalizadeh, 2018), however, it
has not been widely used for simulation of the
soil-tillage  interaction  (Bhaveshkumar &
Prajapati, 2011). This breaking criterion is
generally defined in function of the tangential
and the normal tensions in a plane, but it can be
transformed in such a way that the tension can be
represented in three dimensions (Figure 1).
Although represented in this form, it presents
corners in its hexagonal section which is a
deficiency (Abbo et al., 2011; Labuz y Zang,
2012).

This model considers that the flow potential of
the soil is linear and continuous in the southern
plane of the stresses (q-p), ensuring that the flow
direction is only defined in this plane. Hence, in
this case, the soil flows in an associated way
(Figure 2), it also includes that once the soil
begins to flow plastically, can be deformed by
hardening or softening.

It is implemented in most commercial software
available for simulation using the finite element
method, requiring six parameters as input data,
which can be determined by means of
conventional tests (direct shear and triaxial
compression), performed in soil mechanics
laboratories. It has been widely used in studies
related to the determination of the mechanical
response of both sandy and clayey soils (Rashidi
y Gholami, 2011; Herrera ef al., 2013).

According to Bishop (1966), it adjusts better
the experimental data than the criterion of
Drucker & Prager (1952); however, Herrera et al.
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(2008), obtained evidence that the Mohr-
Coulomb model is not able to predict with the
required accuracy the tension state of the soil and
its strains, especially when the soil is deformed
by softening. They also found that, in this model,
both dilatancy and hardening played a secondary
role in the predictions. For the humidity
conditions (40% humidity) good results were
obtained in the predictions where the soil showed
a plastic failure, as long as it was considered in
the model that the soil could not be deformed by
hardening. Taking into account these results, the
aforementioned authors do not consider this
model is suitable for the simulation of the
mechanical response of oxisols.

Drucker-Prager Model. It was developed to
represent the plastic deformation of soils
(Drucker and Prager, 1952). It is ruled by a creep
criterion depending on the applied pressure that
determines if the material has exceeded the
elastic limit or not. It is a tighter version of the
Mohr-Coulomb model, so it can be expressed in
function of the cohesion and the internal friction
angle. The original model and its variants have
recently been applied to studies of soils, rocks,
concrete, foams, polymers and other materials
(Ucgul et al., 2014; Hamlaoui et al., 2015; Shin
et al., 2015; Hammi et al., 2017), finding great
application in researches related to the simulation
of soil mechanical response, pneumatic-soil
interaction, soil compaction, and soil-farming

tool interaction (Herrera, 2006; Herrera et al.,
2008; Biris et al., 2009; Gonzalez, 2011;
Gonzalez et al., 2012; Nankali et al., 2012;
Gonzalez et al., 2013a; Gonzalez et al., 2013b;
Nasiri et al., 2013; Armin et al., 2014; Gonzalez
etal., 2014; Moslem & Hossein, 2014; Ibrahmi et
al., 2015; Chiorescu et al., 2017).

When it is represented in three dimensions, a
conical surface is used (Figure 3), which makes it
more suitable from the mathematical point of
view, since it solves the problem of the corners of
the hexagonal section that appear in the pyramid

of the Mohr-Coulomb model (Shen &
Kushawaha, 1998).
The model includes the possibility of

considering the soil as a dilatant material that
flows in the normal direction to the creep surface,
taking the dilatation angle the same value as the
creep surface angle W=f. This same criterion was
successfully used by Mouazen & Neményi
(1999b), Mouazen & Neményi (1999a) and
Mouazen et al. (1999) during the simulation of
the cutting of a sandy loamy soil by a farming
tool. Although researchers like Grujicic et al.
(2009), reported that when the flow criterion is
applied in this model, excessive dilatation is
obtained, which affects the accuracy of the
predictions, and constitutes a limiting factor of
the model.

