Assessing different models to estimate photovoltaic monocrystalline modules operating temperature using weather data

La eficiencia de los módulos fotovoltaicos depende de la temperatura de operación de las celdas. Actualmente es difícil escoger un modelo idóneo para estimar la temperatura de los módulos, debido a la variedad de modelos propuestos. En esta investigación se evaluaron diez modelos de estimación de temperatura de los módulos, a partir de tres variables de entrada: temperatura ambiente, irradiancia y velocidad del viento. Para las modelaciones se usaron mediciones en sitio, registradas durante seis meses, por el sistema fotovoltaico de silicio monocristalino de 7,5 kWp y una estación climatológica del Centro de Investigaciones de Energía Solar de Santiago de Cuba. El modelo King et al. (2004) presentó los mejores criterios de precisión, con error cuadrático, error medio absoluto y coeficiente de determinación igual a 3.482 ºC, 2.698 ºC y 0.912 respectivamente. Finalmente, se simuló el efecto de la temperatura de operación de los módulos sobre la eficiencia, obteniéndose informaciones de utilidad para futuros proyectos de sistemas fotovoltaicos en Cuba.

Key words: cell efficiency, mathematical modeling, module temperature estimation, weather data of Cuba.

INTRODUCTION

The photovoltaic solar energy (PV) has experienced an accelerated increase compared to the previous year, despite the global economic crisis caused by Covid-19 [1]. Reports published by International Energy Agency and National Renewable Energy Laboratory’s in 2022 show that in first nine months of 2021 the capacity of 171 GW of photovoltaic systems installed globally throughout the world was reached, while for 2022 and 2023 it’s expected to reach 209 GW and 231 GW respectively [1, 2]. According to statistics report published by International Renewable Energy Agency in 2021, Cuba ended that year with 163 MW of installed capacity of photovoltaic systems [3]. The Ministry of Energy and Mines has the plan of reaching 24% penetration with renewable sources by 2030 [4].

How to cite this article:

Sitio de la revista: https://rie.cujae.edu.cu/index.php/RIE/index
For this reason, studies about the renewable energy sources have increased, such as the case of Díaz (2018), Gutiérrez et al. (2020); Gutiérrez et al., (2021a); Gutiérrez et al. (2021b), all the results have contributed to improving the efficiency of PV systems in the country [4-7]. Even Korkiaiokski (2021) and Alberto et al. (2021) studied the possibility of generating 100% energy from renewable sources by 2030, the Isla de la Juventud was taken as case study; demonstrating that’s possible to achieve it [8, 9]. The weather conditions in Cuba are very good for the development of solar energy, however, it’s a tropical island where the ambient temperature is higher than other regions of the world. Temperature is the climate variable that most affects the efficiency of the PV module, after irradiance [10]. Conventional photovoltaic cells are made of semiconductor material that produces electrical energy from the solar radiation that reaches its surface. In the process of converting from one type of energy to another, there are losses associated with various factors such as: production technology, shading, module temperature, angular losses, inverter losses, and cable losses. These parameters cause losses of 10-20%, being those that most affect the efficiency of photovoltaic conversion [11, 12].

Many investigations have correlated the efficiency with the operating temperature, the PV cell only converts a small amount of the irradiance it receives into electrical energy, the rest is dissipated as heat [13]. The electrical efficiency η_e is expressed as a function of the cell temperature T_c through the linear relationship shown in equation (1), [14]. This correlation has been widely accepted and for this reason it appears in experimental investigations for different environmental conditions [15, 16].

$$\eta_e = \eta_{STC} \cdot \left[1 - \beta_{STC} \cdot (T_c - T_{STC}) \right]$$

(1)

Where $\eta_{STC} (%)$ and $\beta_{STC} (\%/°C)$ are the electrical efficiency and temperature coefficient of the cell, respectively. $T_c (°C)$ and $T_{STC} (°C)$ are the cell operating temperature and the reference temperature, respectively. The η_{STC}, β_{STC} and T_{STC} parameters are always provided at the PV module technical datasheet. The operating temperature T_c is a variable that is not commonly measured, but can be calculated by applying mathematical models that correlate some weather variables. Current models mainly correlate three climate variables: ambient temperature, irradiance and wind speed. These models are classified into three groups: constant temperature models, physical models and statistical models [17]. Some of these models do not use wind speed, while others do, the latter being the ones that have shown better accuracy in most of the studied cases [18].

