SciELO - Scientific Electronic Library Online

 
vol.24 número2Evaluación de los Anticuerpos Monoclonales anti-polisacárido capsular de Neisseria meningitidis serogrupos A, C, Y, W y X para su uso en los ensayos de identidadCaracterización molecular de cepas de Pasteurella multocida aisladas del ganado bovino índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Vaccimonitor

versión On-line ISSN 1025-0298

Resumen

AGUERO-FERNANDEZ, José Antonio et al. Implementation of Freeman-Wimley prediction algorithm in a web-based application for in silico identification of beta-barrel membrane proteins. Vaccimonitor [online]. 2015, vol.24, n.2, pp. 0-0. ISSN 1025-0298.

Beta-barrel type proteins play an important role in both, human and veterinary medicine. In particular, their localization on the bacterial surface, and their involvement in virulence mechanisms of pathogens, have turned them into an interesting target in studies to search for vaccine candidates. Recently, Freeman and Wimley developed a prediction algorithm based on the physicochemical properties of transmembrane beta-barrels proteins (TMBBs). Based on that algorithm, and using Grails, a web-based application was implemented. This system, named Beta Predictor, is capable of processing from one protein sequence to complete predicted proteomes up to 10000 proteins with a runtime of about 0.019 seconds per 500-residue protein, and it allows graphical analyses for each protein. The application was evaluated with a validation set of 535 non-redundant proteins, 102 TMBBs and 433 non-TMBBs. The sensitivity, specificity, Matthews correlation coefficient, positive predictive value and accuracy were calculated, being 85.29%, 95.15%, 78.72%, 80.56% and 93.27%, respectively. The performance of this system was compared with TMBBs predictors, BOMP and TMBHunt, using the same validation set. Taking into account the order mentioned above, the following results were obtained: 76.47%, 99.31%, 83.05%, 96.30% and 94.95% for BOMP, and 78.43%, 92.38%, 67.90%, 70.17% and 89.78% for TMBHunt. Beta Predictor was outperformed by BOMP but the latter showed better behavior than TMBHunt.

Palabras clave : membrane proteins; beta-barrels; in silico; vaccine.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License