The model also gives the possibility to
consider the soil as a non-dilatant material from

Wby Coulomt

FIGURE 1. Mohr-Coulomb model. a) Mohr-Coulomb failure surface in the main tension space
(Nieto et al., 2009);b) Mohr-Coulomb creep surface in the plane of deflection stresses (Hibbit, 2008a).
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FIGURE 2. Mohr-Coulomb hyperbolic flow potential family in the southern plane (Hibbit, 2008b).
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FIGURE 3. Drucker-Prager model a) Drucker Prager Extended creep surface in the space of the
main tensions with conical section (Mouazen & Neményi, 1999b). b) Drucker Prager Extended creep

surface on the plane of the diverting stresses (Hibbit, 2008a).

the implementation of a non-associated flow rule,
where the soil does not flow in the normal
direction to the creep surface, where W<p. It was
used by Herrera (2006); Herrera et al. (2008) and
Gonzélez (2011), with this configuration, in the
simulation of the mechanical response (soil-
farming tool interaction and soil compaction) of
an Oxisol, obtaining that the most accurate
predictions took place when considering the non-
associated flow rule W< (Herrera, 2006; Herrera
et _al., 2008), not so in the investigations
developed by Gonzalez (2011).

This model was later used by de la Rosa et al.
(2013), with the objective of evaluating its
validity in the simulation of the mechanical
response of a Vertisol from the central region of
Cuba, taking into account the possibilities of the
model to predict the changes of tensions as
product of the strains by softening or hardening
with great accuracy. In addition, it requires a few
parameters as input data, which can be obtained
in soil mechanics laboratories by means of
conventional tests (flat cutting and triaxial
compression) and it is included in most
professional programs for simulation using the
finite elements method.

The results of the investigation showed that the
accuracy of the Drucker Prager Extended model
in the prediction of the mechanical response of
Vertisol, depends on the soil humidity and
density status, as well as on the configuration of
the model, oscillating the absolute average error
from 8.58. % to 27.93%. The greatest accuracy in
the prediction of the stress-strain relation was
reached when the soil was considered as a
dilatant material (W=P) and the coefficient
relating the deviating stresses (K) was in function
of the humidity content and densification state of
soil (K=0.8, K=calculated and K=1). When

considering the soil as a non-dilatant material
(Y=0) and independently of the value it takes
(K), numerical impressions that made the
convergence of the solutions impossible were
presented, once the deviating efforts went over
the value of the creep tension. This result allows
affirming that this model presents difficulties to
predict the mechanical response of the soil once
the deviating stress go over the value of the creep
tension. Therefore, the parameters that cause the
inaccuracies are related to the plastic deformation
phase and not to the elastic phase, since in the
last one the errors in the prediction are minor.

Cam Clay Model. According to Munda et al.
(2014), it is one of the most used models to
represent the mechanical response of normally
consolidated clays. It was developed by Roscoe
et _al. (1958), for normally or slightly
consolidated clays (Figure 4), later modified by
Roscoe & Burland (1968), to explain the plastic
and volumetric strain of the soil before and after
its failure, using a creep surface of the capsule
type (Herrera, 2006). This model has had great
application in studies related to the mechanical
resistance of soils in general (Mendoza et al.,
2014). In the case of agricultural soils, it has been
mainly used in studies related to soil compaction
(Tekeste et al., 2013), although they have also
found applications in the simulation of soil-
farming tool interaction (Plouffe e al., 1999) and
tire-soil interaction (Poodt et al., 2003). Its
accuracy to predict changes in soil volume,
adapting to both cohesive and sandy soils, as well
as accurately predicting the stress-strain relation
constitute its main virtues.

However, there are disadvantages like a high
demand of computational resources (Gonzalez et
al., 2013a), in addition to requiring between 11
and 14 input parameters, depending on the way
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the model is implemented, which require
specialized equipment for their determination. On
the other hand, Mendoza et al. (2014), reported
that this model is not capable of representing all
the characteristics for clay-textured soils.
Hyperbolic Model of Duncan and Chan. It is
a non-linear elastic model that assumes that the
stress-strain curves can be approximated to a
hyperbola. It was initially proposed by Kondner
& Zelasko (1963) and later it was presented
incrementally by Duncan & Chan (1970), based
on the use of a constant Poisson coefficient,
which implied a linear relation between the axial
tension and the volumetric strain, representing a
limitation of the model. Duncan (1980), later
suggested a new equation for the volumetric
module, although it still remained a limitation of
the model. It has been successfully used in sandy,
clayey and silty soils, showing a great capacity to
accurately predict the stress-strain relation of the
soil when it presents a plastic failure (Chi &
Kushawaha, 1988; Chi, 1990; Chi & Kushawaha,

once the tensions increase with the strain
increase. Herrera et al. (2010), found this same
deficiency observed by Chi and Kushawaha
(1988), in three Cuban clay soils (Oxisol,
Inceptisol, Vertisol). Another limitation is that it
is not implemented in most of the commercial
software used for computational simulation using
the finite element method.

Despite these limitations, this model was
greatly used in the simulation of the soil-farming
tool interaction at the end of the last century as
referred by Young & Hanna (1977); Bailey et al.
(1984); Chi & Kushawaha (1989); Chi (1990);
Chi & Kushawaha (1991); Kushawaha & Shen
(1995) and Rosa & Wulfsohn (1999), since it
meets the requirements for the selection of the
constitutive models proposed by Chi (1993), that
is, simplicity; possibility of determining the
parameters and convenience of implementation.

Elasto-Plastic Model of Lade. It is based on a
special creep criterion for low cohesive soils
(Lade, 1977). Within this model, two theories of

1991; Herrera et al., 2010), as well as in the
correlational analysis between the spatial
characteristics of the roots and the elastic-plastic
properties of the soil (Li et al., 2017). However,
its main limitation consists on the inability to
predict the changes of tension as product of the
strain by softening or hardening. Chi and
Kushawaha (1988), refer as a deficiency of this
model, the monotonous nature of the function

W,
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hardening work are used, the first one for the
CAP type creep surface (Figure 5), and the other
one for a conical creep surface (Lade, 1977; Lade
and Boonyachut, 1982). This model is mainly
applied to cohesive granular materials (Zhang et
al., 1986; Fonseca et al., 1998).

In this theory, the total increase in tension is
divided into the following components:
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FIGURE 5. Conical creep surface of the Lade elastoplastic model (Shen and Kushawaha, 1998).
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* The component of elastic incremental strains,
which are calculated by means of Hooke's
generalized Law (Timoshenko and Goodier,
1970).

* The component of incremental strains caused
by plastic deformation. This deformation is not
recoverable during discharge. The plastic
collapse, according to the theory of plasticity,
is governed by the function of the creep
surface (Lade, 1977).

* The incremental component of plastic
expansive strains. They are unrecoverable
because of the deviating stress action. The
expansive behavior is governed by the creep

surface of Lade (1977).

This model was later improved by Lade &
Nelson (1984), they developed a procedure to
establish an incremental matrix with intersection
of multiple creep surfaces, making possible to
consider the soil as a dilatant or non-dilatant
material, from the implementation of a flow rule
associated or not with respect to each creep
surface. The possibility of predicting tension
changes due to strain, softening or hardening was
included. However, the research conducted by
Chi et _al. (1993), corroborates that the Lade
equation does not accurately predict the
mechanical response of cohesive soils, especially
when the volumetric strains are higher than 10%.

Another disadvantage is that it is not
implemented in the main commercially available
software for simulation using the finite element
method, in addition to needing more parameters
as input data than other models (14 in total),
which must be obtained with conventional tests
in the laboratories of soil mechanics, but needing
specialized instrumentation.

Bailey Model. It has been used in studies
related to the compaction of agricultural soils, in
which its great accuracy in predicting volumetric
strain under hydrostatic compression has been
shown (Bailey et al, 1984; Chi, 1993). It
expresses the soil compaction by means of an
exponential model that was modified by Bailey &
Johnson (1989), to include the failure or rupture
tension. Johnson & Bailey (1990), later proposed
a new equation to include in the volumetric
strains those strains caused by constant stress.

The disadvantages of this model are that it is
not implemented in most of the commercially
available software for the simulation by means of
the finite element method, although it only needs
six input parameters for the implementation of
the models. They cannot be determined through
conventional tests in soil mechanics laboratories,
because they need specialized instrumentation.

CONCLUSIONS

* Analyzing the models described above, the
ones with greater use in the simulation of the
mechanical response of agricultural soils are
Drucker Prager Extended Model, Cam Clay
Model and Duncan Chan Model. However,
Cam Clay Model needs a high demand of
computational resources and requires between
11 and 14 input parameters according to the
way it is implemented, which determination
demands specialized equipment. Duncan Chan
Model is not implemented in the majority of
commercially available software using the
finite element method.

* Finally, it is concluded that the Drucker Prager
Extended Model is the most suitable one to
simulate the mechanical response of an Oxisol,
considering in the first place its simplicity,
convenience at the time of determining its
parameters, its accuracy in estimating the
stress-strain relation of soil, and its inclusion
in most commercial software.
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