Literature review: PV cell operating temperature estimate models

Constant temperature models use a constant value of the photovoltaic cells operating temperature to estimate the energy delivered for specific conditions of PV system. This type of model has the advantage that it can be used quickly to predict the performance of PV systems, since manufacturers always include the necessary parameters at the technical datasheet. The most used are the Standard Measurement Conditions (STC) and the Nominal Operating Cell Temperature (NOCT) [17, 19]. STC are specific laboratory conditions, they are defined as: irradiance $G=1000$ W/m², PV cell temperature $T_c=25$ °C and air mass $AM=1.5$ G [10, 20]. However, STC can be very different from the operating conditions of PV modules in a real environment in many places around the world. As alternative to the STC, Duffie & Beckman (2013) propose a model for NOCT conditions, defined by: $G=800$ W/m², $T_c=20$ °C and $v=1$ m/s [19, 21, 22]. These two models have the disadvantage that the proposed environmental conditions rarely coincide with the actual operating conditions of the PV systems.

Physical models have been established to calculate the operating temperature of modules dynamically, studies by Lawrence Kamuya et al. (2018), Nguyen et al. (2021) and Sredenšek et al. (2021) are current evidence of these research topics, each one models T_c according to its PV technology and its geographical installation site, respectively [18, 23, 24]. In addition to irradiance and ambient temperature, some models also consider wind speed King et al. (2004), Faiman et al. (2008) and Koel et al. (2011) [25-27]; while others do not consider it, such as Akhsassi et al. [28]; but all agree that irradiance is the main cause that causes an increase in temperature of the PV cell. Statistical models can be subdivided into two groups: Artificial Intelligence (AI) methods and linear models. Studies that include AI to predict T_c consist of neural networks, soft computing, and adaptive neuro fuzzy inference system [29-32].

These methods have the advantage of being very versatile, due to their ability to process complex trends; but as they are black box models where do not explicitly show the relationship between the model variables. Linear statistical models are much simpler, some of the most applied in published research are Risser & Fuentes (1983) and Muzathik (2014) [33, 34]. These models correlate the module temperature (T_c) with the three main variables (G, T_a, v) in situ measured, but could be inaccurate when applied to any other site, for this reason these models need to be verified. The aforementioned studies predict the T_c from the radiation that falls on the surface of the PV cells and other measured climate variables, however, a general model that can satisfy all PV technologies has not been established. For example, Zouine et al. (2021) analyzes 48 combinations of models of the thermal and electrical behavior of PV cells of crystalline technologies, showing the diversity and relevance of this type of research [16].

Research aim

This research analyzes different established mathematical models, the aim is determine the model that best correlation with T_c measurements of monocrystalline silicon PV modules, installed at the Solar Energy Research Center (CIES Spanish acronym) in Santiago de Cuba. For the assessment, ten models widely referenced and recommended by the scientific community have been chosen. The variables that correlate are: ambient temperature (T_a), irradiance (G) and wind speed (v).
Assessing different models to estimate photovoltaic monocrystalline modules operating temperature using weather data
Lionnís Osorio Laurencio; et al

Also it's calculates the variation of the PV efficiency as a consequence of the behavior of the local climate variables, the results are useful to improve the reliability of the sizing of the PV systems for future projects to be developed in Cuba.

MATERIALS AND METHODS

Geolocation of PV system and instrumentation used in data monitoring
The climate data were measured at the CIES in Santiago de Cuba, a province located south of eastern Cuba. Specifically, it’s located at the geographic coordinates 20° 00′ 14″ N and 75° 46′ 10″ W, at 90.40 meters above sea level. Figure 1, shows the geolocation, the PV system and the weather station.

Fig. 1. Geographic location of PV system and the weather station of CIES in Santiago de Cuba [35]

The setup of the photovoltaic generator installed in the CIES is presented in table 1, consists of 30 modules installed on the ground, grouped by 3 strings of 10 modules.

<table>
<thead>
<tr>
<th>Type of structure</th>
<th>Mounted on an aluminum base, with wind circulation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt angle</td>
<td>15°</td>
</tr>
<tr>
<td>Azimuth angle</td>
<td>0°</td>
</tr>
<tr>
<td>PV power</td>
<td>7.5 kW</td>
</tr>
</tbody>
</table>

The electrical parameters of the PV module are presented in table 2, its permissible operating temperature is -40 °C to 80 °C, these parameters are available in the technical datasheet.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>STC</th>
<th>NOCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power Watts (Pmax)</td>
<td>250 W</td>
<td>183 W</td>
</tr>
<tr>
<td>Open Circuit Voltage (Voc)</td>
<td>37.40 V</td>
<td>34.5 V</td>
</tr>
<tr>
<td>Maximum Power Voltage (Vmpp)</td>
<td>30.3 V</td>
<td>27.7 V</td>
</tr>
<tr>
<td>Short-Circuit Current (Isc)</td>
<td>8.72 A</td>
<td>7.25 A</td>
</tr>
<tr>
<td>Maximum Power Current (Imp)</td>
<td>8.22 A</td>
<td>6.7 A</td>
</tr>
<tr>
<td>Coefficient Temperature Voc (β)</td>
<td>-0.34%/°C</td>
<td>-</td>
</tr>
<tr>
<td>NOCT</td>
<td>-</td>
<td>45 °C</td>
</tr>
<tr>
<td>Technology type</td>
<td>Monocrystalline</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>15.03 %</td>
<td></td>
</tr>
<tr>
<td>Cells</td>
<td>60 series connected cells</td>
<td></td>
</tr>
</tbody>
</table>

The meteorological parameters including irradiance and ambient temperature were measured by sensors installed next to the PV system, while wind speed was measured by a weather station placed about the 10 meters above it. The module temperature sensor was adhered to the backside of a module, ensuring good contact. The technical details of sensors and the weather station are presented in table 3.
Table 3. Technical features of the measurement instruments

<table>
<thead>
<tr>
<th>Components</th>
<th>Parameters</th>
<th>Accuracy</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module’s temperature sensor</td>
<td>T_c (°C)</td>
<td>±0.8 °C (in the range -20°C to 100°C)</td>
<td>PT1000</td>
</tr>
<tr>
<td>Weather Station</td>
<td>T_a (°C)</td>
<td>±0.8 °C (in the range -40°C to 100°C)</td>
<td>METEODATA 3016 C</td>
</tr>
<tr>
<td></td>
<td>G (W/m²)</td>
<td>±5 % (average over a year)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v (m/s)</td>
<td>0.3 m/s</td>
<td></td>
</tr>
</tbody>
</table>

The data measured includes the period from September 20 (2018) to March 31 (2019), with 10-minute sampling intervals, for a total of 27,648 measurements.

Assessed T_c estimation models

The table 4, shows 10 assessed models for the correlation of in situ measurements, including physical models, equations (2-8), and statistical models, equations (9-11). The considered models are widely known and applied in many study cases from various countries [24, 37, 38]. A few of them are the mathematical support of professional software, i.e. RETScreen, equation (2), PVsyst, equation (6) and System Advisor Model (SAM), equation (7), which are useful for the sizing and simulation of PV systems [15].

The STC and NOCT constant temperature models are not considered because it’s interesting to know the thermal performance of the modules for variable meteorological conditions. Note that equations (2, 3) and (8) don’t use the wind for modeling.

Table 4. Models to estimate the module operating temperature

<table>
<thead>
<tr>
<th>Models</th>
<th>References</th>
<th>Eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_c = T_a + \left(\frac{T_{c,NOCT} - T_{a,NOCT}}{G_{NOCT}} \right) \cdot G$</td>
<td>Ross & Smokler (1986) [39]</td>
<td>(2)</td>
</tr>
<tr>
<td>$T_c = T_a + G \cdot \alpha \cdot \frac{\tau}{U_L} \left(1 - \frac{\eta_{STC}}{\tau \cdot \alpha} \right)$</td>
<td>Eckstein (1990) [40]</td>
<td>(3)</td>
</tr>
<tr>
<td>$T_c = G \cdot e^{(a + b_v \cdot v)} + T_a$</td>
<td>King et al. (2004) [25]</td>
<td>(4)</td>
</tr>
<tr>
<td>$T_c = \frac{U_{pv}(v) \cdot T_a + G \cdot (\tau \cdot \alpha - \eta_{STC} \cdot (1 - \beta_{STC} \cdot T_{STC}))}{U_{pv}(v) + \beta_{STC} \cdot \eta_{STC} \cdot G}$</td>
<td>Mattei et al. (2006) [41]</td>
<td>(5)</td>
</tr>
<tr>
<td>$T_c = T_a + \frac{G}{U_0 + U_1 \cdot v_w}$</td>
<td>Faiman (2008) [26, 27]</td>
<td>(6)</td>
</tr>
<tr>
<td>$T_c = T_a + \frac{G}{G_{NOCT}} \left(T_{NOCT} - T_{a,NOCT} \right) \cdot \frac{h_{w,NOCT}}{h_w(v)} \cdot \left[1 - \frac{\eta_{STC}}{\tau \cdot \alpha} \left(1 - \beta_{STC} \cdot T_{STC} \right) \right]$</td>
<td>Skoplaki et al. (2008) [14]</td>
<td>(7)</td>
</tr>
<tr>
<td>$T_c = T_a + \frac{G}{G_{NOCT}} \cdot \left(\frac{U_{NOCT}}{U_L} \cdot \left(T_{c,NOCT} - T_{a,NOCT} \right) \right) \cdot \left(1 - \frac{\eta_{STC}}{\tau \cdot \alpha} \right)$</td>
<td>Duffie & Beckman (2013) [22]</td>
<td>(8)</td>
</tr>
<tr>
<td>$T_c = 1.31 \cdot T_a + 0.0282 \cdot G - 1.65 \cdot v_w + 3.81$</td>
<td>Risser & Fuentes (1983) [33]</td>
<td>(9)</td>
</tr>
<tr>
<td>$T_c = T_a + \frac{0.32}{h_w} \cdot G$</td>
<td>Skoplaki et al. (2009) [42]</td>
<td>(10)</td>
</tr>
<tr>
<td>$T_c = 0.943 \cdot T_a + 0.0195 \cdot G - 1.528 \cdot v_w + 0.3529$</td>
<td>Muzathik (2014) [34]</td>
<td>(11)</td>
</tr>
</tbody>
</table>

Where: T_c - the temperature of the PV cell (°C); T_a - the ambient temperature (°C); $T_{c,NOCT}$ - nominal operating temperature, depending on the manufacturing material it has a value of 44 °C to 46 °C; $T_{a,NOCT}$ - ambient temperature for NOCT conditions, it has constant value of 20 °C; G_{NOCT} - the irradiance for NOCT conditions, it has a constant value of $G = 800 \text{ W/m}^2$; G - the irradiance received at the receptor plane (W/m²); η_{STC} - the module efficiency for STC conditions; $\tau \cdot \alpha$ - the product of transmittance-absorbance, has a constant value of 0.9 [14, 40]; U_{pv} - the heat exchange coefficient at the surface of the module [40, 41]; β_{STC} - the coefficient of variation of voltage with temperature (%/°C); T_{STC} - the module operating temperature for STC conditions; h_w - the wind convection coefficient (W·m⁻²·°C⁻¹); $h_{w,NOCT}$ - the convection coefficient for the wind in NOCT conditions (W·m⁻²·°C⁻¹) and v_w - the wind speed measured near the module (m/s).
In equation (3), \(U_L \) is the heat loss coefficient, a parameter that is calculated for each module by equation (12), [40]:

\[
U_L = \frac{G_{NOCT} \cdot \alpha \cdot \tau}{T_{e, NOCT} - T_{a, NOCT}} \tag{12}
\]

In equation (4), the coefficients \(a \) and \(b \) have been calculated, obtaining \(a=-3.473 \) and \(b=0.0594 \), the main advantage is that it does not distinguish between different PV technologies [10, 43].

