SciELO - Scientific Electronic Library Online

 
vol.32 número4Modelo teórico experimental para el mejoramiento del manejo de máquinas de pivote central eléctricasVariabilidad de factores agroclimáticos y gasto de riego en cultivo protegido del pimiento (Capsicum annuum) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Ciencias Técnicas Agropecuarias

versão On-line ISSN 2071-0054

Rev Cie Téc Agr vol.32 no.4 San José de las Lajas oct.-dez. 2023  Epub 01-Dez-2023

 

ORIGINAL ARTICLE

Reusing of Urban Wastewater Treated for Irrigation Purposes of Stabilization Ponds

0000-0003-2788-4574Gisel Guerra HernándezI  *  , 0000-0003-3713-3408Oscar Brown ManriqueI  , 0009-0004-5906-9659Beatriz Melo CamarazaI  , 0009-0008-5735-2572Alexander Hernández RodríguezI  , 0000-0003-4095-5410Marcos Edel Martínez MonteroI  , 0009-0006-5214-5502Ernesto Donis AlmeidaII 

IUniversidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Ciego de Ávila, Cuba.

IIDirección Provincial de Recursos Hidráulicos, Ciego de Ávila, Cuba.

ABSTRACT

The increase in competition for the use of water makes it an increasingly scarce resource for agricultural irrigation; it is necessary to search for alternative sources, such as the reuse of wastewater in agriculture that represents benefits for the soil and crops. The research was carried out with the objective of evaluating the quality of treated residual water in stabilization ponds for agricultural irrigation purposes, from the analysis of the physical, chemical and microbiological parameters of residual water. The main results indicate the presence of a facultative lagoon with efficiencies of 50%, 53%, 98% and 94% for the removal of biochemical oxygen demand, chemical oxygen demand, thermotolerant coliforms and total coliforms, respectively. That accounts for 74% of total operation efficiency of the lagoon with 2 mg·L-1 of dissolved oxygen in it. These values indicate that the effluent from the stabilization pond can be used for irrigation of cooked food crops according to the recommendations of the World Health Organization for Latin America and the Caribbean.

Key words: Alternative Source; Total Coliforms; Thermotolerant Coliforms; Efficiencies; Agriculture

INTRODUCTION

Wastewater has been used in agriculture for many years due to the benefit it represents for the soil and the crop (Pérez-Díaz et al., 2019). In the current context of climate change and global water deficit, its use has increased due to alternative supplies of water and can be applied to food crops that are consumed raw and cooked; industrial and fodder (Polón-Pérez et al., 2019).

Annually, 380 billion m3 of wastewater are produced worldwide and this volume is expected to increase to 470 billion m3 by the end of 2030 and reach 574 billion m3 in 2050 (Mendoza-Retana et al., 2021).

The use of urban effluents is a viable alternative to increase the local availability of water resources and nutrients for plants; however, its use in agriculture requires measures to avoid risks to human health and the environment (Sánchez-Gutiérrez & Gómez-Castro, 2021).

Cuba has a sanitation infrastructure made up of more than 300 stabilization ponds, 5,442 kilometers of sewerage networks, 163 waste pumping stations and 12 treatment plants to achieve adequate final disposal of effluents (Gil, 2016).

Ciego de Ávila Province has an urban wastewater treatment system made up of ten facultative lagoons with removal efficiencies of chemical oxygen demand and biochemical oxygen demand that range between 35-55%, which is why they cause negative impacts on surface water sources

The objective of the work was to evaluate the functioning of the stabilization lagoon for agricultural irrigation purposes in Morón Municipality, Cuba by evaluating the physical, chemical and microbiological parameters as essential aspects for increasing the efficiency of organic load removal to improve wastewater quality.

MATERIALS AND METHODS

The research was carried out in the stabilization lagoon of Morón Municipality, in Ciego de Ávila Province, Cuba; located between the planar coordinates Cuba Norte X = 744367 m and Y = 257166 m (Figure 1).

FIGURE 1 Satellite map of the lagoon's location. 

Analysis of Physical, Chemical and Microbiological Parameters

The analysis of the physical, chemical and microbiological parameters of the influent and effluent were carried out by the personnel of the laboratory of the National Company of Technical Services of Ciego de Ávila Province. The following indicators were measured.

Water temperature (T) was measured using the laboratory method with a calibrated thermometer for a range below 50 °C (Luna-Imbacuán et al., 2016). Electrical conductivity (EC) was measured through the electrometric method for a range lower than 4 000 µS cm -1 (Castillo-Sánchez et al., 2020). Dissolved oxygen (DO) was determined using the Winkler method for a range of 2 to 7 mg L-1 (Recalde-Mortola & Vielma-Puente, 2022). Hydrogen potential (pH) was determined by the electrometric method for a range from 6 to 9 pH units (Pérez-Díaz et al., 2019). Settleable solids (SS) were determined using the Inhoff Cone for a range of less than 10 mL L-1 (Dunán-Ávila et al., 2020). Total coliforms (TC) and thermotolerant coliforms (CTT) were determined using the multiple tube technique for a range below 1 000 mg L-1 (Baird et al., 2017). Total phosphorus (PT) was determined by the stannous chloride colorimetric method for a range lower than 10 mg L-1 (Perojo-Bellido de Luna et al., 2022). Chemical oxygen demand (COD): using the accelerated autoclave digestion method to dichromate for a range below 120 mg L-1 (Mayta & Mayta, 2017). Biochemical oxygen demand (BOD5) was determined using the incubation method for 5 days at 20°C and determination by Winkler for a range below 60 mg L-1 (Limache-Quispe & Tirado-Rebaza, 2022).

The removal efficiency of the organic load was estimated based on the concentration of total coliforms, thermotolerant coliforms and on chemical and biochemical oxygen demands in inlet tributaries and outlet effluents. The total removal efficiency was also determined according to Romero-López & Castillo-Torres (2018) through the following equations:

ηrem=(CE-CS)CE.100 (1)

ηfunc=ηCT+ηCTT+ηDQO+ηDBO54 (2)

Where η rem is the organic load removal efficiency (%), C E the concentration of tributaries (mg L-1), CS the effluent concentration (mg L-1), η func is the total removal efficiency (%), η CT the removal efficiency of total coliforms (%), η CTT the removal efficiency of thermotolerant coliforms (%), η DQO the chemical oxygen demand efficiency (%) and η BOD5 biochemical oxygen demand efficiency (%).

RESULTS AND DISCUSSION

Analysis of Physical Characteristics

The analysis of the physical characteristics allowed knowing that the lagoon presented a good functioning due to the presence of green algae of the genus Chlorella, Scenedesmus and Chalamydonomas They are great producers of oxygen. The photosynthetic activity of these algae and surface reaeration favor the production of oxygen necessary for the purification process (Vanegas-Benavides & Reyes-Rodríguez, 2017). The average monthly minimum air temperature was 25.8 °C, which favored the development of degradation processes (Luna-Imbacuán et al., 2016).

Analysis of Chemical Characteristics

The analysis of the chemical parameters shows that the hydrogen potential of the influent and the effluent was 7.7 and 8.1 units, respectively. These values are within the permissible range according to Pérez-Díaz et al. (2019). The consumption of CO 2 by the algae causes the pH to increase in the lagoon, which can reach values higher than 9.0. However, pH values lower than 6.2 units, affect methane production activity; therefore, organic acids and other compounds with unpleasant odors are released, which indicate deficient functioning of the lagoon (Guzmán-Pérez et al., 2021).

The average values of electrical conductivity (EC) in the influents and effluents were 1058.0 µS cm-1 and 952.0 µS cm-1, respectively, which are lower than the permissible values of effluent discharge to receiving bodies (< 4 000 µS cm-1) according to Castillo-Sánchez et al.(2020).

The settleable solids (SS) were practically null on the surface of the lagoon and increased with depth up to average values of 2 mL L-1; therefore, the condition established for this parameter is met (<10 mL L-1) according Dunán-Ávila et al. (2020).

The contributions of total phosphorus in the influent and the effluent were 6 mg L-1 and 0.90 mg L-1, respectively. This decrease was related to the presence of the Chlorella sp. microalgae, which reduces the nitrogen and phosphorus load (Tafur-Alvarez & Estrada, 2019). This important nutrient can be incorporated into the soil through irrigation for the development of crops such as bananas, sweet potatoes, beans, corn and rice in areas surrounding the lagoon (Sánchez-Gutiérrez & Gómez-Castro, 2021).

Dissolved oxygen concentrations were 0 mg L-1 and 2 mg L-1 in the influent and effluent, respectively. The result was lower in relation to the range of 2 to 7 mg L-1 suggested by Recalde-Mortola & Vielma-Puente (2022). These values are low due to the low penetration of sunlight; as well as the abundance and activity of specific groups of microorganisms (Huinil, 2020).

The biochemical oxygen demand values in the influent and effluent were 176 mg L-1 and 112 mg L-1, respectively, for an efficiency of 50%, behavior associated with the low availability of dissolved oxygen (Mayta & Mayta, 2017; Echeverría et al., 2021).

The results of the chemical oxygen demand were 60 mg L-1 and 40 mg L-1 in the influent and effluent, respectively for an efficiency of 53%, behavior associated with low availability of dissolved oxygen consumed in the chemical oxidation of oxidizable matter, whether biodegradable or not (Limache-Quispe & Tirado-Rebaza, 2022).

Analysis of Microbiological Characteristics

The results of the values of thermotolerant coliforms were 92,000 mg L-1 and 1,200 mg L -1 in the influent and effluent, respectively, for an efficiency of 98%. The value of the effluent is lower than the limit established of 2 000 mg L -1 in various Latin American countries for irrigation with wastewater (Baird et al., 2017).

Total coliform values were 1,60,000 mg L-1 and 1,200 mg L-1 in the influent and effluent, respectively, for an efficiency of 93%. The effluent value is slightly higher than 1 000 mg L-1, the limit value recommended by the World Health Organization for crop irrigation (Baird et al., 2017). In this way, the effluent obtained is not suitable for irrigation of food crops that are consumed raw; but it is suitable for cooked food crops.

The use of wastewater in agriculture benefits third world countries by controlling pollution and increasing agricultural production in the face of lack of water resources. However, the presence of pathogenic microorganisms in these waters can cause diseases, so it is important to remove effectively coliforms in the treatment process. Responsible use is crucial to ensure health safety (Cortés-Martínez et al., 2017).

Total Removal Efficiency Analysis

The removal efficiencies of the parameters that intervene in the operation of the lagoon influence total removal of the lagoon of 74% which is lower than the established minimum limit of 85% to achieve a good operation (Vargas et al., 2020). This value is fundamentally associated with the low values found in the BOD5 and COD removal efficiencies, which is why it is considered that the operation of the lagoon is regular.

These BOD5 and COD efficiency values are low due to the low penetration of sunlight; as well as the abundance and activity of specific groups of anaerobic microorganisms, which is why it is considered that the functioning of the lagoon is regular; however, the purified water can be used to irrigate cooked food crops (Figure 2).

FIGURE 2 Representation of the purification efficiencies and operation of the lagoon. 

The result of this parameter suggests the need to implement practices for the reuse of treated wastewater in stabilization ponds for agricultural irrigation of crops that are not directly consumed; being necessary the application of actions to avoid damage to the soil, the crop and human health.

CONCLUSIONS

  • Efficiencies of 50%, 53%, 98% and 94% were obtained for the removal of biochemical oxygen demand, chemical oxygen demand, thermotolerant coliforms and total coliforms, respectively. The above reveals a low total removal efficiency of 74% (less than 85%).

  • Dissolved oxygen concentrations were 0 mg L-1 and 2 mg L-1 in the influent and effluent, respectively.

  • These values are low due to the low penetration of sunlight; as well as the abundance and activity of specific groups of microorganisms, which is why it is considered that the functioning of the lagoon is regular; however, the purified water can be used to irrigate cooked food crops.

REFERENCES

BAIRD, R.; EATON, A.; RICE, E.: Standard Methods for the examination of Water and Waste Water, [en línea], Inst. American Public Health Association (APHA)”, American Water Works Association (AWWA), Water Environment Federation (WEF), Washington, DC, USA, 2017, Disponible en:https://scholar.google.es/scholar?cluster=10785928223407825158&hl=es&as_sdt=2005&sciodt=0,5. [ Links ]

CASTILLO-SÁNCHEZ, J.G.; BALAREZO-SALTOS, L.D.; VINCES-OBANDO, M.B.; ZAMBRANO-RIZO, H.A.: “Alternativas en la estabilización de lodos provenientes de plantas de tratamiento de aguas residuales”, Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, 5(1): 23-27, 2020, ISSN: 2588-0721, Disponible en:https://revistas.utm.edu.ec/index.php/Riemat/article/view/2499. [ Links ]

CORTÉS-MARTÍNEZ, F.; TREVIÑO-CANSINO, A.; ESPINOZA-FRAIRE, A.T.; SÁENZ-LÓPEZ, A.; ALCORTA-GARCÍA, M.A.; GONZÁLEZ-BARRIOS, J.L.; MARTÍNEZ-ROJAS, R.; CRUZ-ACOSTA, F.: “Optimización en el diseño de un sistema de tratamiento de aguas residuales integrado por tres lagunas de estabilización”, Tecnología y ciencias del agua, 8(4): 139-155, 2017, ISSN: 2007-2422, Publisher: Instituto Mexicano de Tecnología del Agua, Disponible en:https://doi.org/10.24850/j-tyca-2017-04-09. [ Links ]

DUNÁN-ÁVILA, P.L.; RIVERÓN-ZALDÍVAR, A.B.; FERNÁNDEZ-RODRÍGUEZ, M.; FUENTES-LONDRES, Y.; MARRERO-DOIMEADIOS, L.: “Evaluación de los procesos erosivos, la materia sedimentable y el caudal en la cuenca del río Yamanigüey”, Ciencia & Futuro, 10(2): 19-37, 2020, ISSN: 2306-823X, Disponible en:https://revista.ismm.edu.cu/index.php/revista_estudiantil/article/view/1923. [ Links ]

ECHEVERRÍA, I.; ESCALANTE, C.; SAAVEDRA, O.; ESCALERA, R.; HEREDIA, G.; MONTOYA, R.: “Evaluación de una planta de tratamiento de aguas residuales municipales basada en lagunas de estabilización acopladas a un reactor anaerobio compartimentado”, Investigación & Desarrollo, 21(1): 37-45, 2021, ISSN: 2518-4431, Publisher: Universidad Privada Boliviana, DOI: https://doi.org/10.23881/idupbo.021.1-3i. [ Links ]

GIL, Y.: Principales indicadores y datos de infraestructura hidráulica, [en línea], Inst. Instituto de Recursos Hidráulicos, La Habana, Cuba, 2016, Disponible en:https://www.hidro.gob.cu/sites/default/files/INRH/Publicaciones/Principales%20indicadores.pdf. [ Links ]

GUZMÁN-PÉREZ, J.; CRUZ-HERNÁNDEZ, C.V.; TORRES-CASTRO, P.; DOMÍNGUEZ-RODRÍGUEZ, V.; ADAMS-SCHROEDER, R.H.; BALTIERRA-TREJO, E.; GÓMEZ-CRUZ, R.: “Efecto del ph y temperatura en lagunas de estabilización de un campus universitario”, Kuxulkab’, 27(59): 19-29, 2021, ISSN: 2448-508X, DOI: https://doi.org/10.19136/kuxulkab.a27n59.4038. [ Links ]

HUINIL, R.: “Dinámica del oxígeno disuelto en una laguna facultativa”, Revista Agua, Saneamiento & Ambiente, 15(1): 81-88, 2020, Disponible en:https://revistas.usac.edu.gt/index.php/asa/article/download/1136/774/4534. [ Links ]

LIMACHE-QUISPE, F.; TIRADO-REBAZA, L.U.: “Acción de dos macrófitas para el tratamiento del agua residual de las lagunas de estabilización de Magollo, Tacna-Perú”, Ciencia & Desarrollo, 21(1): 29-39, 2022, ISSN: 2617-6033, DOI: https://doi.org/10.33326/26176033.2022.1.1239. [ Links ]

LUNA-IMBACUÁN, M.A.; CAMPOS-BERMÚDEZ, F.; MEDINA-GUTIÉRREZ, O.: “Evaluación de las aguas residuales del lavado de estanques multipropósito con cultivo de trucha arcoíris (Oncorhynchus mykiss)”, Ciencia y Tecnología Agropecuaria, 17(2): 191-202, 2016, ISSN: 0122-8706, Publisher: Corporación Colombiana de Investigación Agropecuaria-Corpoica, Disponible en:https://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-87062016000200004. [ Links ]

MAYTA, R.; MAYTA, J.: “Remoción de cromo y demanda química de oxígeno de aguas residuales de curtiembre por electrocoagulación”, Revista de la Sociedad Química del Perú, 83(3): 331-340, 2017, ISSN: 1810-634X, Publisher: Sociedad Química del Perú, Disponible en:https://www.redalyc.org/articulo.oa?id=371953709008. [ Links ]

MENDOZA-RETANA, S.S.; CERVANTES-VÁZQUEZ, M.G.; VALENZUELA-GARCIA, A.A.; GUZMÁN-SILOS, T.L.; ORONA-CASTILLO, I.; CERVANTES-VÁZQUEZ, T.J.: “Uso potencial de las aguas residuales en la agricultura”, Revista mexicana de ciencias agrícolas, 12(1): 115-126, 2021, ISSN: 2007-0934, Publisher: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Disponible en:https://www.scielo.org.mx/scielo.php?pid=S2007-09342021000100115&script=sci_abstract. [ Links ]

PÉREZ-DÍAZ, J.P.; ORTEGA-ESCOBAR, H.M.; RAMÍREZ-AYALA, C.; FLORES-MAGDALENO, H.; SÁNCHEZ-BERNAL, E.I.; CAN-CHULIM, A.; MANCILLA-VILLA, O.R.: “Evaluación de la calidad del agua residual para el riego agrícola en Valle del Mezquital, Hidalgo”, Acta universitaria, 29: 1-21, 2019, ISSN: 0188-6266, Publisher: Universidad de Guanajuato, Dirección de Investigación y Posgrado, DOI: http://doi.org/10.15174.au.2019.2117. [ Links ]

PEROJO-BELLIDO DE LUNA, A.M.; AGUILERA-CORRALES, Y.; VILLAR-ANEIROS, A.; AVILÉS-AGUILERA, Y.: “Caracterización de las aguas residuales generadas en la producción de conjugados monovalentes en el Instituto Finlay de Vacunas”, Vaccimonitor, 31(2): 60-67, 2022, ISSN: 1025-028X, Publisher: Instituto Finlay de Vacunas, Disponible en:http://www.vaccimonitor.finlay.edu.cu. [ Links ]

POLÓN-PÉREZ, R.; MIRANDA, A.; DÍAZ, R.; RUÍZ, M.; GUERRA, G.; VELÁZQUEZ, F.: “Effect of Water Stress on Rice Regrowth Crop. Second Part”, Revista Ciencias Técnicas Agropecuarias, 28(3): 1-6, 2019, ISSN: 2071-0054, Publisher: Universidad Agraria de La Habana, Cuba, Disponible en:https://www.redalyc.org/articulo.oa?id=93260040003. [ Links ]

RECALDE-MORTOLA, L.S.; VIELMA-PUENTE, J.E.: Análisis comparativo de sensor óptico de oxígeno disuelto respecto al método de winkler para establecer la confiabilidad del instrumento, [en línea], Inst. Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, Publisher: ESPOL. FCNM p., publisher: ESPOL. FCNM, 2022, Disponible en:https://www.dspace.espol.edu.ec/handle/123456789/56508. [ Links ]

ROMERO-LÓPEZ, T. de J.; CASTILLO-TORRES, Y.: “Actualización del estado de las lagunas de estabilización de la provincia Mayabeque”, Ingeniería Hidráulica y Ambiental, 39(2): 72-85, 2018, ISSN: 1680-0338, Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1680-03382018000200006. [ Links ]

SÁNCHEZ-GUTIÉRREZ, R.; GÓMEZ-CASTRO, C.: “Acercamiento a los procesos de modelación de la calidad del agua en una subcuenca. Caso del río Virilla, Costa Rica”, Uniciencia, 35(1): 71-89, 2021, ISSN: 2215-3470, Publisher: https://creativecommons.org/licenses/by-nc-nd/3.0/deed.es, DOI: https://dx.doi.org/10.15359/ru.35-1.5. [ Links ]

TAFUR-ALVAREZ, J.E.; ESTRADA, L.: “Tratamiento de aguas residuales in vitro por medio de la microalga Chlorella sp. en el municipio de Barrancabermeja, Colombia”, Revista Ciencia Tecnología Sociedad y Ambiente (CITECSA), 11(18): 5-20, 2019, ISSN: 2027-6745, Disponible en:https://www.unipaz.edu.co/ojs/index.php/revcitecsa/index. [ Links ]

VANEGAS-BENAVIDES, C.M.; REYES-RODRÍGUEZ, R.V.: “Carga superficial máxima en lagunas de estabilización facultativas de Nicaragua”, Nexo Revista Científica, 30(01): 01-18, 2017, ISSN: 1995-9516, DOI: https://dx.doi.org/10.5377/nexo.v30i01.5169. [ Links ]

VARGAS, A.K.N.; CALDERÓN, J.; VELÁSQUEZ, D.; CASTRO, M.; NÚÑEZ, D.A.: “Análisis de los principales sistemas biológicos de tratamiento de aguas residuales domésticas en Colombia”, Ingeniare. Revista chilena de ingeniería, 28(2): 315-322, 2020, ISSN: 0718-3305, Publisher: SciELO Chile, Disponible en:https://www.scielo.cl/scielo.php?pid=S0718-33052020000200315&script=sci_arttext. [ Links ]

Received: April 20, 2023; Accepted: September 01, 2023

*Author for correspondence: Gisel Guerra-Hernández, e-mail: gisel@unica.cu

Gisel Guerra-Hernández. MSc., Prof. Auxiliar, Universidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Centro de Estudios Hidrotécnicos (CEH), Ciego de Ávila, Cuba, e-mail: gisel@unica.cu.

Oscar Brown-Manrique. Dr.C., Prof. Titular, Universidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Centro de Estudios Hidrotécnicos (CEH), Ciego de Ávila, Cuba, e-mail: obrown@unica.cu.

Beatriz Melo-Camaraza. Ing. Hidráulica, Universidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Departamento de Ingeniería Hidráulica, Ciego de Ávila, Cuba, e-mail: beatrizmc@unica.cu.

Alexander Hernández-Rodríguez. Ing. Hidráulico, Universidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Centro de Estudios Hidrotécnicos (CEH), Ciego de Ávila, Cuba, e-mail: alexanderh@unica.cu.

Marcos Edel Martínez-Montero. Dr.C., Prof. Titular, Universidad de Ciego de Ávila Máximo Gómez Báez (UNICA), Facultad de Ciencias Agropecuaria, Ciego de Ávila, Cuba, e-mail: cubaplantas@gmail.com.

Ernesto Donis-Almeida. Ing. Hidráulico, Dirección Provincial de Recursos Hidráulicos, Ciego de Ávila, Cuba, e-mail: donisalmeida18@gmail.com.

The authors of this work declare no conflict of interests.

AUTHOR CONTRIBUTIONS: Conceptualization: G. Guerra. Data curation: G. Guerra, O. Brown, E. Donis. Formal analysis: G. Guerra, B. Melo, O. Brown. Investigation: G. Guerra, O. Brown, B. Melo, A. Hernández. Methodology: G. Guerra, B. Melo, A. Hernandez, O. Brown. Supervision: G. Guerra, O. Brown. Validation: G. Guerra, O. Brown, M. E. Martinez. Papers/Editorial, original project: G. Guerra, O. Brown. Writing, revision and editing: G. Guerra, O. Brown, M. E. Martinez, A. Hernandez.

Creative Commons License