Introducción
La biomasa ha sido una de las principales fuentes de energía para la humanidad desde los albores de la civilización, y aunque su importancia disminuyó después de la expansión del petróleo y el carbón a fines del siglo XIX, en los últimos años ha habido un renovado interés en la energía de biomasaocasionado por los problemas ambientales derivados del uso de los combustibles fósiles, las potencialidades de la biomasa como fuente de energía y los beneficios que ella ofrece desde el punto de vista medioambiental.
La biomasa es una fuente de energía renovable ampliamente disponible y distribuida en el mundo, su conversión es una fuente carbono neutral, tiene el potencial para proporcionar empleo en las zonas rurales y puede sustituir a los combustibles fósiles en todos los mercados de energía, producción de calor, electricidad y combustibles para el transporte.
Actualmente alrededor del 11% del consumo de energía primaria del mundo se garantiza con la biomasa y las estimaciones indican que entre el 15% y el 50% del consumo de energía primaria podría provenir de la biomasa para el año 2050. (1
Las fuentes y tipos de biomasa son distintas en cada país, sin embargo, dado el aumento sostenido de la producción agropecuaria, especial interés muestran los residuos de las cosechas agrícolas. En el caso de Ecuador la cosecha de maíz constituye un rico patrimonio de tradiciones agrícolas y alimenticias, sin embargo, poco se ha tomado en cuenta que residuos, como la tusa, poseen también un alto contenido energético y evaluar sus potencialidades como combustible bioenergético constituye una etapa importante para su futuro aprovechamiento.
En el presente trabajo se presenta un análisis del estado del arte de los estudios paramétricos realizados sobre la gasificación de la tusa, donde se especifican la composición y valor calor del gas, tipos de gasificador, parámetros de operación tales como: relación de equivalencia, tasa de producción de gas y eficiencia en frío del gasificador, se incluyen los resultados experimentales de las pruebas gasificación de la tusarealizadas por los autores de éste trabajo, así como,un modelo estequiométrico que permite evaluar los parámetros del proceso,a través de balances de masa y energía en el gasificador.
Fundamentación Teórica
Los estudios paramétricos de la gasificación se desarrollan para evaluar los parámetros termodinámicos del gasificador fundamentalmente: Consumo de biomasa, poder calorífico y flujo de gas generado, relación de equivalencia, eficiencia entre otros. Los resultados de estos estudios dependen del tipo de gasificador, agente de gasificación, biomasa utilizada y parámetros de operación.
Tipos de gasificadores
La elección de un tipo de gasificador está determinada por las características de la biomasa (tamaño, contenido de humedad y contenido de cenizas) y condiciones de calidad del gas para su empleo. En el caso de la tusa se han utilizado fundamentalmentegasificadoresde lecho fijo concurrente (Downdraft) y contra corriente (Updraft) (figura 1)
La diferencia entre estos gasificadores está dada por el movimiento relativo de la biomasa y el gas generado. En el gasificador downdraft la biomasa es suministrada por la parte superior y el agente de gasificación por la pared lateral, la biomasa y el gas generado se mueven en sentido descendente. Las principalesventajas de este tipo de gasificador es su alta eficiencia en la conversión de carbono, además de producir un gas con bajo contenido de alquitrán y cenizas, son muy utilizados para el uso del gas en motores de combustión interna a pequeña escala.2,3
En el gasificador Updraft el combustible es suministrado por la parte superior y el agente de gasificación por la parte inferior, la biomasa se mueve en sentido descendente y el gas se mueve en sentido ascendente. Las principales ventajasde este tipo de gasificador es su simplicidad, alta eficiencia térmica, son más indicados para aplicaciones del gas en generación de calor.
Agentes de gasificación.
En la gasificación como agentes oxidantes se puede emplear aire, oxígeno, dióxido de carbono, vapor de agua o una mezcla de estos. El proceso con aire genera un gas de bajo poder calorífico de alrededor de 4 a 6 MJ/Nm3, debido a los altos contenidos de N2. Cuando se utiliza mezclas de aire y vapor de agua u oxígeno se obtiene un gas con un poder calorífico superior al 6MJ/Nm3. 4,5
El proceso de gasificación de biomasa.
La gasificación es definida como la conversión térmica de la biomasa en un gas a través de una serie de reacciones químicas que ocurren a altas temperaturas en condiciones sub estequiometrias(en defecto de oxígeno).Este proceso incluye cuatro etapas: secado, pirólisis, reducción (gasificación) y oxidación, distribuidas por zonas en el caso de los gasificadores de lecho fijo como se observa en la figura 1.
La etapa de secado ocurre aproximadamente 100-200°C y en ella el contenido de humedad de la biomasa es típicamente reducido a valores menores al 5%.La pirólisis es la degradación térmica de la biomasa. En ella la biomasa es calentada en ausencia de aire hasta aproximadamente 350 oC, obteniéndose fundamentalmente carbón, gases y alquitrán.
La combustión es la reacción químicaexotérmica entre biomasa carbonizada sólida y oxígeno presente en el aire, lo que resulta en la formación de CO2 (Ec. 1). El Hidrógeno presente en la biomasa también se oxida para generar agua (Ec. 2).
En ausencia de oxígeno, ocurren varias reacciones de gasificación en el rango de temperatura de 800-1000 0C. Estas reacciones son endotérmicas y las de mayor relevancia son representadas por las siguientes ecuaciones.
La composición y las propiedades del gas producto de la gasificación dependen de factores como el tipo de gasificador, parámetros del proceso, agente de gasificación y tipo de biomasa. 4-10
Temperatura.
La temperatura es considerada el principal parámetro para evaluar el comportamiento del gasificador. Un aumento de la temperatura conduce a un aumento en la producción de gas, una disminución del contenido de alquitrán en el gas (mayor calidad) y del carbón en el gasificador (mayor conversión del carbono en gas).
Relación de equivalencia.
La relación de equivalencia (ER) es el parámetro de mayor influencia en el proceso de gasificación, con un impacto significativo en la composición y producción de gas. Ella es determinada por la siguiente relación:
donde:
Va. Volumen de aire suministrado al gasificador (Nm3/h).
Vao. Volumen de aire necesario para la combustión completa (Nm3/h)
RA/B actual. Relación aire combustible real, Nm3/ kg de biomasa.
RA/B st.Relación aire combustible estequiométrica, Nm3/kg de biomasa, se calcula a partir de los elementos químicos del combustible (Ec. 8) (11
Gasificación de la tusa
Los resultados de las primeras investigaciones sobre los estudios paramétricos de la gasificación de la tusa fueron publicados en los años 1972 y 1979.12,13El objetivo de estas investigaciones era evaluar la composición y el valor calórico del gas producido que era utilizado como combustible en hornos para calentar aire, que posteriormente era utilizado para el secado de semillas en granjas agropecuarias.
En los años posteriores las investigaciones sobre la gasificación de la tusa se orientaron hacia el uso del gas en motores de combustión interna para la generación de electricidad, así como, el desarrollo de modelos de equilibrio para evaluar los efectos del contenido de humedad en la composición del gas generado. 14,15-19
Los resultados de estos trabajos muestran que para producir 1 kWh de energía se consume 1 kg de tusa, que con el aumento de la humedad de la biomasa, la cantidad de CO disminuyó, contrariamente el resto de los componentes CO2, H2, vapor de agua se incrementan. Con el aumento de la temperatura hubo un incremento del monóxido CO y H2. En la tabla 1 se muestra un cuadro resumen de los parámetros del proceso de gasificación de la tusa utilizando aire como agente de gasificación.
Los resultados muestran una gran variedad de valores, en cuanto a la composición de gas producido, lo cual obedece a las diferencias de las características de la biomasa utilizada (tusa), así como, los diferentes parámetros operacionales de los gasificadores fundamentalmente la temperatura y ER, las cuales no se especifican, hecho que pone de manifiesto la necesidad de seguir realizando estudios paramétricos sobre el tema.
Estudio paramétrico de la gasificación de la tusa. Métodos utilizados y condiciones experimentales
Biomasa utilizada
Las muestrasde las tusas objeto de estudio (Humedad 10%) fueron tomadas en las provincias de Los Ríos y Guayas de Ecuador y sus característicasfueron determinadas en los Laboratorios del Centro de Excelencia y Generación Distribuida (NEST) de la Universidad Federal de Itajubá, Brasil, en la tabla 2 se presentan los resultados.
Instalación experimental
Las pruebas experimentales de la gasificación de la tusa se realizaron en el Laboratorio de Termodinámica de la Facultad de Mecánica de la Escuela Superior Politécnica del Chimborazo (ESPOCH), Ecuador. El esquema de la instalación se presenta en la figura 2.
El gasificador es del tipo downdraft. El gas producido pasa por el ciclón donde se separan las partículas gruesas, luegoentra en un calentador de aire y finalmente pasa por un filtro de mangas para separar las partículas finas.
Técnica experimental
Inicialmente se efectúa el encendido del gasificador (cargado de biomasa) a través del cenicero, luego se procede suministrar aire en exceso al gasificador para combustionar parte de la biomasa hasta alcanzar la temperatura de operación estable, manteniendo un régimen de alimentación entre (20-40) kg de tusacada una hora de trabajo. Las condiciones para las cuales se desarrollaron los experimentos se reportan en la Tabla 3.
Leyenda: Wb. Humedad de la biomasa. Va. Flujo volumétrico de aire suministrado al gasificador. ma. Flujo másico de aire. Ta. Temperatura del aire a la entrada del gasificador. Tga. Temperatura de gasificación.Tgs. Temperatura de salida del gas. Tref. Temperatura de referencia.
Después de estabilizada la temperatura del gasificador, durante un período de tiempo se tomaron muestras de gases después del filtro, muestras que son almacenadas y sometidas a un análisis cromatográfico (Norma ASTM D 1945-03 del 2010) en el laboratorio de análisis instrumental del Departamento de Ingeniería Química de la Escuela Politécnica Nacional en la ciudad de Quito.Los resultados de estos análisis se muestran en la tabla 5.
Balance de masa y energía en el gasificador
Para realizar el balance de masa y energía en el gasificador se desarrolló un modelo estequiométrico a partir de la ecuación general de la gasificación (Ec. 9).
donde:
Los subíndices α, β, ϒ, ϕ, representan los moles de C, H, O, N en la biomasa gasificada en base seca y (y1, y2, y3, y4, y5) la composición en volumen de los gases, obtenidas a partir del análisis cromatográfico.
Flujo molar de aire
Donde:
ρaire: Densidad del aire, kg/m3
Mwaire: Peso molecular del aire, kg/kmol.
Flujo molar de carbón no convertido
Se considera un porcentaje másico de 15% de CF en las cenizas en correspondencia con los valores obtenidos a partir de los análisis de cenizas realizadospor los autores. 2,4.
Consumo másico de biomasa
El modelo programado en Excel no considera la formación de alquitrán y cualquier elemento de este tipo lo considera como metano, lo cual se justifica por el bajo contenido de alquitrán en los gases en los gasificadores downdraft. (2
La figura 3 y la tabla 6 muestran las corrientes principales consideradas, y las ecuaciones de balance masa y energíarespectivamente, mientras que la tabla 7 presenta las correlaciones polinómicas utilizadaspara el cálculo de calor específico de los componentes gaseosos presentes en el gas. Modelos similares han sido utilizadospara evaluar los parámetros de gasificadores downdraftoperando con otros tipos de biomasa.4,20,21
Leyenda: ṁg. Flujo másico de gas producido en base seca, (kg/s).ṁash. Flujo másico de residuos (Cenizas, carbón no convertido y material volátil), (kg/s). ṁwb. Flujo másico de la humedad en la biomasa, (kg/s). LHVb. Poder calorífico bajo de la biomasa, (MJ/kg). LHVi. Valor calórico bajo de cada componente del gas producido (MJ/Nm3). Cpg. Calor específico del gas, (kJ/kg). Cpg.i. Calor específico de cada componente del gas (kJ/kg). Wg. Peso molecualr del gas, (kg/kmol)
Resultados y Discusión
Resultados de las pruebas de gasificación
En los resultados de las pruebas de gasificación de las tusas se aprecian elevadas concentraciones de CO2 en los gases, producto de los valores elevados de relación aire combustible real utilizada, verificado por la presencia de concentraciones elevadas de oxígeno en los gases. Sin embargo en la prueba número 3 las concentraciones de los gases obtenidas están dentro del rango de las reportadas por otros autores (tabla 1).
Resultados del balance de masa
En la tabla 8 se presentan los resultados del balance de masa para cada una de las pruebas realizadas, obsérvese la producción específica de gas (Ggas) está en el orden de los 2 Nm3/kg de biomasa húmeda en correspondencia con los resultados mostrados en la tabla 1, sólo los valores obtenidos en la prueba 6 son superiores a los 3 Nm3/kg de biomasa húmeda debido a los elevados valores de ER utilizados en esta prueba.
Resultados del Balance de Energía
La tabla 9 recoge los resultados del balance de energía, donde se observa un elevado poder calorífico del gas, dado por el elevado por ciento del contenido de metano en el mismo, manifestándose un predominio de la reacción de metanización (Ec. 6) durante las pruebas realizadas. También se pone de manifiesto que el rendimiento en frío del gasificador durante las pruebas está en correspondencia con el rango de valores reportados por otros autores en la tabla 1.
En la tercera prueba (3), la más representativa del proceso de gasificación por los valores de ER utilizados (ER=0,39) se logra una eficiencia en frío del gasificador del 67%, en el orden de los valores reportados por otros autores (Tabla 1) y un valor calórico del gas de 3.82 MJ/Nm3 de gas, valor que se encuentra por encima del límite inferior para ser usado en motores de combustión interna (2.81MJ/Nm3).23,24