In equation (5), the parameter \(r \cdot \alpha = 0.81 \) while \(U_{pp} \) is the heat exchange coefficient, it’s a linear function with the wind speed, it has two forms of parameterization represented by equations (13) and (14), to this equations are called as Mattei1 and Mattei2, respectively [41]:

\[
U_{pp} = 26.6 + 2.3 \cdot v_w \tag{13}
\]

\[
U_{pp} = 24.1 + 2.9 \cdot v_w \tag{14}
\]

In equation (6), for monocrystalline silicon technology, the constants \(U_0=30.02 \) and \(U_1=6.28 \) are used [27].

In equation (7) and (10), the parameter \(h_W \) is the wind convection coefficient, it’s calculated by equation (15), [14].

\[
h_W = 8.91 + 2.00 \cdot v_f \tag{15}
\]

Where \(v_f \) is the wind speed measured at 10 meters above the ground (m/s) [10].

In equation (8), the heat exchange coefficient is approximated by equation (16), [38].

\[
\left(\frac{U_{L, NOCT}}{U_L} \right) = \left(\frac{9.5}{5.7 + 3.8 \cdot v} \right) \tag{16}
\]

In equation (10), the \(\omega \) parameter is a mounting coefficient defined as the ratio between the Ross parameter for the mounting geometry and the Ross parameter for free-standing modules. It takes different values: 1 for free-standing, 1.2 for flat roof, 1.8 for sloped roof (well cooled) and 2.4 for facade integrated [10, 43]. By the setup of PV system of CIES at this study \(\omega =1 \) is considered.

Statistical analysis for model assessment

In order to assessment the models, the coefficient of determination \((R^2) \), the root mean squared error \((RMSE) \) and the mean absolute error \((MAE) \) are calculated by equations (17-19), respectively [32, 38]. These statistical indicators help to determine the difference between the temperature simulated \((T_{c, sim}) \) and the temperature measured \((T_{c, meas}) \).

\[
R^2 = \frac{\sum_{i=1}^{n} \left(T_{c, sim} - \bar{T}_{c, sim} \right)^2}{\sum_{i=1}^{n} \left(T_{c, meas} - \bar{T}_{c, meas} \right)^2} \tag{17}
\]

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(T_{c, sim} - T_{c, meas} \right)^2}{n}} \tag{18}
\]

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} \left(T_{c, sim} - T_{c, meas} \right) \tag{19}
\]

Where \(n \) - total number of measurements; \(i \) - index of the iteration loop; \(T_{c, sim} \) - simulated temperature; \(\bar{T}_{c, sim} \) - simulated mean temperature; \(T_{c, meas} \) - measured temperature and \(\bar{T}_{c, meas} \) - mean measured temperature.
RESULTS AND DISCUSSION

The eastern region of Cuba, where the CIES of Santiago de Cuba is located, is characterized by high air temperatures throughout the year. On the left side of figure 2, it shows the histogram of the T_a measured, which easily overcomes 30 °C; on the right side, it shows the histogram of T_c measured, which easily exceeds the reference values established on the technical datasheet.

A brief statistical summary of the climate variables is presented in table 5, the data were filtered to analyze only the measurements with the condition $G > 0$ W/m2. The filtered data removes also the night time measurements, that is, only registered measurements during daylight hours, between 6:00 to 18:00 hours were used.

Table 5. Statistical summary of the climate variables measured at CIES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance (G)</td>
<td>1 W/m2</td>
<td>513.96 W/m2</td>
<td>1247.00 W/m2</td>
</tr>
<tr>
<td>Wind speed (v_w)</td>
<td>0.08 m/s</td>
<td>2.50 m/s</td>
<td>8.49 m/s</td>
</tr>
<tr>
<td>Ambient temperature (T_a)</td>
<td>20.00 °C</td>
<td>29.39 °C</td>
<td>35.00 °C</td>
</tr>
<tr>
<td>Cell temperature (T_c)</td>
<td>17.00 °C</td>
<td>41.98 °C</td>
<td>67.00 °C</td>
</tr>
</tbody>
</table>

Figure 3 and the summary of table 5, confirm that the weather conditions in Cuba, and in particular in Santiago de Cuba, are more higher than the STC conditions provided by the manufacturers technical datasheet of PV modules, in which the mean of T_c exceeds of reference ($T=25$ °C). Likewise, the maximum irradiance values exceed the reference value defined in technical datasheets. Hence the importance of applying the models to effectively predict T_c.

Analysis of the correlation of assessed models

The models in table 4, were correlated with the in situ measurements of T_c of the HELIENE215MA modules, applying equations (17-19) the statistical coefficients shown in table 6, were obtained. The best and worst correlation models are marked in bold.

Table 6. Statistical coefficients of the models

<table>
<thead>
<tr>
<th>Models</th>
<th>R^2</th>
<th>RMSE (°C)</th>
<th>MAE (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ross & Smokler (1986)</td>
<td>0.890</td>
<td>3.897</td>
<td>4.114</td>
</tr>
<tr>
<td>Eckstein (1990)</td>
<td>0.894</td>
<td>3.835</td>
<td>3.012</td>
</tr>
<tr>
<td>King et al. (2004)</td>
<td>0.912</td>
<td>3.482</td>
<td>2.698</td>
</tr>
<tr>
<td>Mattei1 (2006)</td>
<td>0.915</td>
<td>3.425</td>
<td>3.830</td>
</tr>
<tr>
<td>Mattei2 (2006)</td>
<td>0.913</td>
<td>3.468</td>
<td>3.659</td>
</tr>
<tr>
<td>Faiman (2008)</td>
<td>0.898</td>
<td>3.758</td>
<td>3.651</td>
</tr>
<tr>
<td>Skoplaki et al. (2008)</td>
<td>0.894</td>
<td>3.834</td>
<td>3.497</td>
</tr>
<tr>
<td>Duffie & Beckman (2013)</td>
<td>0.803</td>
<td>5.216</td>
<td>5.817</td>
</tr>
<tr>
<td>Risser & Fuentes (1983)</td>
<td>0.896</td>
<td>3.792</td>
<td>10.738</td>
</tr>
<tr>
<td>Skoplaki et al. (2009)</td>
<td>0.893</td>
<td>3.846</td>
<td>3.368</td>
</tr>
<tr>
<td>Muzathik (2014)</td>
<td>0.881</td>
<td>4.060</td>
<td>8.091</td>
</tr>
</tbody>
</table>

According to the accuracy criterion of the coefficient of determination R^2, the models with the best correlation are King et al. (2004), the two variants Mattei (2006) and Skoplaki et al. (2009) with $R^2 > 91%$; to a lesser extent are Ross & Smokler (1986), Eckstein (1990), Faiman (2008), Skoplaki et al. (2008) and Risser & Fuentes (1983), with $R^2 > 89%$. The Duffie & Beckman (2013) model presented the worst correlation, with $R^2 < 82%$.
Assessing different models to estimate photovoltaic monocrystalline modules operating temperature using weather data

The Ross & Smokler (1986) model does not use the wind, however, it has a better R^2 coefficient than Duffie & Beckman (2013) model. The Eckstein (1990) model has a relationship with T_c that is practically the same as the Skoplaki et al. (2008), so similar R^2 and RMSE results were obtained for both. All the models presented a high R^2 correlation, which implies that any of these models could be used effectively for the estimation of T_c, but the Mattei1 (2006), Mattei2 (2006) and King et al. (2004) had very similar R^2 and RMSE coefficients, so any of these three could be chosen to predict T_c. In order to decide which is the best correlated model, the MAE coefficient was taken into account as the main accuracy criterion. Figure 3 shows a scatter plot with the relationship between RMSE and MAE coefficients, which help to make a final decision.

Fig. 3. Scatter plot of the MAE vs RMSE coefficients

The figure 4, shows that the King et al. (2004), Mattei1 (2006) and Mattei2 (2006) models present a very small variation in terms of RMSE, but the King et al. (2004) is the model with better MAE accuracy, therefore, we considered that is the best choice to estimate T_c. For this reason, it’s recommended to use in sizing and economic feasibility studies for future photovoltaic system projects to be installed in the region.

Estimation of PV efficiency

To estimate the PV conversion efficiency of each model, the T_c values were substituted in equation 1. Figure 4, shows the linear correlation of the PV conversion efficiency with respect to T_c calculated from the model King et al. (2004). Note that the increase in temperatures has a decreasing effect on the efficiency of the PV modules, the points indicated in graph show that the efficiency decreased 1.9% for the time measured.

Fig. 4. Linear plot of T_c vs η_c, with the equation showed in graph

The worst model Risser & Fuentes (1983) returns maximum values of $T_c=77.12 \, ^\circ C$ with MAE=$10.74 \, ^\circ C$, very far from the maximum measured T_c values shown in table 5. While King et al. (2004) is more sensitive to changes in operating temperature, the linear relationship of the temperature T_c with the efficiency η_c is indicated by figure 4. Therefore, it can be predicted the increase of $1 \, ^\circ C$ of temperature T_c has an approximate decreasing effect of -0.042 at η_c efficiency of the PV cell.

Simulation of T_c for variable weather conditions

To simulate the behavior of the best and lowest correlation models, two random days were chosen, clear sky and cloudy sky conditions, are presented in figures 5 and 6, respectively. On the left side, the graphs are from October 27, 2018 (clear sky), with regular solar radiation from sunrise to sunset, with a maximum value of $G=902 \, W/m^2$, temperature in the range of 21 $^\circ C$ to 28 $^\circ C$ and wind speeds not plotted, with $v=0.2 \, m/s$ (6:00 hours) - 2.26 m/s (18:00 hours) and a maximum value of 5.9 m/s (14:00 hours).
On the right side, the figure are from January 30, 2019 (cloudy sky), with irregular solar radiation during the hours of Sun, with a maximum value of $G=1061 \text{ W/m}^2$ at 11:00 hours, then it drops to the value of $G=166 \text{ W/m}^2$ at 13:30 hours, with the temperature in the range of 22 °C to 31 °C and wind speeds not plotted, with $v=3.72 \text{ m/s}$ (6:00 hours) - 1.12 m/s (18:00 hours) and a maximum value of 4.46 m/s (12:00 hours).

In both figures are verified that the irradiance G significantly influences the temperature of cell T_c, increasing and decreasing T_c according to the trend of G for each day represented. In the case of figure 6, it can be seen how the efficiency is higher the morning and the afternoon hours, reaching lower values in the midday hours, this is mainly due to the temperature of operation variation T_c. As the zenith approaches, the irradiance increases and consequently the operating temperature of the photovoltaic modules, which causes a maximum attenuation of efficiency η_c. This behavior is similar both on clear sky days and on cloudy days.

For the date October 27, 2018, the King et al. (2004) model has an efficiency at range of 15.18% - 13.49%, while Risser & Fuentes (1983) model was at range of 14.95% - 12.98%. For the date January 30, 2019, the King et al. (2004) model has an efficiency at range of 15.23% - 13.41%, while the Risser & Fuentes (1983) model was at range of 14.76% - 12.85%. For both models, an energy efficiency value of PV modules was obtained below that established by the manufacturer at the technical datasheet, for clear sky conditions and also for cloudy sky conditions.

The statistical coefficients described above to assessment the two models are presented in table 7.

<table>
<thead>
<tr>
<th>Models</th>
<th>Day October 27, 2018 (clear sky)</th>
<th>Day January 30, 2019 (cloudy sky)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>RMSE (°C)</td>
</tr>
<tr>
<td>King et al. (2004)</td>
<td>0.947</td>
<td>2.672</td>
</tr>
<tr>
<td>Risser & Fuentes (1983)</td>
<td>0.937</td>
<td>2.919</td>
</tr>
</tbody>
</table>

Fig. 5. Estimated T_c by the best and worst correlation model for clear sky (left) and cloudy sky (right) conditions

Fig. 6. Estimated efficiency η_c by the best and worst correlation model for clear sky (left) and cloudy sky (right) conditions

Table 7. Statistical coefficients of the best and worst correlation model

Ingeniería Energética, 2022, 43(3): e0511, septiembre/diciembre, ISSN 1815-5901
For analized days, the King et al. (2004) model had a better correlation than Risser & Fuentes (1983). The difference at MAE coefficient of both models is notable, while the coefficients of R² and RMSE showed less difference.

CONCLUSIONS
The estimation of the operating temperature is very important for sizing and economic technical studies, because it improves the estimation of the energy efficiency of PV systems. The T_c measurements at the CIES in Santiago de Cuba are higher than the 25 °C defined in PV module technical datasheet, so it’s important to know the effect of T_c on the η of the PV cell. In this study, 10 models were assessed, from which it’s concluded:

- The variables that correlated with the cell temperature T_c were the irradiance G, the ambient temperature T_a and the wind speed v, the King et al. (2004) model presented the best accuracy criteria, whit coefficients R²=0.912, RMSE=3.482 °C and MAE=2.698 °C.
- The King et al. (2004) model estimates the temperature T_c and it’s effect on the efficiency of the module, in such a way that the increase of 1 °C causes a decrease effect of -0.042 at the efficiency η of the PV cell. This linear relationship correctly estimates the energy behavior of the CIES modules for various weather conditions. For the months studied (September 2018 to March 2019), the efficiency dropped to 1.9% during the day, so in summer months it should decrease even more.
- Although the study only includes monocrystalline silicon technology, in a period of time that does not cover the 12 months of year, the results are valid to know the effect of T_c on the efficiency of the PV modules installed in Santiago de Cuba.

According to the 2021 Statistical Yearbook of Cuba, the temperatures between provinces do not have a considerable difference, that why this study could be taken as a reference for any other region of the country for PV system projects [44]. As a future perspective, it’s planned to extend the study to other areas of Cuba and other PV technologies such as amorphous silicon and polycrystalline silicon, in order to establish a more accurate model that improves the estimate of T_c.

REFERENCES

Assessing different models to estimate photovoltaic monocrystalline modules operating temperature using weather data

Liomnis Osorio Laurencio; et al

CONFLICT OF INTERESTS
The authors declare that there are no conflicts of interest.

AUTHORS’ CONTRIBUTION

M.Sc. Liomnis Osorio Laurencio: https://orcid.org/0000-0001-5217-318X
Responsible of the idea and design of the state of art. Data processing and analysis and interpretation of research. Review of references. Programming of the computational tool of the methods used. Writing and final review of research.

Dr. C. Yoalbys Retirado-Medicaeja: https://orcid.org/0000-0002-5098-5675
Methodological design and organization of research. Writing of the research methods and instrumentation used. Programming at the computational tool of the used methods. Revision of final report.

Ing. José Emilio Camejo Cuán: https://orcid.org/0000-0002-2289-8160
Measurement collection and analysis. Writing of the research methods and instrumentation used. Analysis of results obtained in research. Final report review and approval.

M.Sc. Roger Proenza Yero: https://orcid.org/0000-0003-2575-2690
Measurement collection and analysis. Writing of the research methods and instrumentation used. Analysis of results obtained in research. Final report review and approval.

M.Sc. Adrián Romeu Ramos: https://orcid.org/0000-0001-6740-4753
Measurement collection and analysis. Writing of the research methods and instrumentation used. Analysis of results obtained in research. Final report review and approval.

Ing. Eliannet Varga Estupiñan: https://orcid.org/0000-0002-1984-0822
Measurement collection and analysis. Writing of the research methods and instrumentation used. Analysis of results obtained in research. Final report review and approval.