SciELO - Scientific Electronic Library Online

 
vol.15 número3Influencia de ITIL V3 en la gestión de incidencias de una municipalidad peruanaSistema de Gestión para el control y prevención de riesgos en la Inmobiliaria del Turismo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Cubana de Ciencias Informáticas

versión On-line ISSN 2227-1899

Resumen

PUEBLA MARTINEZ, Manuel Enrique; SIMON CUEVAS, Alfredo; PEREA ORTEGA, José Manuel  y  ESPINAL MARTIN, Yanet. Managing large and highly expressive ontologies through OWLAPI. Rev cuba cienc informat [online]. 2021, vol.15, n.3, pp. 20-40.  Epub 01-Sep-2021. ISSN 2227-1899.

Most of the existing open-source tools to manage and reason on large ontologies require previously loading the entire ontology in main memory to perform inference operations. This is a drawback when limited hardware resources are available and it is required to manage geographic ontologies with millions of data (instances), due to the high spatial and temporal complexity of the algorithms used by memory-based reasoners. This paper presents an extension of the OWLAPI to manage and reason on large geographic ontologies in any OWL2 profile. The main contribution is the reduction of the main memory usage by the OWLAPI, thus allowing loading only part of the ontology and not the entire OWL file. Two large geo-ontologies from different geographical areas were managed by using the proposed solution for demonstration purposes. The obtained results demonstrate the viability of the proposal to manage large geographic ontologies in OWL2 by using OWLAPI and limited hardware resources.

Palabras clave : Large geographic ontologies; Knowledge representation; Reasoning on large ontologies; OWLAPI; OWL2.

        · resumen en Español     · texto en Español     · Español ( pdf )