SciELO - Scientific Electronic Library Online

 
vol.8 número1Modelo para el análisis de riesgos en Líneas de Productos de SoftwareModelo para la extensión de las capacidades de procesamiento y memoria de tarjetas inteligentes Java Card índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Cubana de Ciencias Informáticas

versión On-line ISSN 2227-1899

Resumen

FONSECA-REYNA, Yunior César; MARTINEZ-JIMENEZ, Yailen; FIGUEREDO-LEON, Ángel Enrique  y  PERNIA-NIEVES, Luis Alberto. Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems. Rev cuba cienc informat [online]. 2014, vol.8, n.1, pp.53-59. ISSN 2227-1899.

There are different suggested values to adapt the basic parameters of a Genetic Algorithm, however, these values may not be the optimal for all kinds of applications. The following research presents a metaheuristic based on a Genetic Algorithm to solve problems of type Flow Shop Scheduling with the objective of minimizing the completion time of all jobs, known in literature as makespan or Cmax. This problem is typical of combinatorial optimization and can be found in manufacturing environment, where there are conventional machines-tools and different types of pieces which share the same route. A set of crossover and selection operators are implemented methods for the proposed Genetic Algorithm once its main factors are calibrated, the size of the population, number of generations, mutation and crossover factors, statistical study is performed in order to determine the combinations of these parameters that has a greater influence. Finally, the combination of parameters whit the best performance is tested with problems of different levels of complexity in order to obtain satisfactory results in terms of solutions quality.

Palabras clave : Genetic algorithms; flow shop; makespan; optimization; scheduling.

        · resumen en Español     · texto en Español     · Español ( pdf )