SciELO - Scientific Electronic Library Online

vol.41 número3Películas basadas en polisacáridos como recubrimientos biodegradables y su empleo en la postcosecha de los frutos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Cultivos Tropicales

versão impressa ISSN 0258-5936versão On-line ISSN 1819-4087

cultrop vol.41 no.3 La Habana jul.-set. 2020  Epub 01-Set-2020


Bibliographic review

Myths, realities and uncertainties on the degradation of red ferralitic soils in Cuba

José Manuel Febles-González1  *

José Miguel Febles-Díaz1

Nelson Moura Amaral-Sobrinho2

Everaldo Zonta2

Ana Victoria Maura-Santiago3

1Centro Investigaciones Marinas. Universidad de La Habana, Calle 16 no.114 e/1ra y 3ra, Miramar. Playa, La Habana, Cuba. CP 10300

2Departmento de Suelos, Universidad Federal Rural de Rio de Janeiro, Seropédica Seropédica‐Río de Janeiro, Brasil. CEP 23.897‐000

3Facultad de Contabilidad y Finanzas. Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, La Habana, Cuba. CP 10 400


Currently there is a global debate on the degradation of soils, their magnitude and agro-environmental impact, on which, long-term experimentation provides qualitative and quantitative criteria regarding their capacity for restoration through rational use and management. In this context, research conducted over the past 30 years confirms that the existence of degradation processes in Red Ferralitic soils in Cuba has a multifactorial nature, dependent on geological - geomorphological conditions, extreme weather events and intensive anthropogenesis. Taking into account these aspects, the present work reviews 10 main visions, which have limited the full recognition of the specific modalities assumed by water erosion and erosive - karst in these regions, which reveal the need to adopt a policy so that its protection ceases to be a myth and becomes a National Security issue. Experience shows that the lack of harmonized methods of surveillance and information transfer is one of the causes that generates uncertainty about the state of its degradation.

Key words: Uncertainty; degradation; karst region; Red Ferralitic soil


Uncertainty is the imperfection in knowledge about the state or processes of nature 1 For any scientific discipline it is good to look back and distinguish what has been achieved, how it was done and if something can be learned from the past. In relation to Soil Science, it is not only to look back, but forward, so that centific advances can take place.

Every day the number of pediatric research and publications increases in such a proportion that they have lost their ability to obtain objective conclusions from scientific reports on the effects of one or more factors under study, expressed with wide uncertainty due to the fact that the sizes The sample or working scale are insufficient 2, modulated by the anthropogenic factor in the last 300 years in such a way that a new geological era called Anthropocene has been proposed 3.

In Cuba a generation of soil scientists is retiring and there are few new positions created, so it is necessary to face this change and ensure knowledge with the available methods to better understand and manage our soils. Scientists have never had so many pedological problems to investigate as they do today. For this, it is necessary to emphasize the investigation in agro-environmental regimes of geographic surfaces, in order to determine the effects in a space-time dimension where the karst regions impose their singularity.

The study of the geological environments of formation of the Red Ferralitic soils began during the third decade of the last century 4, which marked a milestone in Cuban pedology and especially in its geography. Subsequently, numerous researchers (especially in the 1980s) supported their doctoral theses on topics related to their genesis and geography, which denotes the unquestionable edaphological-heritage value and uniqueness that these soils possess for Cuba 5.

Taking as reference the research and articles published for more than three decades that reveal the effects of karst morphogenesis associated with Red Ferralitic soils in the Southern Karst Plain Havana-Matanzas, this work performs an objective examination of the main results that have led to certain myths and uncertainties about these soils, which the Soil Institute 6 continues to classify as "not eroded", a situation on which it is imperative to reconsider in order to prevent the sequential degradation of the most productive soils of Cuba.

Some necessary background

The term karst is a word used to refer to the earth's surface when limestone or other soluble rocks are dominant 7. In these environments, the relief is characterized by the diversity of negative forms such as sinkholes and grape-like depressions, and positive forms such as karst heights or "mogote karst" with sizes ranging from millimeters such as lapiaz to large poljes 8,9. The basic conditions for the formation of karst according to 10, are three, the lithological, structural and climatic factors. Subsequently, two more factors were incorporated, the vegetation and the time of exposure of the rock to weathering.

There is currently a global debate on soil degradation, its magnitude and agro-environmental impact, which can only be resolved through systematic evaluation and long-term experimentation to obtain criteria on its specific functions and rational use 11. However, studies of soil erosion in the karst regions are very scarce, given their geomorphological, climatic and biogeographic singularity with phenomena that occur at different spatial and temporal scales that can cover thousands of hectares or hundreds of years 12, which influence erosion estimates and modeling.

Cuban karst has been developed on carbonate-type lithological units whose age varies from pre-Jurassic to Quaternary, both inclusive 13. It contains the most important underground water reserves, oil fields, important useful minerals and practically four fifths of the nation's population uses or takes advantage of its natural resources 14. In this context, the Red Ferralitic soils constitute an important category due to the wide extension they occupy and those of the Red Leached Ferralitic Type are predominant, which can be correlated with the eutric rhodic Nitisol 15, where the differences are given by the type of use. of the land and the distribution of the horizons.

Myth: Its geographical distribution only in plains regions

In the Cuban archipelago, the Red Ferralitic soils represent 23.56 % of the agricultural land fund at the national level and are distributed mainly in the Southern Coastal Plain Habana-Matanzas (45 600 km2), as well as in the Calcarea Plain of the West of Camagüey (1 800 km2) and isolated in the eastern provinces and in Pinar del Río 16. They are also present to a lesser extent in horst-like environments with flat tops 17 (Figure 1).

Figure 1 Spatial distribution of Red Ferralitic soils in the Nazareno Heights, Mayabeque province, Cuba 

Taking these aspects into consideration 18, it specified the need to differentiate at least three main magnitudes of relief (macro, meso and micro-relief), to which the set of processes that participate in the formation or degradation of pedological coverage must be referred to. , so that the karst forms are recognizable (scales 1: 5 000; 1: 2,500 and higher), and are considered as manifestations that can objectively limit the productivity of Red Ferralitic soils. The application of geostatistical methods and spatial analysis techniques for such environments will help solve some of these difficulties in the future 19.

