SciELO - Scientific Electronic Library Online

 
vol.45 número1Estudio preliminar de fotoestabilidad del 1-(fur-2-il)-2-nitroprop-1-eno índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Centro Azúcar

versão On-line ISSN 2223-4861

Resumo

BALLESTEROS TRUJILLO, Marisol et al. Microbial growth in compost piles of organic waste and biosolids after the aeration process. cen. az. [online]. 2018, vol.45, n.1, pp. 1-10. ISSN 2223-4861.

Nowadays, the problem of dealing with the organic fraction contained in urban solid waste (OFUSW) and the biosolids generated from wastewater treatment plants (WWTP) requiresalternative solutions. Composting is a method that can transform these wastes for their use. The length of the process depends on initial substrates, particle size, arrangement of the pile, moisture, aeration, and active biological population. The objective of this study is to determine the effect of aeration on the growth of bacteria and actinomycetes in composting piles of 250 kg. The pile identified as P1 is made with clay (30%), lama (5%), biosolids of WWTP (32.5%) and OFUSW (32.5%); and the one identified as P2 is prepared with clay (30%), lama (5%) and biosolids (65%). During the process, moisture content in wet basis (Hbh), temperature, pH, and growth of bacteria and actinomycetes are monitored in both piles, before and after performing aeration. In the thermophilic phase, P1 reached 49.0 - 51.5 °C for five consecutive days, while P2 reached 45.2 - 48.4 °C for three days. In both piles, pH ranged from 6.78 to 8.75 and compost was obtained in 28 days. The moisture for P1 was 35-42%Hbh, and for P2 it was 32-35%Hbh. Aeration had a significant effect on microbial growth in the thermophilic phase because it altered the conditions of the microsystems, being lower in the case of actinomycetes than in the case of bacteria.

Palavras-chave : composting; biosolids; organic wastes; microbial growth; aeration.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License