Introducción
Para el año 2030 se proyecta que la generación fotovoltaica alcance en Cuba el 12,5 % del total de la producción de electricidad a partir de fuentes renovables de energía. El recrudecimiento del bloqueo de los Estados Unidos a la importación de combustibles fósiles en meses recientes ha reforzado la necesidad de promover aún más el uso de fuentes renovables de energía y de lograr una mayor eficiencia en la generación fotovoltaica, por razones de seguridad nacional. Por otra parte, la tierra y otras superficies son recursos limitados, por lo cual se impone la utilización más intensiva posible. Todos los parques solares que actualmente generan electricidad en Cuba, y otros que se proyectan, utilizan como sistema el de ángulo fijo (SAF), generalmente 15 grados, y orientados al Sur.
Sin embargo, un parque con sistema de seguimiento automático horizontal de un eje (HSAT) está en construcción en la Zona Especial de Desarrollo Mariel, con inversión extranjera. El objetivo de este trabajo es evaluar en Cuba la viabilidad energética y financiera de los sistemas de ajuste manual de inclinación de paneles fotovoltaicos (SAM) y de HSAT.
Materiales y métodos
Los autores han revisado la literatura nacional e internacional sobre los sistemas SAM y HSTA, han utilizado las bases de datos meteorológicos del Centro de Física de la Atmósfera, han desarrollado aplicaciones informáticas para la evaluación de alternativas, han realizado simulaciones y han calculado la evaluación financiera mediante el descuento de flujos y el efecto en la sustitución de importaciones de combustibles fósiles.
Bases de datos meteorológicos del Centro de Física de la Atmósfera
Los datos mensuales promedio de radiación global horizontal y de la temperatura en el día, según la latitud y longitud de cada ubicación en Cuba, se obtuvieron del libro en Excel “Interp”, con el formato que se muestra en la figura 1, uno de los resultados del proyecto “Determinación de la distribución de radiación solar sobre el territorio nacional partiendo de la información que brinda la red heliográfica”, del Centro de Física de la Atmósfera, del Instituto de Meteorología [1].
Aplicaciones informáticas desarrolladas para el cálculo de energía y la optimización de ángulos
Para comparar los resultados en varias coordenadas geográficas de Cuba, con ángulo de inclinación fijo de 150, con las variantes de ajuste de ángulos mensual, estacional y semi anual, se preparó una aplicación informática (“Calculador de energía FV”) con cinco variantes de aplicación (Figura 2). Esta aplicación permite también determinar el ancho de las filas y la distancia mínima entre ellas para los parques con tecnologías SAF y SAM, y la distancia entre los ejes de las columnas para los parques con tecnología HSAT, y también está disponible en la Empresa de Hidroenergía para su uso por cualquier institución nacional.
“Calculador de energía FV” se construyó, entre otros elementos, a partir de una hoja de cálculo “descargada” y modificada con las fórmulas convencionales para la determinación de la radiación sobre plano inclinado [2-3], a la cual se le agregó el cálculo de la energía eléctrica [4], y el libro “Interp”. Los resultados obtenidos con esta aplicación para la determinación de la radiación sobre plano inclinado y la energía, fueron comparados con los cálculos realizados con el conocido software RETS creen [5] para siete diferentes sitios con latitudes entre 23,17 y 19,97, y ángulos de 15⁰ y 45⁰ para cada localidad, es decir, 14 comparaciones.
La radiación anual sobre plano inclinado y la energía obtenidas por “Calculador de energía FV”, fueron inferiores en 0,83% a las halladas por RETS creen con 15⁰ de inclinación y 1,37% con 45⁰. Las desviaciones típicas fueron insignificantes: 0,02% y 0,03%, respectivamente. Así se validó “Calculador de energía FV” demostrando que tiene suficiente precisión para análisis preliminares.
“Calculador de energía FV” permite de manera rápida y confiable determinar la generación estimada máxima bajo diferentes variantes de ajuste manual de ángulos en cada sitio: para ajustes de inclinaciones óptimas cada mes, por estaciones (de mayo a agosto, de septiembre a octubre, de noviembre a febrero y de marzo a abril), y por dos periodos del año (de abril a septiembre y de octubre a marzo).
El sistema de ajuste manual de inclinación de paneles fotovoltaicos
El ajuste del ángulo de inclinación dentro del año para aumentar la energía ha sido tratado por la literatura científica. Dixit T.V, Yadav A. y Gupta S. (2015) concluyeron, luego de analizar los datos meteorológicos de 23 ciudades de la India, que cambiando la inclinación de los paneles dos veces en el año aumentaba la generación en 2,91%, y si se realizaba 4 veces (por estaciones) un 5,5% [6]. Berishaa X., Zeqiria A. y Mehaa D. (2018), hallaron que la radiación promedio anual aumentaba un 6% para Pristina, la capital de Kosovo, con el ajuste mensual del ángulo de inclinación con relación al óptimo fijo anual, y un 4,6% con ajustes por estaciones [7]. Abdallah R., Juaidi A., Abdel-Fattah S. y Manzano-Agugliaro F. (2020), determinaron también que el ajuste mensual de los ángulos en las principales ciudades de Palestina posibilitaría generar más del 6% de energía anual, y los ajustes estacionales o semi anuales alrededor del 5% [8]. En Rumanía, Oprea R., Istratem M., Machidon D., et al. (2019) realizaron el cálculo de la radiación sobre plano inclinado en Iasi y concluyen, a partir de los cálculos de cuatro modelos diferentes, que con el ajuste mensual del ángulo de inclinación se obtendría, como promedio, una ganancia en radiación de 4,76%, con el ajuste estacional 3,69% y con el semi anual 3,18%, con respecto al ángulo fijo anual [3].
En Cuba, Díaz Santos R., Castro Fernández M., Santos Fuentefria A. et al. (2018) también abordan el tema y concluyen, luego de realizadas las simulaciones para un parque solar en La Habana, que con el ajuste del ángulo en dos estaciones (abril-septiembre y octubre marzo) la generación se incrementaría 5,4 % con relación a un ángulo fijo de 150, y 4,6% con respecto a una inclinación igual a la latitud [9]. Shiva Kumar B. y Sudhakar K. (2015) realizaron la evaluación de un parque fotovoltaico de 10 MW en funcionamiento, localizado a 18.75′′ de latitud Norte en la India, con ajuste manual del ángulo de inclinación de la siguiente manera: de noviembre a febrero el ángulo es 33.750, de mayo a agosto 3.750, y en los meses de septiembre, octubre, marzo y abril 18.750 [10].
Los autores del presente trabajo, a partir de la base de datos meteorológicos mencionada y mediante el software elaborado “Calculador de Energía FV” determinaron la generación potencial en 10 localidades de Cuba (tabla 1). Los ángulos mínimos se fijan en -100 y 100, según sea el caso, para reducir el efecto de la acumulación de polvo sobre los paneles.
La fabricación de las estructuras para el montaje de los SAM, aunque más complejas que las de los SAF, pudieran ser encaradas por la industria nacional. El ajuste manual de los ángulos no incorpora costos significativos adicionales a la operación y mantenimiento de los parques, y según varios fabricantes chinos, toma dos minutos con un trabajador o alrededor 30 segundos con tres trabajadores por cada cadena (array), según el tipo de estructura. En la figura 3, se muestran dos tipos de estructuras metálicas para los SAM: con la primera se logra el ajuste mediante una manivela y con la otra con “pasadores”.
Datos de los sitios | Aumento % de energía de variantes de ajuste |
||||
---|---|---|---|---|---|
Localidades | Latitud | Longitud |
Dos veces al año: →Abr-Sep±100 →Oct-Mar 400 |
Cuatro veces al año**: →May-Ago-100 →Sep-Oct →Nov-Feb →Mar-Abril |
Todos los meses**: (ángulos mínimos±100) |
23,06 | -81,56 | 3,7 | 4,7 | 5,0 | |
22,84 | -82,03 | 3,6 | 4,6 | 4,9 | |
22,84 | -80,21 | 3,7 | 4,7 | 5,1 | |
22,42 | -83,70 | 3,7 | 4,6 | 4,9 | |
22,15 | -80,45 | 3,7 | 4,7 | 5,0 | |
21,38 | -77,92 | 3,8 | 4,7 | 5,0 | |
21,20 | -77,60 | 3,8 | 4,7 | 5,0 | |
20,80 | -77,60 | 3,6 | 4,5 | 4,8 | |
20,35 | -77,12 | 3,5 | 4,4 | 4,7 | |
20,02 | -75,83 | 3,4 | 4,3 | 4,5 | |
Promedio simple | 3,6 | 4,6 | 4,9 |
*La energía fue calculada en todos los casos con los siguientes datos de entrada: azimut 1800, eficiencia de los paneles 14,8%, eficiencia del inversor 98,7%, pérdidas varias 5%.
**Los ángulos mensuales o por estaciones son los que optimizan la energía y varían por sitios.
Fuente: Cálculo de los autores utilizando la aplicación “Calculador de Energía FV”.
La posibilidad de fijar el ángulo en 00, constituye una solución para aminorar los daños de los huracanes. Sin embargo, el sistema de ángulos ajustables requiere mayor superficie, pues la distancia entre el inicio de una fila y el inicio de la siguiente aumenta con la inclinación máxima que se proyecte, de manera que este sistema es aplicable cuando existe holgura en el área total del parque, pero no es posible aumentar el número de paneles por limitación de espacio físico (por ejemplo, techos de edificaciones) o por potencia de los inversores. También, en instalaciones de una sola fila a lo largo de carreteras. De existir holgura, y de ser posible incrementar el número de colectores, la decisión final de aumentar la potencia o aplicar el sistema de ángulos ajustables es un problema netamente económico a resolver y específico de cada proyecto.
El sistema de seguimiento automático horizontal de un eje
Con el abaratamiento de los sistemas de seguimiento, ya la mitad de los parques fotovoltaicos operando en los Estados Unidos en 2015 incluían sistemas de seguimiento en un eje (figura 4).
En el sistema de seguimiento automático horizontal de un eje las cadenas de paneles se instalan paralelas al eje Norte-Sur y el seguimiento se realiza de Este a Oeste durante todo el día. Considerando la producción de energía, es el sistema idóneo para los sitios de baja latitud (Ver figura 5) [11]. Su limitación es que requiere una mayor superficie que el sistema de paneles fijos para una misma potencia.
Existe también una amplia literatura internacional sobre la viabilidad de los HSAT en el mundo. En la tabla 2, se muestran los resultados de varios de los estudios realizados en localidades de baja latitud (entre 300 y -300).
Localidad | País | Latitud | Método de medición | % Incremento de energía o radiación de HSAT vs. SAF | Fuente |
---|---|---|---|---|---|
Boca de Ratón* | EUA | 26,21 | Monitoreo de un año | 15 | [13] |
Bellary** | India | 15,14 | Simulación PVsyst | 18 | [14] |
Chitradurga** | India | 14,22 | Simulación PVsyst | 18 | [14] |
Tiruchuli** | India | 9,57 | Simulación PVsyst | 19 | [14] |
Parmakudi** | India | 9,50 | Simulación PVsyst | 19 | [14] |
NP Kunta** | India | 14,05 | Simulación PVsyst | 18 | [14] |
Gani** | India | 15,60 | Simulación PVsyst | 18 | [14] |
Mahabubnagar** | India | 16,14 | Simulación PVsyst | 16 | [14] |
Sangareddy** | India | 17,63 | Simulación PVsyst | 17 | [14] |
Hoa Lac* | Viet Nam | 21,02 | Simulación PVsyst | 18 | [15] |
Guangzhou* | China | 23 | Cálculos de autores | 15 | [16] |
Nanning* | China | 22,8 | Cálculos de autores | 15 | [16] |
Taipei* | China | 25,03 | Cálculos de autores | 14 | [16] |
Dongfang* | China | 19,83 | Cálculos de autores | 20 | [16] |
* Ángulo fijo: óptimo calculado
**Angulo fijo: latitud
Estudios en diversos países muestran que con la tecnología HSAT, la generación o la radiación captable aumentan notablemente con respecto a las obtenidas con tecnología SAF. En EEUU, en Boca de Ratón el resultado de un monitoreo arrojó un aumento del 15% en la generación [13]. En la India, en 8 sitios las simulaciones mostraban un incremento de generación entre el 16 % y el 19% [14]. En Hoa Lac, VietNam la simulación proyectó un aumento del 18 % [15]. En el caso de China, en varios sitios, los incrementos de radiación captable oscilaban entre el 14 y el 20 % [16]. En el caso de HSAT, con la fijación totalmente horizontal de las cadenas, también se podrían aminorar los daños de los fuertes vientos. Aunque la tecnología es mucho más compleja que la de los SAM, los encadenamientos entre universidades, centros de investigación e industria nacional podrían hacer factible la producción de sistemas de seguimiento solar en Cuba. De hecho, existen trabajos de diploma y artículos publicados por autores cubanos con proposiciones técnicas para sistemas de seguimiento [17].
El proyecto original del parque fotovoltaico de Amancio Rodríguez
Para realizar una evaluación más precisa hemos tomado un proyecto real de parque fotovoltaico. Este es un proyecto de 1 242 kWp, con 3 880 módulos inclinados de Norte a Sur a 15° organizados en 194 cadenas. Está enclavado en un área con holgura. La limitante para aumentar el número de paneles es la potencia del inversor (1 000 kW). La distancia entre el inicio de la fila anterior y el inicio de la posterior es de 8,70 metros, suficiente para evitar el sombreado en el solsticio de invierno a las 8:00 AM. Los resultados de las simulaciones permiten realizar una evaluación más precisa y diseñar espacialmente o realizar cambios en el diseño, así como evaluar el sombreado. Los datos de la primera variante se muestran en la figura 6. A continuación, se realizarán las simulaciones y modificaciones de diseño para dicho proyecto con tecnologías SAM y HSAT.
El proyecto modificado con el sistema de ajuste manual de inclinación de paneles
Se verifica que la distancia entre el inicio de la fila anterior y el inicio de la posterior son suficientes para evitar el sombreado en el solsticio de invierno a las 8:00 AM. Mediante el software “Calculador de energía FV” se determinan preliminarmente la división por meses de las dos estaciones y los ángulos para cada una (la peor variante de ajuste manual). Se simula el ajuste de ángulos con el arreglo: de abril a septiembre -100 y de octubre a marzo 400. Los resultados se muestran en la figura 7.
El proyecto modificado con el sistema de seguimiento automático horizontal de un eje
Las cadenas deben organizarse en columnas paralelas al eje Norte Sur. La distancia mínima entre los ejes de las columnas debe ser 10,5 metros para evitar sombreado a las 8:00 am en el solsticio de invierno, pero por las limitaciones de espacio se proyecta 9,79 metros como distancia promedio entre los ejes de las cadenas. Se utilizó un sistema que realiza el seguimiento entre los ángulos -450 y 450 en el eje Este-Oeste, sin inclinación en el eje Norte-Sur. Los resultados se muestran en la figura 8.
Discusión de resultados
Comparación de las simulaciones del proyecto del parque de Amancio Rodríguez
Como se había previsto de manera preliminar, el sistema de ajuste manual de inclinación de paneles fotovoltaicos dos veces al año, aumenta la producción de energía en 3,6%. La simulación con el seguimiento automático horizontal de un eje, como se refleja en los estudios internacionales, aumenta notablemente la producción del parque. En este caso el incremento es de más de 20% (tabla 3).
Evaluación económico-financiera de las simulaciones con SAF, SAM y HSAT para el parque fotovoltaico de Amancio Rodríguez
Para evaluar la rentabilidad económico-financiera de las tecnologías de ajuste de inclinación de paneles de forma manual se asumieron premisas y se obtuvieron ofertas de un proveedor chino (tabla 4), para un parque de 2.5 MW. Solamente se tendrán en cuenta los ingresos y egresos de efectivo incrementales de SAM y HSAT versus SAF (incrementos energía y aumentos de valores de inversión por estructuras y equipamiento). El resto de los gastos, excepto los de mantenimiento del HSAT, no varían o lo hacen de manera no significativa en las tres alternativas (SAF, SAM y HSAT).
Los ingresos e inversión incrementales y los resultados económico-financieros de SAM y HSAT versus SAF se muestran en la tabla 5.
De haberse podido simular variantes con ajuste estacional y mensual de ángulos de inclinación, con toda seguridad, los resultados financieros incrementales del sistema de ajuste manual de inclinación de paneles fotovoltaicos versus el de ángulo fijo hubieran sido aún más favorables (Ver tabla 1). Igualmente, de haber sido posible aumentar la distancia entre cadenas en la simulación del HSAT el incremento de energía hubiera sido superior [18-19].
201 550 | ||
389 700 | ||
308 000 | ||
104 302 | ||
201 670 | ||
159 390 | ||
1 000 | ||
1,2 | ||
270 | ||
6% | ||
7% | ||
300 | ||
25 | ||
0,89% |
* Se ha asumido el doble de lo informado por el proveedor del sistema HSAT para un parque de 2,5 MW.
Conceptos | SAM |
HSAT |
|
---|---|---|---|
97 368 | 55 088 | ||
1 665 | 9 452 | ||
500 | 2 835 | ||
357 351 | 2 028 208 | ||
99 077 | 1 159 380 | ||
15,9% | 170,7% | ||
6,0 | 0,6 | ||
47 203 | 743 867 | ||
11,5% | 112,7% | ||
7,8 | 0,9 |
* Cálculo anual según pronóstico de precios ponderados de combustible fósil del Sistema Eléctrico Nacional, utilizando como una de sus fuentes la proyección del precio del petróleo Brent hasta 2050, suministrada por la Dirección General de Economía del MINCEX en septiembre de 2017.
Conclusiones
La elección final en cada proyecto, sea la tecnología de paneles fijos, con ángulo ajustable manualmente o de seguimiento automático horizontal de un eje u otra, dependerá de las condiciones específicas de cada sitio, especialmente las topográficos, meteorológicas y de áreas disponibles: “un traje a la medida”. Los sistemas de ángulo ajustable manual, generalmente, y los de seguimiento horizontal de un eje requieren de mayores áreas por capacidad instalada. No obstante, la tecnología HSAT es probablemente la de mayor generación por unidad de superficie. Los resultados de los análisis de ahorro de combustibles fósiles y de viabilidad económico-financiera muestran resultados satisfactorios para las tecnologías SAM y HSAT en el proyecto del parque fotovoltaico de Amancio Rodríguez. Con la eventual producción nacional de las estructuras y otros componentes, el beneficio en la sustitución de importaciones puede ser mayor. Ambas tecnologías, además, mediante el abatimiento de los paneles, pueden aminorar el efecto de los huracanes y vientos fuertes, y así evitar el desmontaje de paneles.
A partir de los resultados de este trabajo, en la empresa de Hidroenergía se aprobó la inclusión de 30 MW con tecnología HSAT en los próximos proyectos.