Reality: Ignorance of the influence of the geological environment

The Cuban archipelago is characterized by the intense manifestation of karst phenomena, particularly the Mayabeque and Artemisa provinces that have between 80-85 % of its karstified territory 19, where the exokárst forms such as sinkholes, grapes and filled micro valleys generated by the dissolution of the carbonated substrate, given its ability to collect, transform, or drain surface and groundwater 20. Despite the abundance of literature on the influence of bedrock and weathering crusts, the geological and lithostructural conditions of soil erosion in the karst regions have generally been little studied (Table 1) 21.

Table 1 Values of the formation rates of Red Ferralitic soils in Cuba 

Characteristics Training rates (mm year-1) References
Age of limestone floods in the Southern Plain of the Mayabeque and Artemisa provinces
Derived from rocks with 10 % impurities it takes a million years to reach 15 m depth Limestone derivatives with 1% impurities. it would take about two million years to reach two meters depth 0.05 0.01 22) 23,24

Among the classic works that have considered this approach, those carried out 25 at the “Ciro Redondo” Company in the Agramonte municipality, Matanzas province; 26 in Melena del Sur; 27 in Catalina de Güines; 28 throughout Cuba to determine the structural-functional properties; 29 in the vicinity of a sinkhole in the Quivicán region 30 and in the karst regions of western Cuba.

Geophysical investigations carried out in the San José de Las Lajas polje confirm the action of a series of complex internal and external processes that have led to the formation of a particular modeling (Figure 2), in which CO2 of biogenic origin has been one of the main factors involved in the dissolution of limestones and the generation of karstification processes that take place through innumerable cracks and fissures with different diameters (from capillaries to 2 mm in width) and lengths (up to 15-20 m), which spread spatially throughout the karst massif 31.

Figure 2 (a) Dynamics of karst processes 31 and (b) vertical electric sounding in sinkholes in the polje of San José de Las Lajas, Mayabeque province 30, Cuba 

As for the Bejucal - Madruga - Coliseo Group Heights, the karst, bare and partially bare karsts show practically all the characteristics of the reliefs of karst denudation 32. Lithology is therefore the essential factor in these environments, since it determines the very existence and irreversibility of the karst process (unidirectional evolution) and modulates almost all of the edaphogenic processes through constantly evolving forms.

Reality: Degradation of the properties of Red Ferralitic soils

Regarding the modification of the properties (Table 2), the most notable effects are mainly expressed at the depths of the diagnostic horizons A+B0-50 cm with the progressive decrease in the content of organic matter, increases in pH, compaction values with apparent density thresholds higher than 1.34 mg m-3, reinforcement of the karst - erosive processes, salinization, among others, with a marked tendency to increase, which has received different names such as “agrogenic formation of soils” 15,33 and irreversible degradation 34. According to the initial content of organic matter in these soils exceeded by far 10 % 35,36, currently it is between 3-4 % and apparently does not stop decreasing, deteriorating in unison the physical properties that characterized them 37.

Table 2 Statistical behavior of some soil properties in the Southern Karst Plain Habana - Matanzas, Cuba 38  

Total measurements Values Deviation standard
Minimum Maximum Average
Ca 229 3,00 62,50 *22,32 13,32
Mg* 229 1,10 50,00 6,14 4,27
P* 229 0,10 901,00 96,16 141,94
CCB 229 4.70 71.75 29,22 15,43
MO 229 0,05 6,90 2,00 1,23
pH (H2O)* 226 5,48 8,32 7,62 0,56
pH (K Cl)* 226 4,96 7,77 6,92 0,60
Da 229 0,92 1,99 1,30 0,18
RP 10 - 15 cm ** 94 0,40 3,80 1,51 0,76
RP 20 - 30 cm ** 89 0,00 3,90 1,91 0,75
RP 35 - 40 cm ** 79 0,33 4,4 1,94 0,75

* Logarithmic distribution ** Expressed in MPa

Regarding the acid-base balance (Table 3), the profound changes that have taken place over time are evident at present in the high average pH (7.62) 39. Likewise, it has verified this basification phenomenon (increase in pH) 40) and has associated it with climate change, mainly to the increase in the average annual temperature and the minimum annual temperature recorded in the last 20 years, especially in areas destined for various crops.

Additionally indicate that the alkalization (current or potential) of the soils in the Red Plain Havana - Matanzas also obeys anthropogenic factors 41, related to the use for decades of calcium bicarbonate waters for agricultural irrigation.

Table 3 Average pH values in (H2O) by depths in leached Red Ferralitic soils, according to agricultural use 40  

Type of profile Number of profiles Depth (cm)
0 - 20 20 - 40 40 - 60 60 - 100
Pattern 6 6.89 6.46 6.18 6.16
Conserved 14 6.79 6.70 6.46 6.47
Cultivated 18 7.19 7.05 6.99 6.83

It is to say that in more than two decades there have been no studies on the soils in Cuba that can provide more updated information on these parameters. There is, however, an immense amount of studies on various soils in particular, from which this information could be extracted, after much cabinet work 42.

Myth: Red Ferralitic soils do not erode

The use of different nomenclatures and measurement techniques have generated comparison problems and estimates of dissimilar losses of the soil erosion status in the country are frequent 43. In this context, it is relevant to mean that the methods and indicators selected by the Ministry of Agriculture 44,45 to determine the degree of erodability, have not fully evaluated the geological formation environments, overvaluing the depth, such as the index of fundamental diagnosis 46 from a very shallow adaptation of the Soil Survey Staff Classification 47 to the edaphoclimatic conditions of Cuba, as evidenced in Tables 4 47 and 5 45,48.

Table 4 Soil Survey Staff, U.S. classification  

Degree of erosion Losses
Light erosion Removal and drag of 25 % of the tillable surface layer (less than 5 cm)
Moderate erosion Removal and drag of 25 - 75 percent of the topsoil layer (5 - 15 cm)
Severe erosion Removal and dragging of more than 75 % of the arable surface layer and part of the subsoil (more than 15 cm)
Very severe erosion Removal and dragging of most of the soil profile

The latter was expressed in the maps of current and potential erosion prepared 48,49 and more recently 32, in which deep soils such as the Red Ferralitics are classified as non-eroded (100 points) 50, while that the few evolved or skeletal are classified as eroded.

Table 5 Evaluation of soil losses due to erosion 

Degree of erosion Losses
Very little or no erosion Horizon A losses by 25 %
Moderate erosion Horizon A losses between 25 - 75 %
Severe erosion Losses of horizon A by 75 % and up to 25 % of horizon B
Very severe erosion Horizon B losses between 25 - 75 %

However, investigations carried out in the Pedroso - Mampostón sub-basin 51) with the application of the Morgan, Morgan and Finney model 52, report an average removal towards the karst depressions between 13.4 - 17.4 t ha-1 year-1 that exceed the permissible limits in terms of erosion (Table 6), with a forecast of losses for future scenarios (period of 25 and 50 years) of 1.07 mm year-1 of the surface horizon, which exceeds the tolerance values proposed by the USLE 53 and the formation rates of soils derived from limestone rocks in Cuba 24.

Table 6 Soil losses in the sinkholes applying the MMF model 52 in the localities "Rosafé Signet" and "Aljibe" 5  

Stage 1986 - 2009
C1 (Apparently not eroded)
Dolina Horizon A (0 - 490 mm)
Nu. Soil loss (t ha-1 year-1) Soil loss (mm year-1) C.V. (%)
1986 1997 2009 Mean 1986 1997 2009 Mean
1 15.957 17.82 17.649 17.227 1.228689 1.37214 1.358973 1.326479 5.97
2 17.631 16.917 20.208 18.46 1.357587 1.302609 1.556016 1.42142 9.37
3 21.357 22.128 23.613 22.554 1.644489 1.703856 1.818201 1.736658 5.08
4 14.847 14.244 14.262 14.442 1.143219 1.096788 1.098174 1.112034 2.37
5 10.011 8.355 11.91 10.345 0.770847 0.643335 0.91707 0.796565 17.19
6 9.39 9.729 10.425 9.876 0.72303 0.749133 0.802725 0.760452 5.34
7 10.686 17.142 12.042 13.894 0.822822 1.319934 0.927234 1.069838 24.5
8 12.024 10.029 12.381 11.566 0.925848 0.772233 0.953337 0.890582 10.95
9 9.012 10.143 10.668 10.142 0.693924 0.781011 0.821436 0.780934 8.34
10 10.725 11.514 12.306 11.58 0.825825 0.886578 0.947562 0.89166 6.82
11 16.068 20.226 19.419 18.885 1.237236 1.557402 1.495263 1.454145 11.67
12 13.038 13.077 14.319 13.548 1.003926 1.006929 1.102563 1.043196 5.38
13 16.653 18.12 18.816 17.97 1.282281 1.39524 1.448832 1.38369 6.14
14 10.275 11.628 13.038 11.814 0.791175 0.895356 1.003926 0.909678 11.69
15 --- --- 14.073 --- --- --- 1.083621 --- ---
16 --- --- 36.897 --- --- --- 2.841069 --- ---
Mean 12.329 13.292 13.707 --- 0.949333 1.023484 1.05543 --- ---

Reflecting on these approaches, they proposed an integrating system of qualitative and quantitative methods (Table 7) (54, which makes it possible to specify the main agents that intervene as causes, the components of the geographical environment, which participate as factors and cause the emergence and differentiation of the processes and erosive forms present.

Table 7 Methodological sequence and contributions of the main research methods to evaluate soil erosion in Cuba 

Description for its application
Geographic - comparative It characterizes the geological formation environment in which the pedogenesis - karstogenesis processes take place both in the current context and in the paleogeographic context and, in a broader sense, the dynamics of soil properties under different conditions of use and management.
Description of profiles and soil sampling

  1. Selection of main profiles and control points in the upper, middle and lower thirds of the micro-relief flexures.

  2. Morphologist - genetics description of soil horizons.

  3. Sampling by depths every 10 cm. from the surface to the depth of the erosive diagnostic horizons A + B0-50 cm. From that level onwards every 20 cm. to depths never less than a meter.

  4. Selection in the transept or toposequence of profiles with complete horizons (without apparent erosion), as reference profiles or standards.

  5. Use of the new Classification of Soils of Cuba 55.

Morphoedaphological From a genetic perspective it allows access to the biophysical environment both in its description and in its dynamics, and to specify the phases of the erosive processes (incipient or paroxysmal).
Geophysical (vertical electrical sounding) and electrical profiling In the karst regions it allows to characterize the morphostructural conditions of the subsoil and the degree of development of the karst processes.
Thematic mapping of factors in a SIG environment Qualitatively assesses the potential and current erosion risk of soil cover.

  1. CORINE method 56, for the generality of morphoedaphological environments.

  2. EVERC method 52, for karst geosystems.

Erosion models

  1. Quantitatively evaluate the magnitude of soil loss.

  2. Depending on the availability of the data, some of those proposed by the specialized world literature will be selected.

  3. In the karst regions corresponding to the phase of karst morphogenesis (incipient or paroxysmal), it is suggested to use the MMF model 57.

They also emphasize that in the karst regions it is not possible to apply the same methods, means and scales of representation used for other geoecosystems, therefore it would be strategic for the 62 polygons or demonstration areas of Soil, Water and Forest Conservation that the Ministry of Agriculture (MINAG) has distributed throughout the country 58, at least one was established in areas of Red Ferralitic soils.

Uncertainty: The effects of climate change

Predictions made in the different climate change scenarios indicate that rainfall in Cuba will increase in some regions, while in others drought will increase, in a rather irregular temporal and spatial distribution 6,59-61.

However, in the Havana-Matanzas Karst Plain there are no significant changes in the main climatic variables (Table 8), especially in the average surface temperature and average precipitation levels, so it is not conclusive to categorically attribute the influence of the change climatic processes of soil degradation 60, although yes to the rain erosion associated with extreme meteorological events to which are added more than 50 years of inadequate agricultural practices of exploitation of the edaphic cover and use of resources in a way irrational, which makes their productivity very vulnerable to future climate variations; resilience will depend on the magnitude of the threats and the success of management practices.

Table 8 Main climatic variables of the Karst Plain Havana - Matanzas, Cuba 

Weather stations Reference (1960 - 1990) Reference (1991 - 2011)
T max (ºC) T min (ºC) T average (ºC) Prec (mm) T max (ºC) T min (ºC) T average (ºC) Prec (mm)
Stgo de LasVegas 29.6 20.2 24.9 128.3 29.8 20.2 25.0 134.4
Güira de Melena 30.2 19.5 24.9 108.4 30.5 19.7 25.1 133.8
Batabanó 30.2 19.6 24.9 97.70 30.3 19.5 24.9 121.2
Güines 30.2 19.4 24.8 123.8 30.4 19.3 24.9 124.1
Bainoa 29.5 18.4 24.0 116.4 29.7 18.0 23.9 131.9
Bauta 29.4 19.2 24.3 111.0 29.7 19.5 24.6 126.9
Tapaste 29.2 18.9 24.1 126.6 29.4 19.1 24.3 124.8
Melena del Sur 30.6 19.0 24.8 124.9 30.5 19.5 25.0 130.3
Unión de Reyes 30.9 19.8 25.4 110.5 30.8 19.6 25.2 129.5
Jovellanos 30.3 18.7 24.5 126.5 30.7 18.8 24.8 128.1
Jagüey Grande 31.3 18.8 25.1 123.5 31.4 18.7 25.1 128.1
Colón 31.1 19.3 25.2 108.7 30.6 19.3 25.0 126
Mean stations 30.2 19.2 24.7 117.2 30.3 19.3 24.8 128.3

On the other hand, if as a result of the application of a management strategy, the percentage of C increased by only + 0.1 %, it would entail an increase in the dissolving capacity of the waters by 1.3 times (Equation 1), the most obvious manifestations of which will be the extent of corrosion cracks ("early shear"), a process that in recent years has begun to experience variations in response to natural or induced stimuli 60.

nCaCO3 + (n + 1.3) CH2CO3  (n + 1.3) (Ca2+ + 2HCO3) [1]

Consequently, the sequestration of C in karst areas coinciding with CO2 sinks has a dual effect, that is; beneficial for the soil and the geoecosystem in general by mitigating future effects of climate change (Figure 3), but which at the same time increases karstogenesis by acidifying the edaphic environment, a dynamic that until now has been insufficiently investigated in Cuba 62.

Figure 3 Process that promotes the increase of carbon in the soil and the dissolution of the carbonated substrate 

Reality: The advance of karst morphogenesis or karstogenesis

In the investigated localities, an erosive modality inherent in the Red Ferralitic soils is developed, called subsurface erosion, as a result of their removal into the karst cavities, a phenomenon described in the pioneering works in these territories 63. Karst gullies with "U" and "V" shaped valleys are frequent, which, as geomorphological barriers, are arranged transversely to the general slope that the slopes show, intercepting runoff, as well as the products of erosion which, due to this pathways are redistributed throughout the region (Figure 4).

Figure 4 Dynamics of the karst - erosive processes in an interfluvial space in the Karst Plain - Merdional Habana - Matanzas, Cuba 

This "regulating" effect of surface flow is often one of the basic elements of hydrographic tissue, where the absorption forms and their component elements exercise some control of surface and subsurface runoff, which coincides with the descriptions of some authors 64,65.

Consequently, the diffusion of the products of erosion varies from one sector to another of the interfluvial space, in accordance with the peculiarities of the relief and the permeability of the supporting material, in some cases its incorporation will be direct in the drainage network, while in others they are incorporated in a diffuse way into the network of karst glands of "organized heterogeneity" where they can reside for a long time, depending on the case, dynamics that clearly differentiate these regions from any other 66.

Uncertainty: The resilience of Red Ferralitic soils

When it is intended to describe the situation of Red Ferralitic soils in a spatio-temporal context, any review goes through the states of their aptitude that can favor, limit or inhibit resilience, since it is a multifactorial process, conditioned not only by the properties intrinsic to edaphic coverage, but dependent on geological - geomorphological conditions and conditions of use 21.

According to the selected rates for the rate of formation of the Red Ferralitic soils (Figure 5), 100 % of the horizon A0-490 mm would be renewed under normal agricultural practices from a reference profile located in an area in biostasis to the 50 years, while with the percentage of impurities that the limestones possess, the same depth would be restored at 100 and 600 years respectively 21.

Figure 5 Resilience of Red Ferralitic soils in the localities "Rosafé Signet" and "Aljibe". Mayabeque Province, Cuba 

Likewise, a comprehensive evaluation of the polje of San José de Las Lajas confirms an evolution of the karst-erosion process in the last thirty years practically impossible to reverse by overcoming the buffering capacity of the soils in this peculiar ecosystem, which has largely prevented get an overview of this problem. In any case, karst ecosystems are subject to constant disturbances that hinder resilience research work. Ignoring or underestimating these processes has led to one of the most widely spread myths in Cuban soil science regarding the immunity of these soils to erosion 62.

Reality: Relationship between erosion-sedimentation-contamination processes

The edaphic cover "archives" traits and properties inherited from past climatic and geological phases, which are not in balance with current edaphogenic processes 67, this is particularly important in different environments (flat and hillside karst) and performance levels (Figure 6), where links between sedimentation and contamination processes coexist with the manifestations of soil erosion referred in Lebanon 68, in Southwest China 69 and in Red Ferralitic soils from Cuba 70.

Figure 6 Dynamics of the erosion - sedimentation - contamination of soils by heavy metals in different environments in Mayabeque Province 

This has been confirmed in the comparative analysis of the natural values of heavy metals in the main soils of the Nazareno Heights with respect to the internationally used reference values (Table 9).

Table 9 Natural values of MP in the soils in Alturas de Nazareno in relation to the reference values proposed by the international literature 

Cu Zn Mn Ni Cd Pb Fe Cr
mg kg-1
F.P.R.1 84,0 171,5 2599 161,1 3,1 50,3 28639 90,3
F.R.T.2 129,5 469,1 2725 308,1 11,3 65,4 48120 290,0
P.C.3 44,4 65,9 992 57,7 2,4 44,4 21567 33,2
RQ4 35 60 * 13 0,5 17 * *
Prev.5 60 300 * 30 1,3 72 * *
Inv.5 200 450 * 70 3 180 * *
Fadigas6 2 - 119 6 - 79 * 5 - 35 0,3 - 1,5 3 - 40 * 19 - 65
Holanda7 36 140 * 35 0,8 85 * 100
Mundo8 0,3 - 495 1,5 - 264 80 - 1315 0,7 - 269 0,005 - 2,4 0,5 - 135 * 6 - 80

1Reddish Brown Physialitic; 2Typical Red Ferralitic; 3Brown with Carbonates; 4Quality reference 72; 5Prevention and research 73; 6Quality guideline values for Brazilian soils 74; 7Reference values of Dutch soils 75; 8Range of PM concentration in world soils 76.

*Values not reported

In this locality the Red Ferralitic soils show natural values above these limits in undisturbed areas 71, which is evidenced in the sediments retained in the karst depressions, which usually present high concentrations of heavy metals from the surface itself ( level 0-30 cm), coinciding with the results obtained in the Mayabeque province 77-79.

In some cases these soils can be classified as "contaminated". However, these concentrations were found naturally (little disturbed areas), due to the presence of these elements in the constituent minerals of the rocks, coinciding with studies carried out in similar regions 71,80.

Reality: Lack of knowledge about soil conservation strategies

The forms of karst absorption impose peculiar characteristics on the relief, so that the rainwater when drained does so in a diffuse way but basically directed towards the bottom of the different depressions, as these function as local base levels with well-defined micro-basins, eventually filling with sediments when the weight is obstructed or not functional, so they are generally cultivated when this complex process is unknown or undervalued. Likewise, the burning of the characteristic vegetation or the violent opening of the same is not admissible since they accelerate the karst-erosive process 81.

Consequently, it should be considered that the karst depressions have a hydrological function since they represent the natural drainage routes that these regions have for the evacuation of the liquid surpluses and products of erosion from neighboring automotive surfaces, therefore it should be promoted in its area of influence is minimum tillage, contour planting and live barriers among other alternatives for conservation agriculture.

Investigations carried out in localities of San José de Las Lajas 82, suggest in very necessary situations to fill the depressions with rocks of different diameters and of a chemical-mineralogical composition similar to the underlying stone material (Figure 7), so as to facilitate drainage of the waters, but eventually retaining the solid suspensions.

Figure 7 Proposal of an agroecological strategy for the control of soil erosion in the karst cavities 

Rehabilitation is estimated to be achieved in approximately three to five years, in accordance with the dimensions of the forms of absorption. Likewise, karst must be accepted as a natural and geological process with which it must inevitably coexist.

Reality: Ignorance of the cost of erosion of Red Ferralitic soils

Assessments of the economic consequences of soil degradation in Cuba (Table 10), indicate that the GDP is affected by $ 191 million dollars in direct and additional economic costs caused by the effects of soil erosion of classes I and II to which correspond the Red Ferralitic soils 83.

Table 10 Economic cost of soil degradation in Cuba due to erosion and environmental impacts 

Erosion degree Soil loss t ha-1 year-1 Affected area M ha-1 Total Loss Mt ha- year -1 Total cost of soil loss (USD ha- year -1)
Value x ha-1 USD Total M USD
I Weak 4.2 - 4.8 mean 4.5 1 745.4 7854.3 14.12 11 0902.72
II Mean 9.0-10.8 mean 9.9 645.5 6390.45 12.50 79 880.63
Totals Mean 95.38

Based on these results 84 they estimated in the polje of San José de Las Lajas (Table 11), the costs of the loss of productivity of Red Ferralitic soils per hectare for future scenarios through the forms of karst absorption (sinkholes), using the (Equation 2) proposed 85.

Ci=Pm *yij


Ci: is the cost of erosion per hectare at site i, Pm: is the market price per ton of agricultural product and ∆yij is the loss of product in t ha-1 associated with the loss of centimeters of soil in site i.

Table 11 Forecast of soil losses in the next 50 years using the MMF model in the localities "Rosafé Signet" and "Boshmenier - Zenea" 

Scenarios 1986 - 2009 C 1 (No apparent erosion) Horizon A (0 - 490 mm) Scenarios year 2034 C1(Moderate erosion) Horizon A (0 - 221,50 mm) Scenarios year 2059 C1(Severe erosion) Horizon A (0 - 39,48mm)
Y (mm year-1) Y (cm year-1) Y (mm year-1) Y (cm year-1)
268,52 26,80 450,52 45,00

The vertical axis (Figure 8) shows the cost per hectare and the horizontal axis, the centimeters of eroded soil. For scenario I (1986 - 2009)  (15 years)=0.11 cm year-1 of eroded soil was obtained, superior to the method runoff lots, but still in the conservative range estimated by SAGARPA of 0.15 t ha-1. However, for scenarios II (2 (25 years) = 1.08) and III (3 (50 years) = 1.80), the magnitudes of losses intercept the critical scenario with a maximum of 0.300 t ha-1. The combination of both estimates determines that the costs for loss of productivity are in the range of USD $ 16.2 to USD $ 32.4 ha-1, while the replacement cost of the lost nutrients amounts to USD $ 22.1 ha-1 with a marked tendency to increase.

Figure 8 Costs per hectare under two scenarios of loss of productivity per centimeter of eroded soil 

Considering the conservative scenario (where one cm of eroded soil causes a reduction of 150 kg in yield), the total cost of both locations amounts to USD $ 44.921.54, which corresponds to a value of $ 16.2 USD ha-1. With the critical scenario (where a little more than one cm of eroded soil causes the loss of 300 kg) the cost amounts to USD $ 89 843,089 or $ 32.4 USD ha-1.

Although it must be aware that the total economic value of something will rarely (if ever) be known for sure 86, a more complete appreciation of the value of soils requires studies that emphasize on the various environmental services provided by them, beyond production.


  • Soil Science in Cuba must definitively apply the results obtained for more than 50 years in determining the specific modalities assumed by the erosion of Red Ferralitic soils, so that their degradation ceases to be a myth and become a matter of National Security.

  • The results of the investigations of the Red Ferralitic soils in the karst regions show that the lack of harmonized methods of monitoring and transfer of information constitute one of the causes that causes the persistence of uncertainty about the state of degradation and protection strategies that should be applied to these soils in Cuba.


1. Valois R, Camerlynck C, Dhemaied A, Guerin R, Hovhannissian G, Plagnes V, et al. Assessment of doline geometry using geophysics on the Quercy plateau karst (South France). Earth surface processes and landforms. 2011;36(9):1183-92. [ Links ]

2. Stroup WW. Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal. 2015;107(2):811-27. [ Links ]

3. Lewis SL, Maslin MA. Defining the anthropocene. Nature. 2015;519(7542):171-80. [ Links ]

4. Bennet H, AR. Los Suelos de Cuba. La Habana: Comisión Nacional Cubana de la UNESCO; 1928. Impreso en español por la UNESCO, (1962); 1928. [ Links ]

5. Febles-González JM, Vega-Carreño MB, Tolón-Becerra A, Lastra-Bravo X. Assessment of soil erosion in karst regions of Havana, Cuba. Land Degradation & Development. 2012;23(5):465-74. [ Links ]

6. Gutiérrez EOP. Impactos del cambio climático y medidas de adaptación en Cuba. Anales de la Academia de Ciencias de Cuba. 2016; [ Links ]

7. Peralta V, Gil C, Fleitas E, Moleiro L, Dapena C, Olivera A. Improving a Radioisotope Monitoring Network for the Hydrodynamic Characterization of a Karstic Basin. In: Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies. Vol. I. Proceedings of an International Symposium. Vienna, Austria; 2013. [ Links ]

8. Haryono E, Adji TN. Geomorfologi dan hidrologi karst. 2017; [ Links ]

9. Medina H, van Lier Q de J, García J, Ruiz ME. Regional-scale variability of soil properties in Western Cuba. Soil and Tillage Research. 2017;166:84-99. [ Links ]

10. Bakalowicz M. Karst and karst groundwater resources in the Mediterranean. Environmental Earth Sciences. 2015;74(1):5-14. [ Links ]

11. Economic UN, Council S. Report of the inter-agency and expert group on sustainable development goal indicators. Stat. Comm. 2016;13. [ Links ]

12. Zeng C, Wang S, Bai X, Li Y, Tian Y, Li Y, et al. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth. 2017;8(4):721. [ Links ]

13. Iturralde-Vinent MA. Interrelationship of the terranes in western and central Cuba-Comment. Tectonophysics. 1994;234(4):345-8. [ Links ]

14. Oficina Nacional de Estadística e Información de la República de Cuba (ONEI). Panorama uso de la Tierra Cuba 2017 Edición Marzo 2018 [Internet]. La Habana ,Cuba; 2017 [cited 29/04/2020]. Available from: [ Links ]

15. Hernández Jiménez A, Cabrera Rodríguez A, Borges Benítez Y, Vargas Blandino D, Bernal Fundora A, Morales Díaz M, et al. Degradación de los suelos Ferralíticos Rojos Lixiviados y sus indicadores de la Llanura Roja de La Habana. Cultivos Tropicales. 2013;34(3):45-51. [ Links ]

16. Nuñez A, Panos V, Stelcl O. Mapa carsológico de Cuba. 1968. [ Links ]

17. Instituto de Geografía Tropical. Mapa de Formas Cársicas. In Atlas Nacional de Cuba XL Aniversario. 2019. [ Links ]

18. Vega-Carreño MB, Febles-González JM. La investigación de suelos erosionados: métodos e índices de diagnóstico. Minería y Geología. 2005;21(2):18. [ Links ]

19. Febles-González JM, Vega-Carreño MB, Amaral-Sobrinho NMB, Tolón-Becerra A, Lastra-Bravo XB. Soil loss from erosion in the next 50 years in karst regions of Mayabeque province, Cuba. Land degradation & development. 2014;25(6):573-80. [ Links ]

20. Merchán D, Luquin E, Hernández-García I, Campo-Bescós MA, Giménez R, Casalí J, et al. Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: A 10-year study. Catena. 2019;173:114-30. [ Links ]

21. Febles González JM, Febles Díaz JM, Sobrinho NMBA, Tolón-Becerra A, Lastra-Bravo X, Botta GF. Resilience of Red Ferralitic soils in the karst regions of Mayabeque province, Cuba. Land degradation & development. 2019;30(1):109-16. [ Links ]

22. Iturralde-Vinent M. Estudio cuantitativo de la actividad del carso en Cuba. 1972;10(23):41-7. [ Links ]

23. Camacho E, Bosch D, Pérez JM. Caracterización de una secuencia de suelos ferralíticos del Sur de La Habana, Cuba. Coloquio Inter. Suelo y Agua. ORSTOM: Paris. 1985;135-50. [ Links ]

24. Ortega Sastriques F. Las hipotesis paleoclimáticas y la edad de los suelos de Cuba. Academia de Ciencias de Cuba: La Habana Cuba. 1984; p. 46-59. [ Links ]

25. Núñez Jiménez A, Panos V, Srelel C. Investigaciones carsológicas en Cuba. 1965; La Habana: ACC. p. 15-21. [ Links ]

26. Camacho E. Etude des sols des plaines karstiques de la région occidentale de Cuba, Etude d'une zone ouverte sur la mer située entre San Nicolas de Bari et Guanajay et particulierement des sols Ferrallitiques Rouges compacts. [Ph. D. Thesis]. Université de Dijon, ORSTOM: Paris; 1980. [ Links ]

27. Bosch D. Les sols des plaines karstiques de la région occidentale de Cuba: Etude d'une plaine quasi fermée située dans la zone de Catalina de Güines et particulièrement dans les sols ferrallitiques jaunes. [Thèse présentée pour obtenir le grade de Docteur de troisième cycle]. 1981. [ Links ]

28. Delgado RD. Estado energético del agua y su interrelación con las propiedades físicas e hidrofísicas de los suelos ferralíticos rojos de Cuba. [inédito], [tesis presentada en opción al grado de Doctor en Ciencias Agrícolas]. 1987; [ Links ]

29. Boulet R, Chauvel A, Humbel FX, Lucas Y. Structural analysis and soil mapping. I. The bidimensional organization of the soil cover: the studies of toposequences and their main contribution to the knowledge of soils. Cahiers-Office de la recherche scientifique et technique outre-mer. Serie pedologie. 1982; [ Links ]

30. Febles González JM, Martin Alonso NJ, Hernández S. L'érosion et l'utilisation des sols dans la plaine karstique de Cuba: étude de plusieurs cas. ORSTOM (Ed.), Sol et Eau. 1986;717-728. [ Links ]

31. Bonacci O. Surface waters and groundwater in karst. In: Karst Aquifers-Characterization and Engineering. Springer; 2015. p. 149-69. [ Links ]

32. Instituto de Geografía Tropical. Mapa de Erosion Potencial. [Internet]. 2019 [cited 29/04/2020]. Available from: ]

33. Tokonogov V, Guerasimova DI, Iagrgenic M. Pedogenesis and soil evolution International Conference of Global Soil Change. Instituto de Geología, UNAM. 2005; [ Links ]

34. Orellana R, Febles JM. Calidad y conservación del suelo. In: Avances de la agroecología en Cuba (Funes F, Vázquez LL, eds.). La Habana, Cuba: EE Indio Hatuey. 2016. p. 77-89. [ Links ]

35. Ortega F, Academia de Ciencias de Cuba I de S. La materia organica de los suelos y el humus de los suelos de Cuba. La Habana, Cuba: Academia de Ciencias de Cuba; 1982. 129 p. [ Links ]

36. Zhang S, Wang R, Yang X, Sun B, Li Q. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Scientific reports. 2016;6:39107. [ Links ]

37. Febles JM, Tolón A, Vega MB. Edaphic indicators for assesment of soil erosion in karst regions, province of Havana, Cuba. Land degradation & development. 2009;20(5):522-34. [ Links ]

38. Garcia-Coronado JA, Medina-Gonzalez H. Las curvas de retención de humedad y su estimación mediante funciones de pedotransferencia en suelos agrícolas de Artemisa y Mayabeque. [Ph. D. Thesis]. [La Habana]: Universidad Agraria de La Habana; 2011. [ Links ]

39. Febles González JM, Vega M. Degradación del suelo por procesos de erosión hídrica (Degradação do solo por processos de erosão hídrica). In: Impactos ambientais provenientes da produção agrícola: experiências argentinas e brasileiras. 2016. p. 119-65. [ Links ]

40. Jiménez AH, Díaz MM, Benítez YB. Degradación de las propiedades de los suelos ferralíticos rojos lixiviados de la "llanura roja de La Habana", por el cultivo continuado. Instituto Nacional de Ciencias Agrícolas; 2014. [ Links ]

41. Salgado E, Dueñas M, García A, Guerra M, Gutiérrez B, Olivera J, et al. Diagnóstico ambiental e interpretación paleoambiental de los suelos de las provincias habaneras, Cuba. Ciencias de la tierra y el espacio. 2004;5. [ Links ]

42. Boletin de la Sociedad Cubana de la Ciencia del Suelo. II Taller Nacional sobre la situación actual y futuro de los suelos y la Ciencia del Suelo en Cuba. La Habana ,Cuba; 2011. [ Links ]

43. Febles JM. Integración de métodos para evaluar la erosión de los suelos en las regiones cársicas de Cuba [inédito]. [Ph.D. Thesis]. [Cuba]: Facultad de Agronomía, Universidad Agraria de La Habana “Fructuoso Rodríguez Pérez”; 2007. [ Links ]

44. DGSF. Instructivo técnico para la confección del mapa de grados de erosión 1:25 000 de las provincias. La Habana: Dirección General de Suelos y Fertilizantes, Ministerio de la Agricultura.; 1981. [ Links ]

45. MINAG. Metodología provisional para evaluar la degradación delos suelos. 1982. [ Links ]

46. Febles JM, Vega M, Febles G, Pérez A, Jeréz L. Criterios de selección para determinar valores umbrales de sostenibilidad de los suelos en áreas pilotos de La Habana, Cuba. I Seminario Internacional de Cooperación y Desarrollo en Espacios Rurales Iberoamericanos. Sostenibilidad e Indicadores. 2007;325. [ Links ]

47. Soil Survey Staff. Soil Survey Manual. USDA Handbook 18: USDA Washington, DC.; 1951. [ Links ]

48. Shepashenko G, Riverol M, Calzada N. La erosión hídrica y los métodos de combatirla en los países en vías de desarrollo con clima tropical y subtropical. Instituto de Suelos, Academia de Ciencias de Cuba (10): La Habana. 1984;40. [ Links ]

49. Riverol M. La erosión potencial de los suelos de Cuba y los métodos para su mapificación. [inédito], [tesis para optar por el grado de Doctor en Ciencias Agrícolas], Facultad de Agronomía, Instituto Superior de Ciencias Agropecuarias de La Habana Fructuoso Rodríguez Pérez. 1985; [ Links ]

50. Riverol M, Shepashenko G, Calzada N. Metodología para el diagnóstico, evaluación y cartografía de los suelos con erosión potencial en escala media detallada. Instituto de Suelos, Ministerio de la Agricultura. 1989; [ Links ]

51. Febles Díaz JM, Vega Carreño MB. Estimación del aporte de la erosión hídrica al azolve del embalse Mampostón. Ingeniería Hidráulica y Ambiental. 2016;37(3):18-30. [ Links ]

52. Vega Marina B, Febles JM. Aplicación del nuevo método de Evaluación de la Erosión de los Suelos (EVERC) y el modelo MMF en suelos de la subcuenca ganadera de Mampostón en la provincia La Habana, Cuba. Revista Cubana de Ciencia Agrícola, 2008;42(3):305-311 [ Links ]

53. Kellogg CE. Soil survey division staff: soil survey manual. United States Department of Agriculture: Washington. 1993. [ Links ]

54. Febles JM, Vega MB, Febles G. Sistema integrador de métodos cualitativos y cuantitativos para evaluar la erosión de los suelos en las regiones cársicas de uso ganadero de Cuba. Revista Cubana de Ciencia Agrícola. 2008;42(3):313-7. [ Links ]

55. Hernández J, Pérez J, Bosch I, Castro SN. Clasificación de los suelos de Cuba. Mayabeque, Cuba: Ediciones INCA; 2015. 93 p. [ Links ]

56. Febles González JM, Vega Carreño M. Mapas de erosión de suelos. Editorial UH; 2019. [ Links ]

57. A HS, DLHJE, Gonzalez Sousa R, Seco Hernandez R, Remond Noa R, Febles González JM, et al. La Geomática y los Atlas agrícolas en el ejemplo de las provincias de Artemisa y Mayabeque. In: Memorias del V Congreso de Suelos 2018 por el Manejo Sostenible de Suelos; 2018. [ Links ]

58. Calero B., Rodríguez D, Ginebra M, Agilar Y, Rodríguez A, Castellanos N, et al. Nueva plataforma de trabajo para proteger recursos naturales en Cuba: Los polígonos demostrativos. Anales de la Academia de Ciencias de Cuba. 2016;21(2):14. [ Links ]

59. Gutiérrez EOP. Cambio climático y medio ambiente en Cuba. Formulación de políticas y medidas de adaptación para el bienestar humano y funcionamiento de la sociedad. 2018 [ Links ]

60. González JF, Cabrera JS, Vega MB, Sobrinho NA, García AC, Díaz JF. Effects of climate change on soils of cattle regions from the southern karst plain Habana-Matanzas, Cuba. Cuban Journal of Agricultural Science. 2017;51(1). [ Links ]

61. Naipal V, Ciais P, Wang Y, Lauerwald R, Guenet B, Van Oost K. Global soil organic carbon removal by water erosion under climatechange and land use change during AD 1850-2005. Biogeosciences. 2018;4459-80. [ Links ]

62. Febles-González JM, Vega-Carreño MB, Do Amaral-Sobrinho NMB, Tolón-Becerra A, Lastra-Bravo XB. Good soils in extinction: Degradation of Red Ferralitic soils in western Cuba. Soil science. 2014;179(6):304-13. [ Links ]

63. Panos V, Stelcl O. Physiographic and geologic control in development of Cuban mogotes. Zeitschrift für Geomorphologie. 1968;12(2):117-73. [ Links ]

64. Naipal V, Reick C, Van Oost K, Hoffmann T, Pongratz J. Modeling long-term, large-scale sediment storage using a simple sediment budget approach. Earth Surface Dynamics. 2016;(2):407-23. [ Links ]

65. Kelly C, Ferrara A, Wilson GA, Ripullone F, Nolè A, Harmer N, et al. Community resilience and land degradation in forest and shrubland socio-ecological systems: Evidence from Gorgoglione, Basilicata, Italy. Land use policy. 2015;46:11-20. [ Links ]

66. Deng YS, Xia D, Cai CF, Ding SW. Effects of land uses on soil physic-chemical properties and erodibility in collapsing-gully alluvial fan of Anxi County, China. Journal of Integrative Agriculture. 2016;15(8):1863-73. [ Links ]

67. Fox GA, Sheshukov A, Cruse R, Kolar RL, Guertault L, Gesch KR, et al. Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on streambank and gully erosion. Environmental management. 2016;57(5):945-55. [ Links ]

68. Lamouroux M. Etat et comportement du fer dans les sols formés sur roches carbonatées au Liban. Science du Sol. 1972;1:85. [ Links ]

69. Yan Y, Dai Q, Jin L, Wang X. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena. 2019;174:48-58. [ Links ]

70. Febles G, Amaral S, Pérez L, Zoffoli JH, Magalhães ML, Guedes N. Relation among the processes of erosion-sedimentation-pollution in soils from the Distrito Pecuario »,» ®,® §,§ ­,­ ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,Ú ú,ú Û,Û û,û Ù,Ù ù,ù ¨,¨ Ü,Ü ü,ü Ý,Ý ý,ý ¥,¥ ÿ,ÿ ¶,¶ Alturas de Nazareno »,» ®,® §,§ ­,­ ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,Ú ú,ú Û,Û û,û Ù,Ù ù,ù ¨,¨ Ü,Ü ü,ü Ý,Ý ý,ý ¥,¥ ÿ,ÿ ¶,¶ , Cuba. Cuban Journal of Agricultural Science. 2014;48(2):173-9. [ Links ]

71. Sobrinho NA, Guedes JN, Zoffoli HJO. Natural content of heavy metals on cattle regions soils of Mayabeque and Artemisa province in Cuba. Cuban Journal of Agricultural Science. 2013;47(2):209. [ Links ]

72. Ambiental CDTDS. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo-2005, em substituição aos Valores Orientadores de 2001, e dá outras providências. 2006. [ Links ]

73. Fadigas F de S, Sobrinho N, do Amaral MB, Mazur N, dos Anjos LH, Freixo AA. Proposição de valores de referência para a concentração natural de metais pesados em solos brasileiros. Revista Brasileira de Engenharia Agrícola e Ambiental. 2006;10(3):699-705. [ Links ]

74. CONAMA-Conselho Nacional do Meio Ambiente. Resolução n. 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. publicada no Diário Oficial da União em Brasília, DF; 2009. [ Links ]

75. Crommentuijn T, Sijm D, De Bruijn J, Van Leeuwen K, Van de Plassche E. Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management. 2000;58(4):297-312. [ Links ]

76. Meharg AA, Kabata-Pendias A. Trace Elements in Soils and Plants. Experimental Agriculture. 2011;47(4):739. [ Links ]

77. Muñiz O, Molina J, Quicute S, Estevez J. Heavy metal pollution in a Rhodic Ferralsol of Cuba. In: Plant Nutrition. Springer; 2001. p. 994-5. [ Links ]

78. Rodríguez Alfaro M. Valores permisibles preliminares de metales pesados en suelos y abonos orgánicos. [Tesis presentada en opción al grado de Doctor en Ciencias Agrícolas]. [La Habana, Cuba]: Instituto de Suelos; 2019. [ Links ]

79. Pérez YL. Metais pesados em solos representativos das principais regiões agrícolas de Cuba: valores de referência, geoquímica e fatores de variabilidade [Tesis para optar por el grado de Doctor en Ciencias Agrícolas]. [La Habana, Cuba]: Facultad de Agronomía, Universidad Agraria de La Habana; 2015. [ Links ]

80. Lima ESA, de Santana Matos T, Pinheiro HSK, Guimarães LDD, Pérez DV, do Amaral Sobrinho NMB. Soil heavy metal content on the hillslope region of Rio de Janeiro, Brazil: reference values. Environmental monitoring and assessment. 2018;190(6):364. [ Links ]

81. Febles JM, Vega MB, Pérez GF, Tolón A, Jerez L. Indicadores agroambientales de sostenibilidad para caracterizar la erosión de los suelos en regiones cársicas de uso ganadero. Revista Cubana de Ciencia Agrícola. 2008;42(4):423-9. [ Links ]

82. Febles González JM. Agro - environmental management and protection of Cuban Soils. "La Protección del Medio Ambiente »,» ®,® §,§ ­,­ ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,Ú ú,ú Û,Û û,û Ù,Ù ù,ù ¨,¨ Ü,Ü ü,ü Ý,Ý ý,ý ¥,¥ ÿ,ÿ ¶,¶ . Manejo y Protección Ambiental. 2016;1(1):29-42. [ Links ]

83. Marrero R. Costo económico de la erosión acelerada de los suelos cubanos y daños medio ambientales. 2015. [ Links ]

84. Santiago M, Victoria A, Febles González JM. Una aproximación a los costos ambientales en los suelos ferralíticos rojos para el logro de la sostenibilidad. Cofin Habana. 2018;12(1):192-208. [ Links ]

85. SAGARPA. Informe de diagnóstico de la degradación de suelos e impacto de los programas de conservación de suelos en México. 2007. [ Links ]

86. Rivera ES, Cortés II. Las experiencias del Instituto Nacional de Ecología en la valoración económica de los ecosistemas para la toma de decisiones. Gaceta Ecológica. 2007;(84):93-105. [ Links ]

Received: April 16, 2019; Accepted: April 08, 2020

*Author for correspondence:;

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons