SciELO - Scientific Electronic Library Online

 
vol.10 número2Metodología para la Implementación de la Gestión Automatizada de Controles de Seguridad Informática índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Cubana de Ciencias Informáticas

versión On-line ISSN 2227-1899

Resumen

TORO POZO, Jorge Luis; PASCUAL GONZALEZ, Damaris  y  VAZQUEZ MESA, Fernando Daniel. Noise cleaning for classification based on neighborhood and concept changes over time. Rev cuba cienc informat [online]. 2016, vol.10, n.2, pp.1-13. ISSN 2227-1899.

An important field within data mining and pattern recognition is classification. Classification is necessary in a number nowadays-world processes. Several works and methods have been proposed with the goal to achieve classifiers to be more effective each time. However, most of them consider the training sets to be perfectly clustered, without having into account that incorrectly classified data might be in them. The process of removing incorrectly classified objects is called noise cleaning. Obviously, noise cleaning influences considerably in classification of new samples. In this work, we present a neighborhood-based algorithm for noise cleaning on data stream for classification. In addition, it considers the data distribution changes that may occur on the time. It was measured, by several experiments, the effect of the method on automatic building of training sets by using databases from UCI repository and two synthetic ones. The obtained results show prove the efficacy of the proposed noise cleaning strategy and its influence on the right classification of new samples.

Palabras clave : Noise cleaning; semi-supervised learning; concept drift.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons