Meu SciELO
Serviços Personalizados
Artigo
Indicadores
- Citado por SciELO
Links relacionados
- Similares em SciELO
Compartilhar
Revista Cubana de Informática Médica
versão On-line ISSN 1684-1859
Resumo
SAGARO DEL CAMPO, Nelsa María e ZAMORA MATAMOROS, C. Larisa. ¿Por qué emplear el análisis estadístico implicativo en los estudios de causalidad en salud?. RCIM [online]. 2019, vol.11, n.1, pp. 88-103. Epub 01-Jun-2019. ISSN 1684-1859.
El análisis estadístico implicativo es una técnica de minería de datos, surgida para resolver problemas de la didáctica de las matemáticas, se basa en la inteligencia artificial y el álgebra booleana, para modelar la casi implicación entre eventos y variables de un conjunto de datos. El objetivo de este ensayo es exponer las evidencias teóricas y prácticas que demuestran su utilidad para el estudio de la causalidad en la salud, para lo cual se realizó una revisión exhaustiva del tema en las bases de datos bibliográficas alojadas en Internet. Se presentan una serie de razones que justifican el uso de esta técnica en estudios de causalidad en medicina, en relación con el número de variables, el tamaño de la muestra, los supuestos requeridos para su aplicación y la naturaleza asimétrica de sus índices. También se identifican algunas ventajas con respecto a las técnicas estadísticas tradicionales, como la detección de eventos raros, que pasan inadvertidos a medidas como el apoyo y la confianza. Finalmente, se mencionan las investigaciones clínico-epidemiológicas donde se ha utilizado este análisis.
Palavras-chave : Análisis estadístico implicativo; cuasi-implicación; similaridad; cohesión; entropía; causalidad en medicina; técnicas estadísticas.