SciELO - Scientific Electronic Library Online

vol.12 número3Algoritmo de navegación integrada para vehículos autónomos con tecnología de bajo costo.Filtrado wiener para la reducción de ruido en la verificación de locutores. índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO


Revista Cubana de Ciencias Informáticas

versión On-line ISSN 2227-1899


CAMPBELL HERNANDEZ, Edward L; HERNANDEZ SIERRA, Gabriel  y  CALVO DE LARA, José R.. Method of robust feature extraction for a diarization system.. Rev cuba cienc informat [online]. 2018, vol.12, n.3, pp.140-151. ISSN 2227-1899.

Automatic Speakers Recognition Systems are biometric systems that allow the identification and verification of people, using voice as a discriminatory feature. One of the challenges to overcome during the recognition process is when the audio flow to be processed has several speakers, since it’s necessary to have knowledge of the temporal location of the audio segments relative to each speaker, in order to be able to directly compare those segments with the speaker samples stored in the enrollment database. The diarization system allow to define the audio regions that are associated to a same speaker, solving, the mentioned problem in the recognition process. In this article is proposes a robust feature extraction technique as subsystem of the diarization system, called Perceptive Minimum Variance Distortionless Response, which demonstrated greater robustness to noise than the dominant technique in state-of-the-art, Mel Frequency Cepstral Coefficients. Experimentally is demostrated as the feature proposed present a level less of variance compared with the mel feature, between clean and noisy frame, subjecting the audio to a signal noisy relation of 6 dB and 8 dB respectively.

Palabras clave : diarization; perceptive minimum variance distortionless response; robust feature.

        · resumen en Español     · texto en Español     · Español ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons