SciELO - Scientific Electronic Library Online

 
vol.7 número4Análisis de la capacidad de OCL para generar restricciones de integridad de negocioEl proceso de migración a aplicaciones de código abierto en Cuba desde un enfoque metodológico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Cubana de Ciencias Informáticas

versión On-line ISSN 2227-1899

Resumen

PEREZ-RUBIDO, Roxana. A review of feature selection algorithms that treat the microarray data redundancy. Rev cuba cienc informat [online]. 2013, vol.7, n.4, pp.16-30. ISSN 2227-1899.

In recent times, the redundancy analysis in attribute selection algorithms in machine learning has become a constant. Studies have shown that the percentages of prediction, after removing these attributes, are better than the cases where it is not. Furthermore, by excluding it from data set, the temporal complexity of the classifier is reduced because it has less data to process. In the actually, the algorithms have evolved in this regard and treat redundancy in different ways and with different criteria. The main aim of this review is to present the different evaluation criteria to address data redundancy in ADN microarrays. The study applied analysis-synthesis, historic-logical and inductive-deductive methods. We conducted a literature review of articles published since the 90's which contain algorithms to select attributes and take into account the dependency between them. The article describe a general way, his steps, the criterion used in the analysis of redundancy and some of its advantages and disadvantages.

Palabras clave : Analysis of redundancy; evaluation criteria; feature selection; filter algorithms.

        · resumen en Español     · texto en Español     · Español ( pdf )