Mi SciELO
Servicios Personalizados
Articulo
Indicadores
- Citado por SciELO
Links relacionados
- Similares en SciELO
Compartir
Revista Cubana de Ciencias Informáticas
versión On-line ISSN 2227-1899
Resumen
VERDECIA-CABRERA, Alberto; FRIAS-BLANCO, Isvani; QUINTERO-DOMINGUEZ, Luis y SARABIA, Yanet Rodríguez. Aprendiendo con meta-clasificadores a partir de flujos de datos no estacionarios. Rev cuba cienc informat [online]. 2020, vol.14, n.4, pp. 20-33. Epub 01-Dic-2020. ISSN 2227-1899.
Muchas fuentes generan grandes cantidades de datos constantemente en el tiempo, los cuales son conocidos como flujos de datos. Debido a que estos son adquiridos a lo largo del tiempo y a la dinámica de muchas situaciones reales, la distribución de probabilidades (concepto objetivo) que rige los datos puede cambiar en el tiempo, un problema comúnmente denominado cambio de concepto. Este artículo presenta un nuevo algoritmo basado en ensambles de clasificadores para el aprendizaje a partir de flujos de datos con posibles cambios de concepto. El algoritmo propuesto usa meta-clasificadores para combinar las predicciones de los clasificadores bases del ensamble, y mantiene un conjunto de clasificadores adaptativos para manipular posibles cambios de concepto. El método propuesto cumple con los requerimientos comunes para el aprendizaje en línea a partir de flujos de datos: es capaz de procesar los datos de entrada con complejidad temporal y espacial constante, y además solo procesa cada ejemplo de entrenamiento una vez. En este trabajo se compara empíricamente el nuevo algoritmo con los métodos de ensamble existentes más conocidos para el aprendizaje en línea. Los experimentos realizados muestran que el algoritmo propuesto frecuentemente alcanza mayores niveles de precisión en los conjuntos de datos seleccionados
Palabras clave : Flujos de datos; Ensambles de clasificadores; Cambio de concepto.