SciELO - Scientific Electronic Library Online

 
vol.32 número2Adecuación del software Labras en la planificación de la preparación del suelo para caña de azúcarCalibración y validación del modelo CSM-MANIHOT-Cassava en diferentes arreglos espaciales en la provincia Holguín, Cuba índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Ciencias Técnicas Agropecuarias

versión On-line ISSN 2071-0054

Rev Cie Téc Agr vol.32 no.2 San José de las Lajas abr.-jun. 2023  Epub 13-Mar-2023

 

ORIGINAL ARTICLE

Estimation of the Maintainability of Three Models of Rice Harvesters During Technical Maintenance

0000-0002-2990-2660Erwin Herrera-GonzálezI  *  , 0000-0002-4109-6868Alexander Miranda-CaballeroII  , 0000-0002-0467-9749Héctor de las Cuevas-MilánIII  , 0000-0003-1769-7927Pedro Paneque-RondónIII  , 0000-0002-1125-3105Yanoy Morejón-MesaIII 

IUniversidad de Guantánamo, Facultad Agroforestal, Guantánamo, Cuba.

IIInstituto Nacional de Ciencias Agrícolas, San José de las Lajas, Mayabeque, Cuba.

IIIUniversidad Agraria de La Habana, San José de las Lajas, Mayabeque, Cuba.

ABSTRACT

The research was carried out under the conditions of harvesting and repair of the Agricultural Base Business Unit (UEBA) "Sierra Maestra", in the New Holland L-521, L-624, L-626 rice harvesters. The objective was estimating and checking the maintainability of the rice harvesters during daily technical maintenance, every 30 hours and during the harvest period under the conditions of “Los Palacios” Agroindustrial Grain Company (EAIG). Through mathematical analysis, average daily and periodic technical maintenance time every 30 h was determined. In the investigation, what the same authors did in 2017 was validated. Among the most significant results is that: for the harvesters evaluated, the maintainability curve shows that there is between 95.8...97% probability that the daily technical maintenance is carried out in two hours; while in technical maintenance every 30 hours the probability is 74...78% in the same period.

Key words: Maintenance Time; Daily; Periodic Every 30 h; Technical Availability

INTRODUCTION

Within the technological process of rice production, the use of harvesting machines is a matter of undoubted interest. The deterioration and the years of exploitation of the means used during the technical assistance of these machines, has caused a decrease in their technical availability, which affects productivity during the harvest (Rodríguez-López et al., 2022). Hence the importance of the correct execution of technical maintenance and repair operations; to guarantee the functioning of the machinery in operation, until they can be completely renewed, according to the economic possibilities of the country (Paneque et al., 2018).

In the EAIG "Los Palacios", as in the whole country, the deterioration of the machines requires greater demand for technical assistance. In addition, it implies the need of organizing the maintenance and repairing processes, drawing up strategies that ensure an optimal decision at all times, based on maintainability criteria (CAI Los Palacios- Cuba, 2011; Azoy, 2014; Herrera-González et al., 2017; Mamani-Cabellos, 2019).

Grajales et al. (2006) point out that reliability, availability and maintainability are powerful tools that help maintenance personnel to make decisions. These tools provide the criteria for developing strategic maintenance management and in order to increase availability, priority must be given to maintainability (Shkiliova, 2004; Shkiliova et al., 2011; Shkiliova y Fernández-Sanchez, 2011).

Miranda et al. (2008) state that the increase in combine harvester breakages is influenced by little attention to planned technical maintenance which should control and prevent failures and take measures to help increasing the productivity of the combines, once the parts that fail and the effect they cause are known. Another of the negative incidents during the maintenance work of the machines, is not having the organization, resources and trained personnel that respond to the current demands of improving the operating conditions and the improvement of the reliability indices (Fernández-Abreu y Shkiliova, 2012; Figueredo-Álvarez, 2018; Diaz-Restrepo, 2020).

The investigations carried out previously reflect the need to comply with quality maintenance to increase the reliability of exploitation and, although it is characterized by the expenses of time and resources for the maintenance of its working capacity, they are limited to consider the expenses of time, living labor of people, spare parts and other materials for repairing. (de la Cruz-Pérez et al., 2013; Rivero & Suárez, 2015; Figueredo-Álvarez, 2018; Pérez-Olmo et al., 2018). Expenses in maintenance are even minor if all the characteristics and previous events that occur before reaching the normal state are taken into account when evaluating the management and maintenance operation (Herrera-González et al., 2017). They are design, assembly, operations, operator skills, modifications made, previous repairing, operating capacity, reliability, maintenance carried out throughout the useful life of the equipment, environment, legislation or indications, quality of spare parts, cleanliness and environmental impact it generates.

According to the existing problem, the objective of the research was to estimate and verify the maintainability of the rice harvesters during daily technical maintenance, every 30 hours and during the harvest period under the conditions of the Grain Agroindustrial Company (EAIG) "Los Palacios". That is, the ease and economy in the execution of maintenance of the rice harvesters, which in turn, allows having a methodological foundation for the solution to this scientific and practical problem in the organization and rationalization of maintenance and, consequently, in the work capacity of the harvesters (Herrera-González et al., 2017).

MATERIALS AND METHODS

The experimental research was carried out at the EAIG "Los Palacios", Pinar del Río Province. The fieldwork and the characterization of the experimental site, is carried out under the repairing and harvesting conditions of the UEBA "Sierra Maestra. The evaluation of the factors that influence maintainability was carried out in three models of New Holland L-521, L-624, L-626 combine harvesters, during daily technical maintenance (10 h) and periodic MT-1 (every 30 h), in June-July and September-November 2020 rice harvest periods.

Methodology for Collecting Information on Maintenance Times

For collecting information on the cost of time to carry out maintenance, a series of measuring instruments was necessary (digital stopwatches with an accuracy of 1/10s (1%), work control models of the harvest brigade (area worked, amount of grain harvested, fuel consumed and duration of the day). In addition, documentation from the UEBA prepared by the plot manager (field, area, field yield, variety cultivated) and a set of tables prepared previously for primary data taking (Herrera-González et al., 2017)

Table 1 reflects the types of technical maintenance carried out. Column 1 shows the model and chassis number of the machine; column 2 indicates the type of maintenance and column 3 the tools used. Average time spent on maintenance (main and auxiliary time) is entered in columns 4 and 5. Column 6 provides information on the number of people involved.

TABLE 1 Technical Maintenance Performed 

Machine Type of Maintenance Tools Used Average Time Used Personnel
Principal Auxiliary
1 2 3 4 5 6

TABLE 2 Timing of Maintenance Operations 

Time Used /days, min
Times 1 2 3 4 5 6 7 8 9 10
Maintenance Start
Maintenance Operations Daily and/or Every 30 h
Maintenance End

Phototiming begins with the first task of the day, which is daily technical maintenance, which in some cases may coincide with the MT-1 periodic technical maintenance (every 30h). With the help of the clock, the start and end time is taken and with the stopwatch the duration of each maintenance operation is taken into account.

Before beginning the observation, it is necessary for each machine to collect the data related to its characteristics (name and brand, date of manufacture or repairing, name of the production or repair plant, place where the observation is made, start dates and termination of observation). Besides, working conditions and useful work of the machine, cases and causes of machine stoppages due to technical problems (carrying out technical maintenance, troubleshooting and repairs) are also referred.

Table 3 is the control model of daily work in exploitation, it is used to register the daily work of machines. The information about the field is obtained of the UEBA documents (technological chart of the area) and the amount of initial and end fuel is measured with the graduated rod that each machine has. The volume of work is taken from the report of the harvest issued by the leader of the brigade and then corroborated with the document issued by the reception center (receipt chart), the data of clean work time, shift hours and other harvesting materials are also referred.

TABLE 3 Control of Daily Work in Operation 

Model No.______Date______ Name of the Operator______________ Crop___________
Company___________ Region or District_______ Field ______________ Labor _____________
Brand of the Machine__________________ Model____________ Serial No.____________
Fuel_________ Start____________ Final_________ Shift_______________
Volume of Work Performed t, ha_________ Fuel L___________
Time of Work (h/clean)_______Hours/shifts______Other Materials Used_______

Based on the Manual of Use and Care of Harvester (New Holland L series), data taken from the timing of daily maintenance operations, periodic every 30 hours settled in the Tables 1 and 2, are referred in Table 4, (columns 1 and 2). In column 3, the location of the point to be attended to is referred (At the side of the machine, P1; Top of the machine, P2; Under the machine, P3; Front of the machine, P4; Back part of the machine, P5). Column 4 provides information on the work positions of maintenance personnel, according to Kopchikov (1980) cited by Herrera-González et al. (2017). They are:

  • A: standing, working at shoulder height

  • B: standing leaning forward

  • C: standing working overhead

  • D: crouched

  • E: knee with straight spine

  • F: knee bent forward

  • G: lying on the back

  • H: seated leaning back

  • I: sitting leaning forward

  • J: lying face down

Columns 5...8 record the time spent at work, the item to be worked on, the tools used and the people involved in the operation. These data are taken from Tables 1 and 2.

Once these data are ordered, they are averaged by operation and machines, which will allow the analysis based on the theoretical basis (Minag-Cuba, 2002; 2008; Morejón-Rivera et al., 2012; Herrera-González et al., 2017).

TABLE 4 Times Used for Maintenance Operations Taking into Account the Position of Personnel per Machine 

Operation Maintenance Location of the Operation Position of the Working Personnel Time of Work in Minutes Element or Set to Work Tools Used Amount of Persons
1 2 3 4 5 6 7 8

Methodology for Processing Data that Influence Maintainability Levels

To process the indicators that influence on maintainability, they are grouped into tables that allow calculating the data of technical maintenance by type (Table 2), which will allow the preparation of graphs necessary to show the results of the investigation.

Using the Mathcad 2000 professional calculation software, the average daily technical maintenance times, periodic every 30 h and the maintainability estimate are calculated. They are grouped in a Microsoft Excel database, which will allow the statistical processing of the arithmetic means, standard deviation, coefficients of variation, Kolmogorov's test for goodness of fit, and probability plots in the statistical program STATGRAPHICS PLUS, Version 5.1.

Determination and Evaluation of the Economic Effect

The economic effect is based on the data obtained during the 2020 harvest period with the evaluation of the machines in operation there and the amount of grains left to harvest, it was determined by the equations:

Adcpm=TMdmd×Wexp×N

Adcpm=TMdm30h×Wexp×N

where:

Adcpm-

amount of grains left unharvested

TMdmd-

Mean time of extra daily maintenance

TMdm30h-

Mean time of maintenance every 30 extra hours

Wexp-

Productivity

N-

Number of maintenance

RESULTS AND DISCUSSION

Estimation of the Maintainability of Technical Maintenance

In the L-521 combine, there is a 97% probability that daily technical maintenance is carried out in 2 hours, 96% for the L-624 and 95.8% for the L-626. (Figure 1). It demonstrates that the two standard hours of daily maintenance is not enough time to carry out daily maintenance, which causes more time to be used (2.40 h), producing loss of harvester operating time (Herrera-González et al., 2017).

For the periodic maintenance every 30 h, the L-521 combines have a 78% probability that the technical maintenance every 30 is carried out in 2 hours, 75% for the L-624 and 74% for the L-626. It shows that the two hours regulated to perform periodic technical maintenance every 30 hours is not enough.Therefore, it is necessary to increase the time up to 3 hours, which causes a loss of operating time of the combine. Hence, the probability of carrying out maintenance at zero time is zero. As the carrying out time is extended, the maintainability curve increases to become a maximum in a greater or infinite time. This reveals that as a larger and maximum time is assigned to carry out maintenance, the probability of doing so grows. Similar results were obtained by the same authors in 2017.

FIGURE 1 Maintenance Curve of New Holland L-521, L-624, L-626 Combines During Technical Maintenance. 

Evaluation and Determination of the Economic Effect

As observed in Figure 2, the greatest loss occurs in the L-624 harvesters, which failed to harvest 112 7.86 t, which represents 225,571.08 Cuban pesos (CUP) and of these, 129,601.08 CUP belonging to the extra daily maintenance time. While the L-626 harvester stopped harvesting 779.46 t, which represents 155,892.8 CUP and of these, 90,518.40 CUP belonging to overtime for daily technical maintenance. The L-521 combine has more discrete values, the loss of rice left unharvested is 621.99 t, which represents 124,396.65 CUP, of which 33,533.01 CUP belonging to the extra daily maintenance time. Therefore, the situation could improve if overtime of daily technical maintenance caused by the deficiency of the logistical system (spare parts, tools and devices to carry out maintenance in the field) decreases. It is also necessary to train maintenance personnel, which would contribute to reduce the losses due to unproductive stops. These data coincide with the results obtained by the same authors in 2017 (Herrera-González et al., 2017).

FIGURE 2 Economic Losses of Rice in CUP. 

CONCLUSIONS

  • From the results of estimation calculation, the probability that the daily technical maintenance is carried out in 2 hours is 97% for the L-521 combine, 96% for the L-624 combine and 95.8% for the L-626 combine.

  • The probability that the technical maintenance every 30 hours will be carried out in 2 hours for the L-521 combine is 78%, for the L-624 combine, 75% and for the L-626 combine,74%.

  • The probability of carrying out maintenance in a zero time is zero, as the carrying out time is extended, the maintainability curve increases to become a maximum in a greater or infinite time. This reveals that as a larger and maximum time is assigned to carry out maintenance, the probability of doing so grows.

  • The greatest loss occurs in the L-624 harvesters, which failed to harvest 112 7.86 t, that represents 225,571.08 Cuban pesos (CUP) and of these, 129,601.08 CUP belonging to overtime for daily maintenance. While the L-626 harvester stopped harvesting 779.46 t, which represents 155,892.8 CUP and of these, 90,518.40 CUP belonging to overtime for daily technical maintenance. The L-521 combine has more discrete values; the loss of rice left unharvested is 621.99 t, which represents 124,396.65 CUP, of which 33,533.01 CUP belonging to overtime for daily technical maintenance.

REFERENCES

AZOY, C.A.: “Método para el cálculo de indicadores de mantenimiento”, Ingeniería agrícola, 4(4): 45-49, 2014, ISSN: 2306-1545. [ Links ]

CAI LOS PALACIOS- CUBA: Informe al Consejo ampliado de Mecanización, Inst. Complejo Agroindustrial Los Palacios, Pinar del Río, Informe Institucional, CAI Los Palacios. Pinar del Río. Cuba, 2011. [ Links ]

DE LA CRUZ-PÉREZ, A.A.M.; MIRANDA-CABALLERO, A.; SHKILIOVA, L.; RIBET-MOLLEDA, Y.; FERNÁNDEZ-ABREU, O.: “Análisis de la disponibilidad técnica de la cosechadora de arroz CLAAS DOMINATOR 130”, Centro de Información y Gestión Tecnológica. CIGET Pinar del Río, 15(4), 2013. [ Links ]

DIAZ-RESTREPO, H.D.: Diseño de un programa de mantenimiento preventivo de la sección de empaquetado de la planta molino oro de la cooperativa agropecuaria de Norte de Santander-Coagronorte. ltda, Inst. Universidad Francisco de Paula Santander, Informe Técnico, publisher: Universidad Francisco de Paula Santander, 2020. [ Links ]

FERNÁNDEZ-ABREU, O.; SHKILIOVA, L.: “Adaptabilidad de la cosechadora de arroz Laverda 225 REV para las operaciones de Mantenimientos Técnicos”, Revista Ciencias Técnicas Agropecuarias, 21(2): 76-80, 2012, ISSN: 2071-0054. [ Links ]

FIGUEREDO-ÁLVAREZ, S.: Vías para la introducción de mejoras al Sistema de Mantenimiento de la Cosechadora de Caña cca-5000., Inst. Universidad de Holguín, Facultad de Ingeniería, Departamento de Ingeniería, Holguín, Cuba, publisher: Universidad de Holguín, Facultad de Ingeniería, Departamento de Ingeniería …, 2018. [ Links ]

GRAJALES, D.H.; PINZÓN, M.C.; ORTIZ, S.Y.: “La confiabilidad, la disponibilidad y la mantenibilidad, disciplinas modernas aplicadas al mantenimiento.”, Scientia et technica, 1(30): 155-160, 2006, ISSN: 0122-1701. [ Links ]

HERRERA-GONZÁLEZ, E.; MIRANDA-CABALLERO, A.; MOREJÓN-MESA, Y.; PANEQUE-RONDÓN, P.: “Mantenibilidad de las cosechadoras de arroz New Holland en la empresa Los Palacios, Cuba”, Revista Ciencias Técnicas Agropecuarias, 26(4): 67-75, 2017, ISSN: 2071-0054. [ Links ]

MAMANI-CABELLOS, L.M.: Mejora y Actualización del Plan de Mantenimiento Preventivo de Los Equipos Biomédicos del Área Central de Esterilización del Complejo Hospitalario Guillermo Kaelin de la Fuente, Inst. Universidad Nacional Tecnológica de Lima Sur, Lima, Perú, publisher: Universidad Nacional Tecnológica de Lima Sur, 2019. [ Links ]

MINAG-CUBA: Instructivo Técnico del Arroz, Inst. Ministerio de la Agricultura (MINAG), Instituto de Investigaciones del Arroz (IIA), La Habana, Cuba, 2002. [ Links ]

MINAG-CUBA: Instructivo Técnico del Arroz, Ed. Instituto de Investigaciones del Arroz, La Habana, Cuba, 2008. [ Links ]

MIRANDA, C.; IGLESIAS, C.; SHKILIOVA, L.: Investigación del proceso de cosecha mecanizada del arroz, Centro de Mecanización Agropecuaria. Estación Experimental de arroz “Los Palacios”, Monografía, San José de las Lajas, La Habana, Cuba, 2008. [ Links ]

MOREJÓN-RIVERA, R.; DÍAZ-SOLÍS, S.H.; HERNÁNDEZ-MACÍAS, J.J.: “Comportamiento de tres variedades comerciales de arroz en áreas del complejo agroindustrial arrocero Los Palacios”, Cultivos Tropicales, 33(1): 46-49, 2012, ISSN: 0258-5936. [ Links ]

PANEQUE, R.P.; LÓPEZ, C.G.; MAYANS, C.P.; MUÑOZ, G.F.; GAYTÁN, R.J.G.; ROMANTCHIK, K.E.: Fundamentos Teóricos y Análisis de Máquinas Agrícolas, Ed. Universidad Autónoma Chapingo, primera ed., vol. 1, Chapingo, Texcoco, México, 456 p., 2018, ISBN: 978-607-12-0532-2. [ Links ]

PÉREZ-OLMO, C.B.; TRUJILLO-RODRÍGUEZ, Y.; DAQUINTA-GRADAILLE, A.; GUTIÉRREZ-TORRES, R.; PLÁ-RODRÍGUEZ, E.: “Behavior of Operating Indicators of Massey Fergunson 5650 Grain Harvester”, Revista Ciencias Técnicas Agropecuarias, 27(4), 2018, ISSN: 2071-0054. [ Links ]

RIVERO, L.; SUÁREZ, C.: Instructivo Técnico Cultivo de Arroz, Ed. Asociación Cubana de Técnicos Agrícolas y Forestales, La Habana, Cuba:, 2015. [ Links ]

RODRÍGUEZ-LÓPEZ, Y.; AMBROSIO, Y.; JIMÉNEZ-ÁLVAREZ, Y.: “La Estabilidad en la composición racional del sistema cosecha-transporte-recepción de la caña de azúcar”, Revista Ciencias Técnicas Agropecuarias, 31(2), 2022, ISSN: 2071-0054. [ Links ]

SHKILIOVA, L.: “Fiabilidad y mantenimiento. Apuntes de las conferencias para el postgrado”, En: Conferencias de Posgrado Facultad de Mecanización Agropecuaria. Universidad Agraria de la Habana “Fructuoso Rodríguez Pérez” La Habana. Cuba, Ed. UNAH, La Habana, Cuba, San José de las Lajas, La Habana, Cuba, 2004. [ Links ]

SHKILIOVA, L.; FERNÁNDEZ-SANCHEZ, M.: “Sistemas de Mantenimiento Técnico y Reparaciones y su aplicación en la Agricultura”, Revista Ciencias Técnicas Agropecuarias, 20(1): 72-77, 2011, ISSN: 2071-0054. [ Links ]

SHKILIOVA, L.; RIBERT-MOLLEDA, Y.; GONZÁLEZ-LÓPEZ, C.: “Disponibilidad de las cosechadoras de arroz New Holland TC-57 durante el período de garantía en las condiciones del Complejo Agroindustrial Arrocero Los Palacios”, Revista Ciencias Técnicas Agropecuarias, 20(4): 63-68, 2011, ISSN: 2071-0054. [ Links ]

Received: October 17, 2022; Accepted: March 13, 2023

* Author for correspondence: Erwin Herrera-González, e-mail: erwin@cug.co.cu

Erwin Herrera-González, MSc., Ing., Profesor Asistente, Universidad de Guantánamo-Facultad Erwin Herrera-González, MSc., Ing., Profesor Asistente, Universidad de Guantánamo-Facultad Agroforestal, Guantánamo. Cuba. e-mail: erwin@cug.co.cu ORCID iD: https://orcid.org/0000-0002-2990-2660

Alexander Miranda-Caballero, Dr.C., Ing., Investigador y Profesor Titular, Director General Instituto Nacional de Ciencias Agrícolas, San José de las Lajas, Mayabeque, Cuba, e-mail: alex@inca.edu.cu ORCID iD: https://orcid.org/0000-0002-4109-6868

Héctor R. de las Cuevas-Milán, MSc., Inv. Auxiliar, Universidad Agraria de La Habana (UNAH), Facultad de Ciencias Técnicas, Centro de Mecanización Agropecuaria (CEMA), Carretera de Tapaste y Autopista Nacional km 23 ½. San José de las Lajas, Mayabeque, Cuba, e-mail: cuevasm@nauta.cu ORCID iD: https://orcid.org/0000-0002-0467-9749

Pedro Paneque-Rondón, Dr.C., Ing., Investigador y Profesor Titular, Universidad Agraria de La Habana, Centro de Mecanización Agropecuaria (CEMA), San José de las Lajas, Mayabeque, Cuba, e-mail: paneque@unah.edu.cu ORCID iD: https://orcid.org/0000-0003-1769-7927

Yanoy Morejón-Mesa, Dr.C., Ing., Profesor Titular, Facultad de Ciencias Técnicas, Universidad Agraria de La Habana, Cuba. e-mail: ymorejon83@gmail.com ymm@unah.edu.cu ORCID iD: https://orcid.org/0000-0002-1125-3105

Conceptualization: E. Herrera, A. Miranda. Data curation: E. Herrera, A. Miranda; P. Paneque, H. de las Cuevas. Formal analysis: E. Herrera, A. Miranda; Y. Morejón, P. Paneque. Investigation: E. Herrera, A. Miranda; H. de las Cuevas, Y. Morejón, P. Paneque. Methodology: E. Herrera, A. Miranda. Supervision: E. Herrera, A. Miranda. Roles/Writing, original draft: E. Herrera, A. Miranda H. de las Cuevas, P. Paneque. Writing, review & editing: E. Herrera, A. Miranda; Y. Morejón, H. de las Cuevas, P. Paneque.

The authors of this work declare no conflict of interests.

The mention of trademarks of specific equipment, instruments or materials is for identification purposes, there being no promotional commitment in relation to them, neither by the authors nor by the publisher

Creative Commons License