SciELO - Scientific Electronic Library Online

 
vol.11 issue3Contributions to the knowledge of microscopic morphology of the gonads of Cuban amphibians and reptilesFrom synthetic to Cuban natural clays: pharmaceutical and environmental applications author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Anales de la Academia de Ciencias de Cuba

On-line version ISSN 2304-0106

Abstract

ARABOLLA RODRIGUEZ, Renier et al. Cuban advances in active materials development for energy storage. Anales de la ACC [online]. 2021, vol.11, n.3  Epub Dec 01, 2021. ISSN 2304-0106.

Introduction:

The electrical energy storage systems, such as rechargeable Li batteries (BLi) and supercapacitors, are very valuable technologies to meet the needs of the modern automotive sector and photovoltaic systems. The objective of this research is to determine the critical properties of materials for BLi and supercapacitors obtained by the Ionic Conductors (ConIon) research group of IMRE-UH in the last five years.

Methods:

New strategies for the synthesis and modification of materials were established. The materials were characterized by chemical analysis, HRTEM, SEM, AFM, XPS, FTIR, TG, ATD, DSC, DRX, Raman, 13C NMR, hall effect, voltammetry and chronopotentiometry, among the most important ones.

Results and discussion:

The graphene oxide obtained resulted in an excellent anodic material with a conductivity of 1.3 S/cm, a reversible specific capacity of 354 mAh/g for BLi and a capacitance of 160-332 F/g for supercapacitors. The new LiB electrolyte (POE)8-LiClO4-LLTO) showed an ionic conductivity value (2.8E-3 S/cm) that is among the highest reported for a solid polymeric electrolyte. The doped oxide LiP0.1Mn1.88O4 turned out to be an excellent cathode material with a higher specific charge storage capacity and electrochemical stability for the manufacture of high-density LiB batteries. Conclusions: These results constitute a higher point of development in the study of advanced functional materials in Cuba to store electrical energy. New and remarkable findings were presented, fundamentally related to the measurement of the critical properties that determine the application of national active materials to rechargeable Li batteries and supercapacitors.

Keywords : energy storage; active materials; lithium battery; supercapacitor.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )