SciELO - Scientific Electronic Library Online

 
vol.32 número4Validación de índices espectrales de humedad mediante imágenes del Landsat 8 OLI/TIRS en un VertisolModelo teórico experimental para el mejoramiento del manejo de máquinas de pivote central eléctricas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Ciencias Técnicas Agropecuarias

versión On-line ISSN 2071-0054

Rev Cie Téc Agr vol.32 no.4 San José de las Lajas oct.-dic. 2023  Epub 01-Dic-2023

 

ORIGINAL ARTICLE

Evapotranspiration in Cuba with Satellite Images MODIS 16 and Google Earth Engine

0000-0001-7906-8398Alberto Méndez JocikI  *  , 0000-0003-3316-0898Pável Vargas RodríguezII  , 0000-0001-8245-4070Felicita González RobainaIII 

IMinisterio de la Agricultura, Empresa Nacional de Proyectos e Ingeniería, Municipio Plaza, La Habana, Cuba.

IIUniversidad de Oriente, Departamento de Ingeniería Hidráulica, Santiago de Cuba, Cuba.

IIIInstituto de Investigaciones de Ingeniería Agrícola (IAgric), Boyeros, La Habana, Cuba.

ABSTRACT

The results of satellite images of evapotranspiration in Cuba are presented, grouped into series of 8-day averages of the dry period from November to April and the wet period from May to October from 2018 to 2022. MOD16A2 Version 6.1 of evapotranspiration (ET) is found within the catalog of public data and free use of the Google Earth Engine aimed at monitoring the progress of the 2030 Agenda for Sustainable Development and improving the limitations of the implementation of advisory services to the irrigator, while establishing mechanisms of permanent dialogue between the farmers so that they can make better decisions regarding the irrigation management of their crops.

Key words: Remote Sensing; Irrigation Advisory Services; Irrigator; Wet and Dry Period

INTRODUCTION

In Cuba, new legal standards are being developed that regulate the ownership, possession and use of agricultural and forestry land by economic actors and aspects related to sustainability indicators on the use and management of water resources have also been introduced, hence a change in the concepts of the application of irrigation based on empirical knowledge is an imperative (Funes-Monzote, 2001; Pavó-Acosta & Hechavarría-Rivera, 2023; Sierra, 2023)..

Technical information needs to be provided to farmers to achieve more efficient water management and increased crop yields.

In this sense, quantifying evapotranspiration (ET) as the fundamental deficit variable in the water balance equation, is a complex process that links the global cycles of water, carbon and energy (Brust et al., 2020; 2021).

Because ET depends on the characteristics of the earth surface, such as the type of vegetation and soil moisture, the available thermal energy from sunlight and atmospheric weather conditions, it cannot be measured directly.

Remotely sensed observations provide several of the terrestrial and atmospheric parameters useful in estimating ET. Methodologies using satellite observations to estimate ET have been developed over the past two decades. (Frąckiewicz, 2023). These ET products are used for a variety of applications, from the agricultural to the watershed scale.

On the other hand, relevant international experiences propose the use of satellites to monitor the progress of the Sustainable Development Goals of the 2030 Agenda (Banco Mundial, 2017).

Target 6.4, focused on water use efficiency (6.4.1) and water scarcity (6.4.2), have used evapotranspiration for measurement of these indicators using a range of freely available remote sensing data such as MODIS, Landsat, Proba-V and Sentinel-2. (CEPAL, 2021). This constitutes an opportunity for developing countries to address the availability of geospatial information and processing possibilities for Irrigation Advisory Services (SAR).

Cisneros et al. (2004) pointed out that Cuba aspires to provide this service adapted to local conditions, concerning irrigation programming, design optimization, information dissemination and training of technicians and irrigators. Likewise, other services that are now interrogations, must be cleared by future research that enables their implementation.

After 18 years, the full implementation of this service has not yet been possible, because the SAR task is expensive and requires human and material resources due to the need for intensive monitoring in the field over large areas.

Earth observation technologies using sensors on board satellites provide images at regular intervals, which allow effective monitoring (Obasi, 2003; Akiyama et al., 2022). On the other hand, information technologies make it possible, for the information generated by the SAR, to reach the user quickly, smoothly and in a personalized way. The introduction of these technologies, available on the Internet and mobile telephony, can generate added value by introducing high-value employment opportunities in rural settings (Cisneros et al., 2007).

The objective of this paper is related to estimation of the ET and to introduce simplified innovative solutions to the SAR for monitoring the water condition of the crops and for answering two basic questions of irrigation programming (when and how much to irrigate), trough the processing of large volumes of data information from the cloud, free software, open data, bid data and application programming interface (API). The aims are to improve irrigation system implementation and establish permanent dialogue mechanisms between farmers so that they can make better decisions regarding the irrigation management of their crops.

MATERIALS AND METHODS

Satellite image data of evapotranspiration (ET) from MOD16A2 Version 6.1 were processed, grouped into series of 8-day averages of the dry period from November to April and the wet period from May to October, from 2018 to 2022. Geospatial information is found within the Google Earth Engine's free-to-use, public data catalogue.

MODIS 16. Evapotranspiration

MODIS is a moderate-resolution imaging spectroradiometer aboard NASA's TERRA, AQUA Satellite platform in the public domain available on the Internet for studies of global climate change, observation of environmental impacts and changes in biodiversity (Tavana et al., 2023).

The MOD16A2 Version 6.1 algorithm for evapotranspiration/latent heat flux is used for collection of MOD16 satellite-derived data. It is based on the logic of the Penman-Monteith Equation, which includes daily meteorological reanalysis data inputs along with Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data products, such as the dynamics of vegetation properties, albedo and ground cover (Modis, 2023a).

The validation process, carried out against 46 Eddy covariance flux towers and weather stations in 232 watersheds in the years 2000 to 2010, indicate average daily biases of -0.11 kg/m2/day and -0 .02 kg/m2/day against meteorological data.

Mean absolute errors (MAE) of 0.33 kg/m2/day (24.6%) and 0.31 kg/m2/day (24.1%), respectively, indicate that the precision of the observations is in the range from 10-30%. (Modis, 2023b).

Processing With Google Earth Engine

Google Earth Engine (GEE) is a cloud computing platform linked to an open-source computing engine, designed to store and process huge data sets (at petabyte scale) for change detection, analysis, trend mapping and quantification of differences on the Earth's surface for decision making (GEE, 2023).

GEE uses techniques to average ET and other spatial data at predefined boundaries like states, counties, watersheds, irrigation districts and farmland boundaries. Spatial averages are stored in a large geodatabase that is connected to an API and open source raster and vector tile software. This framework supports rapid response to data queries, as well as spatial and temporal visualizations of ET and associated variables (e.g., NDVI, reference ET and reference ET fraction) through a data visualization application and lightweight web mapping (GEE, 2023).

For processing, the web-based IDE Code Editor was used to write and execute scripts (Figure 1).

FIGURE 1 GEE code editor. 

An API developed in JavaScript (Jiménez, 2022) was used, which was modified for the conditions of Cuba. In Figure 2, the results are shown.

FIGURE 2 JavaScript API to estimate ET for Cuban conditions. 

The results are made up of Evapotranspiration images for the requested periods. In Figure 3, they are shown in the cloud.

FIGURE 3 Result of processing in Google Drive. 

RESULTS AND DISCUSSION

The greatest risks for food security are given by the alternation of dry periods (in which rainfall is insufficient to meet the water needs of crops) with other rainy periods (where over-wetting and flooding occurs) (PMA-Cuba, 2001). For this reason, the response capacity directly involves irrigation and drainage.

Figures 4 and 5 show the results of evapotranspiration (ET) processing (in DN. Digital image number 0-255) with 8-day averages of the dry period from November to April and the wet period from May to October, during the years from 2018 to 2022.

FIGURE 4 Average evapotranspiration (ET) every 8 days of the wet period, from May to October, since 2018 to 2022. 

FIGURE 5 Average evapotranspiration (ET) every 8 days of the dry period, from November to April since 2018 to 2022. 

Few works of evapotranspiration mapping using spatial remote sensing techniques are reported in Cuba. Méndez (2011) developed a geographic model through the direct use of the FAO-PM Equation and spatial remote sensing techniques adjusted by means of artificial neural networks, from a spatially exhaustive behavior with 86% precision and relative error of 14% for spatial resolution of 1000 m and temporal resolution of 10 days.

The results presented with spatial resolution of 500 m and temporal resolution of 8 days can be considered an advance as reported in the literature (Modis, 2023b), by reaching precisions between 70 -90% and mean absolute errors of 24.1%. - 24.6%.

Other Cuban authors have used different methods to map evapotranspiration such as interpolation of point data by weighted inverse distance (González & Gagua, 1979; Ramírez, 1989, Solano et al., 2003) and probabilistic or geostatistical methods such as the Kriging Method (Hernández et al., 2001; Zamora-Herrera & Chaterlán-Durruty, 2001; Chaterlán-Durruthy et al., 2002; González et al., 2004; Méndez et al., 2008). The results, in general, follow the patterns presented in this paper.

CONCLUSIONS

  • The first results in Cuba of the processing of satellite images of evapotranspiration using the MODIS 16 radiometric product are presented.

  • The information generated is the starting point for scheduling irrigation and the way to start the irrigation forecast and monitor the water situation of the crops.

  • The premises are established to create dialogue mechanisms between farmers, so that they can make better decisions regarding the irrigation management of their crops.

  • The introduction of these technologies will have an impact on saving water and energy resources and contribute to the sustainability of the use and management of water resources.

REFERENCES

AKIYAMA, K.; ALBERDI, A.; ALEF, W.; ALGABA, J.C.; ANANTUA, R.; ASADA, K.; AZULAY, R.; BACH, U.; BACZKO, A.K.; BALL, D.: “First Sagittarius A* event horizon telescope results. II. EHT and multiwavelength observations, data processing, and calibration”, The Astrophysical Journal Letters, 930(2): L13, Publisher: IOP Publishing, 2022, ISSN: 2041-8205. [ Links ]

BANCO MUNDIAL: Uso de satélites para monitorear los avances de los ODS, [en línea], Inst. Comité de Expertos sobre la Gestión Mundial de la Información Geoespacial de la ONU (UN-GGIM), 2017, Disponible en:https://www.bancomundial.org/es/news/feature/2017/08/23/using-satellites-to-monitor-progress-toward-the-sdgs. [ Links ]

BRUST, C.; KIMBALL, J.; MANETA, M.; JENCSO, K.; HE, M.; REICHLE, R.: Using SMAP Level-4 Soil Moisture to Constrain Evapotranspiration Over the Contiguous USA, Remote Sensing of Environment, In Press, 2020. [ Links ]

BRUST, C.; KIMBALL, J.S.; MANETA, M.P.; JENCSO, K.; HE, M.; REICHLE, R.H.: “Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA”, Remote Sensing of Environment, 255: 112277, 2021, ISSN: 0034-4257. [ Links ]

CEPAL, N.: “Recomendaciones para la generación de estadísticas e indicadores ambientales con información geoespacial y el uso de fuentes no convencionales. Grupo de Trabajo CEA CEPAL 2020-2021”, 2021. [ Links ]

CHATERLÁN-DURRUTHY, Y.; ZAMORA-HERRERA, E.; LÓPEZ, G.: “Distribución espacial de la evapotranspiración de referencia en Cuba”, Revista Ciencias Técnicas Agropecuarias, 11(1): 67-70, Publisher: Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, 2002, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

CISNEROS, Z.E.; LÓPEZ, S.T.; GUERRERO, P.; BONET, P.C.: Hoja de cálculo en EXCEL para la programación del riego titulada “Hoja de pronóstico”, Inst. Instituto de Inv. de Riego y Drenaje, Hoja de cálculo, La Habana, Cuba, 2007. [ Links ]

CISNEROS-ZAYAS, Z.E.; MÉNDEZ, M.; CHONG, C.: “Nuevos enfoques sobre el riego por aspersión de baja intensidad en la agricultura cubana”, Revista Ciencias Tecnicas Agropecuarias, 13(3): 17-20, Publisher: Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, 2004, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

FRĄCKIEWICZ, M.: El papel de los satélites en el apoyo a los objetivos de desarrollo internacional, [en línea], 2023, Disponible en:https://ts2.space/es/el-papel-de-los-satelites-en-el-apoyo-a-los-objetivos-de-desarrollo-internacional/. [ Links ]

FUNES-MONZOTE, F.: “La agricultura cubana en camino a la sostenibilidad”, Leisa, 7: 21-23, 2001. [ Links ]

GEE: Google Earth Engine (GEE), [en línea], 2023, Disponible en:https://earthengine.google.com/. [ Links ]

GONZÁLEZ, E.; GAGUA, G.: “Nuevo estudio sobre la evaporación en Cuba”, Voluntad Hidráulica, 51: 23-34, 1979. [ Links ]

GONZÁLEZ, F.; LÓPEZ, T.; VÁZQUEZ, R.: “Caracterización de la variabilidad espacial de la evapotranspiración para estudios regionales de manejo de recursos hídricos”, Revista Ciencias Técnicas Agropecuarias, 13(2): 47-49, Publisher: Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, 2004, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

HERNÁNDEZ, G.; CABRERA, R.M.; LEÓN, M.M.; ZAMORA, E.: “Distribución espacial de las necesidades del agua para el cultivo del tomate”, Revista Ciencias Técnicas Agropecuarias, 10(3): 77-80, Publisher: Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, 2001, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

IPF-PMA, CUBA: Análisis y Cartografía de la Vulnerabilidad a la Inseguridad Alimentaria en Cuba, Ed. Representación del Programa Mundial de Alimentos en Cuba, La Habana, Cuba, 56-59 p., 2001. [ Links ]

JIMÉNEZ, G.: API desarrollada en JavaScript, [en línea], 2022, Disponible en:https://www.hidraulicafacil.com/p/extension-hf-riego.html. [ Links ]

MÉNDEZ, J.A.: Contribución metodológica para la estimación de la evapotranspiración de referencia mediante técnicas de teledetección espacial y redes neuronales artificiales, Universidad Agraria de La Habana “Fructuoso Rodríguez Pérez”, Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas Agropecuarias, San José de las Lajas, La Habana, Cuba, 141 p., 2011. [ Links ]

MÉNDEZ, J.A.; SOLANO, O.; RUISECO, D.; GONZÁLEZ, F.: “Análisis espacio-temporal de la evapotranspiración de referencia ETo en Cuba”, 26(1): Publisher: Jornal SELPER International. Sociedad Latino Americana de Percepción Remota Satelital. Editorial SELPER PRODITEL. Universidad Nacional de Lujan. Buenos Aires Argentina, 2008, ISSN: 0717-2915. [ Links ]

MODIS: MODIS/Terra Net Evapotranspiración 8-Day L4 Global 500 m SIN Grid, [en línea], 2023a, Disponible en:https://lpdaac.usgs.gov/products/mod16a2v006/. [ Links ]

MODIS: MODIS/Terra Net Evapotranspiración 8-Day L4 Global 500 m SIN Grid, Validación, [en línea], 2023b, Disponible en:https://lpdaac.usgs.gov/documents/494/MOD16_User_Guide_V6.pdf, 2023. [ Links ]

OBASI, G.O.: “El papel de la OMM y de los Servicios Meteorológicos e Hidrológicos Nacionales en apoyo del desarrollo sostenible”, : Publisher: Organización Meteorológica Mundial, 2003, ISSN: 0250-6025. [ Links ]

PAVÓ-ACOSTA, R.; HECHAVARRÍA-RIVERA, O.: “Las mejoras o bienhechurías; nociones en la doctrina y su régimen jurídico en el ámbito del usufructo agrario en Cuba”, Revista Internacional Consinter de Direito, : 179-179, 2023, ISSN: 2183-9522. [ Links ]

RAMÍREZ, E.: “La distribución de la evapotranspiración de referencia en Cuba”, Ciencia y Técnica en la agricultura. Riego y Drenaje, 12(1): 85-92, 1989. [ Links ]

SIERRA, J.: Camino hacia una nueva ley de tierras para Cuba, 2023. [ Links ]

SOLANO, O.; MENÉNDEZ, C.; VÁZQUEZ, R.; MENÉNDEZ, J.: “Zonificación de la evapotranspiración de referencia en Cuba”, Revista Cubana de Meteorología, : Atlas Agro meteorológico de Disponibilidades Hídricas para una Agricultura de Secano, Instituto de Meteorología., 2003, ISSN: 0864-151X. [ Links ]

TAVANA, M.; MINA, H.; SANTOS-ARTEAGA, F.J.: “A general Best-Worst method considering interdependency with application to innovation and technology assessment at NASA”, Journal of Business Research, 154: 113272, 2023, ISSN: 0148-2963. [ Links ]

ZAMORA-HERRERA, E.; CHATERLÁN-DURRUTY, Y.: “Estudios sobre evapotranspiración de referencia en Cuba”, Revista Ciencias Técnicas Agropecuarias, 10(3): 87-90, Publisher: Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, 2001, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

Received: February 14, 2023; Accepted: September 01, 2023

*Author for correspondence: Alberto Méndez-Jocik, e-mail: joc4263@gmail.com

Alberto Méndez-Jocik, Especialista Principal de Diseño, Ingeniería y Consultoría. Empresa de Proyectos Ingeniería, Boyeros y Conill, Edificio MINAG, Piso 10, Municipio Plaza, La Habana, Cuba. e-mail: joc4263@gmail.com.

Pável Vargas-Rodríguez, Profesor Titular, Departamento de Ingeniería Hidráulica, Universidad de Oriente,. Santiago de Cuba, e-mail: pvargas@uo.edu.cu.

Felicita González-Robaina, Dr.C., Inv. Titular, Instituto de Investigaciones de Ingeniería Agrícola, Carretera de Fontanar, km 2 1/2, Reparto Abel Santamaría, Boyeros, La Habana, Cuba. Teléf.: (53) (7) 645-1731; 645-1353, e-mail: felicita.gonzalez@iagric.minag.gob.cu.

The authors of this work declare no conflict of interests.

AUTHOR CONTRIBUTIONS: Conceptualization: A. Méndez. Data curation: A. Méndez. Formal analysis: A. Méndez, P. Vargas. Investigation: A. Méndez, P. Vargas. Methodology: A. Méndez, P. Vargas, Software: A. Méndez, P. Vargas. Supervision: A. Méndez, F. González. Validation: A. Méndez, P. Vargas. Writing-original draft: A. Méndez, P. Vargas. Writing-review & editing: A. Méndez, P. Vargas, F. González.

Creative Commons License