SciELO - Scientific Electronic Library Online

 
 número65Diseño de una tarjeta preamplificadora para los tubos fotomultiplicadores de una cámara gammaDesarrollo de un método semi-empírico para determinar la eficiencia de un detector de radiación gamma para fuentes puntuales índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Nucleus

versão impressa ISSN 0864-084Xversão On-line ISSN 2075-5635

Resumo

CONSUEGRA, D. et al. MCP-PMT timing at low light intensities with a DRS4 evaluation board. Nucleus [online]. 2019, n.65, pp.42-46.  Epub 27-Jul-2019. ISSN 0864-084X.

Positron emission tomography (PET) is one of the most important diagnostic tools in medicine, allowing three-dimensional imaging of functional processes in the body. It is based on a detection of two gamma rays with an energy of 511 keV originating from the point of annihilation of the positron emitted by a radio-labeled agent. By measuring the difference of the arrival times of both annihilation photons it is possible to localize the tracer inside the body. Gamma rays are normally detected by a scintillation detector, whose timing accuracy is limited by a photomultiplier and a scintillator. By replacing a photo sensor with a microchannel plate PMT (MCP-PMT) and a scintillator with Cherenkov radiator, it is possible to localize the interaction position to the cm level. In a pioneering experimental study with Cherenkov detectors using PbF 2 crystals and microchannel plate photomultiplier tubes MCP-PMT a time resolution better than 100 ps was achieved. In this work a DRS4 digital ring sampler chip was used to read out single photon output signals from two different MCP-PMTs (Hamamatsu R3809 and Burle 85001) with a sampling rate of 5×109 samples/s. The digitized waveforms were analyzed and a comparison between the two detectors timing response was made. The time resolutions achieved were (161 ± 2.21) ps and (220 ± 2.63) ps FWHM for the Hamamatsu and Burle MCP-PMT respectively. No significant variances were observed in the study of the behavior of the FWHM when both MCP-PMT were scanned.

Palavras-chave : positron computed tomography; Cherenkov counters; microchannel electron multipliers; photomultipliers.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )