SciELO - Scientific Electronic Library Online

 
vol.35 número1Bioactividad de iridoides de Genipa americana contra el ácaro del cocotero Aceria guerreronis Keifer (Acari: Eriophyidae)Caracterización fisio-cultural y compatibilidad micelial de aislamientos de Sclerotium sp. procedentes de siete hospedantes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de Protección Vegetal

versión impresa ISSN 1010-2752versión On-line ISSN 2224-4697

Rev. Protección Veg. vol.35 no.1 La Habana ene.-abr. 2020  Epub 01-Abr-2020

 

Artículo Original

Effectiveness of three species of predatory mites (Acari: Phytoseiidae) for controlling Raoiella indica (Acari: Tenuipalpidae)

Eficiencia de tres especies de ácaros depredadores (Acari: Phytoseiidae) para el control de Raoiella indica (Acari: Tenuipalpidae)

Caroline Rabelo Coelho¹  * 
http://orcid.org/0000-0002-5494-5021

Andreia Serra Galvão² 
http://orcid.org/0000-0001-8294-8572

Maria Clezia dos Santos³ 
http://orcid.org/0000-0003-0836-9964

Adriano Pimentel Farias³ 
http://orcid.org/0000-0001-9911-6705

Adenir Vieira Teodoro1  4 
http://orcid.org/0000-0001-9490-0832

¹Programa de Pós-Graduação em Agroecologia, Universidade Estadual do Maranhão, 7 Travessa Paulo VI, s/n - Cidade Universitária Paulo VI, 65057-630, São Luís, MA, 8 Brasil

²Instituto Federal e Tecnológico do Maranhão, Av. dos Curiós, s/n - Vila Esperança, 10 65095-460, São Luís, MA, Brasil

3Programa de Pós-Graduação em Agronomia - Proteção de Plantas, Universidade 12 Estadual Paulista Julio de Mesquita, Av. Universitária, 3780, Altos do Paraiso, 18610-13 034, Botucatu, São Paulo, Brasil

4Embrapa Tabuleiros Costeiros, Av. Beira-Mar 3250, Jardins, Caixa Postal 44, Aracaju, 15 SE, Brasil

ABSTRACT

In this work, the efficiency of Amblyseius largoensis (Muma), Typhlodromus (Anthoseius) ornatus Denmark e Muma and Iphiseiodes zuluagai Denmark ( Muma for controlling Raoiella indica Hirst (Acari: Tenuipalpidae) was assessed by comparing their functional and numerical responses to increasing densities of R. indica eggs. The three predatory mites exhibited a type II functional response, indicating that they can assist in the control of R. indica, especially at low to moderate densities of this pest. However, A. largoensis consumed the highest number of preys with the shortest handling time and showed a superior reproductive potential when fed upon R. indica eggs. A. largoensis proved to be the most efficient of the three predatory mites.

Keywords: biological control; IPM; phytoseiids; predation; red palm mite

RESUMEN

En este trabajo se evaluó la eficiencia de Amblyseius largoensis (Muma), Typhlodromus (Anthoseius) ornatus Denmark ( Muma e Iphiseiodes zuluagai Denmark & Muma para controlar Raoiella indica Hirst (Acari: Tenuipalpidae) mediante la comparación de sus respuestas numéricas y funcionales con densidades crecientes de huevos de R. indica. Los tres ácaros depredadores mostraron una respuesta de tipo II, lo que indica que pueden ayudar en el control de R. indica, especialmente en densidades de bajas a moderadas de esta plaga. Sin embargo, A. largoensis consumió el mayor número de presas en menor tiempo, así como presentó un potencial reproductivo superior cuando se alimentó de huevos de R. indica. A. largoensis demostró ser el más eficiente de los tres ácaros depredadores.

Palabras clave: ácaro rojo del cocotero; control biológico; depredacíon; fitoseidos; MIP

INTRODUCTION

The red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive pest in the New World with high potential for dispersal and establishment in new areas (1). This mite can reach high population densities and inflict severe economic losses to ornamental plants, banana, and several palm trees, especially coconut (Cocos nucifera L.) (2-5). In Brazil, the red palm mite was first reported in the northern state of Roraima in 2009 (6), and since then it has spread to other regions, including to the Northeast, the main coconut producing region in the country (7).

Recent research has focused on biological (2, 8) and chemical control (9) strategies aiming at reducing the problems associated with infestation of R. indica. Although pesticides have shown to efficiently control R. indica (9), to date none of them is registered in Brazil to control this pest in coconut fields (10). Therefore, a growing concern is the use of broad-spectrum pesticides to control this pest.

Regarding biological control, several studies have been conducted to identify and evaluate the potential of native predators in the control of R. indica (2, 7, 8, 11,12,13,14). Among predatory mites, phytoseiids are the most important natural enemies associated with R. indica (2, 11,12,13). Amblyseius largoensis Muma has been found in association with R. indica in coconut plantations in several countries, including in Brazil and Cuba (11,12,13). This predator feeds on all stages of R. indica and can be efficient in controlling the red palm mite, mainly at low pest densities (7, 14). Furthermore, A. largoensis can reduce R. indica densities under greenhouse conditions (14). In Brazil, Iphiseiodes zuluagai Denmark and Muma is also associated with R. indica (11), whereas Typhlodromus (Anthoseius) ornatus Denmark and Muma is often found foraging on coconut trees (15, 16). Therefore, it is reasonable to conjecture that such predatory mites could act as biological control agent of this pest in the field.

One of the most important approaches to evaluate the potential of predators as biological control agents is the study of their functional and numerical responses (17, 18). The functional response assesses the predation rate in relation to prey density (19), whereas the numerical response evaluates the variation at the predator population density in response to changes in prey densities. Accordingly, the efficacy of T. ornatus, A. largoensis, and I. zuluagai was assessed by comparing their functional and numerical responses to increasing densities of R. indica eggs. We aimed to evaluate the potential of these three predatory mite species as biological control agents of R. indica.

MATERIAL AND METHODS

Rearing of predatory mites

Stock colonies of A. largoensis and I. zuluagai were established with individuals collected from unsprayed coconut leaf of the dwarf green variety in Aracaju (10° 54' 36'' S, 37° 04' 12'' W) and Neopolis (10º19' 12'' S, 36º34' 46'' W) cities, respectively, Sergipe State, Brazil. Colonies of T. ornatus were initiated with individuals collected from unsprayed coconut fruits of the dwarf green variety in São Luís city (02° 35' 03'' S, 44° 12' 32'' W), Maranhão State, Brazil. Mite species identification was performed using taxonomic keys, and voucher specimens were deposited in the collection of Maranhão State University (UEMA), São Luís, Brazil.

Colonies of T. ornatus were maintained under controlled laboratory conditions (27 ± 3°C temperature, 70 ± 10 % relative humidity and a 12 h photoperiod) on rectangular PVC sheets (23 cm length x 4 cm width) sitting on water-soaked polyurethane foam (24 cm length x 5 cm width x 0.33cm depth) placed in a plastic tray. A barrier of water-soaked cotton wool (1 cm high) was placed around the edge of the PVC sheet to prevent the mites from escaping. Cotton threads under cover slips (18 x 18 mm) were placed on PVC sheets as shelter and oviposition sites. Pollen of castor bean, Ricinus communis L., all developmental stages of R. indica, and honey were provided every other day as a food source.

Functional and numerical responses

Bioassays were performed under the same environmental conditions used for rearing. Experimental units consisted of PVC discs (6 cm diameter) sitting on water-soaked polyurethane foam (6 cm diameter x 0.33 cm depth) inside a plastic container (6.2 cm diameter x 5 cm depth) without lid. A water-soaked cotton wool barrier (1 cm high) was placed around the edge of the PVC disc to confine mites.

Bioassays were conducted separately for each predatory mite species (i.e. T. ornatus, A. largoensis, I. zuluagai). In short, coconut leaflet sections (1cm2) containing 5, 10, 20, 30, 40, 50 and 80 eggs of R. indica were transferred to each PVC disc. Eggs of R. indica (1-3 day old) were taken from unsprayed coconut leaves. Subsequently, one mated female of each predator, at the beginning of its reproductive period (7-10 day old), was transferred to each disc containing increasing densities of R. indica eggs. Fourteen replicates were included for each egg density. To determine the functional response, the numbers of prey killed were recorded after 24 hours without prey replacement. To assess the numerical response, the eggs laid by each predatory mite species in relation to prey density were evaluated during 2 days, with prey replacement at the end of the first day. Data of oviposition on the first day were discarded to minimize the effect of previous diets (7).

Statistical analyses

For each predatory mite species, the type of the functional response curve was estimated using a logistic regression analysis of the proportion of the prey killed in relation to prey density following the protocol of Juliano (20) using Proc CATMOD of SAS software (21). The linear coefficient sign of the equation generated from the proportion of prey killed in relation to the original density of prey was used to determine the type of functional response (19). The linear coefficient, if not significant, indicates a type I functional response (linear rise in prey consumption as a function of prey density); when significant and with a negative sign, it indicates a type II functional response (increase in prey consumption with prey density to a plateau - predator saturation); and when significant and with a positive sign, it denotes a type III functional response (accelerated rise in prey consumption with prey density rendering a sigmoidal curve). The functional response is based on the parameters handling time (Th), which involves the killing and ingestion of prey, and the attack rate (a'), which is the efficiency in prey searching (19, 22). These parameters were subsequently estimated using nonlinear regression with the method of least squares (PROC NLIN SAS) (21). As the experiments were conducted without prey replacement during the functional response experiment, the random predator equation (23) was used as a description of the type II functional response.

Ne=N0{1-exp[α(ThNe-T)]}

where Ne is the number of prey consumed, N0 is the initial density of prey, T is the time interval (24 hours), α is the attack rate, Th is the handling time. The consumption peak was calculated for each predatory mite based on the reciprocal of Th 1Th1Th and compared using confidence intervals. The variation in prey consumption for each predator at each density was calculated according to the following equation: Na=NaNmax-NaNminNmax-Nmin , where NaNmin and NaNmax stand for the minimum and maximum numbers of prey consumed, respectively. Nmin and Nmax are the minimum and maximum prey densities (24). The variation in prey consumption was subjected to one-way ANOVA followed by Tukey test using the software SAS (21). Oviposition rates of the three predatory mites as a function of R. indica egg density were submitted to a regression analyses using PROC REG of SAS Software (21).

RESULTS

The regression analyses generated significant linear coefficients with negative signs, indicating that T. ornatus, A. largoensis, and I. zuluagai presented type II functional responses to eggs of R. indica (Table 1). For all predator species, the number of prey consumed increased with egg density, (Fig 1). The predator A. largoensis consumed close to 100 % prey up to the density of 40 R. indica eggs. In contrast, T. ornatus and I. zuluagai consumed the same amount of prey up to the densities of 10 and 5 R. indica eggs, respectively (Fig 2). At highest prey density (80), A. largoensis consumed roughly 60 % of R. indica eggs, whereas I. zuluagai and T. ornatus killed 26 % and 32 %, respectively.

Table 1 Estimated parameters of the logistic regression of the proportion of Raoiella indica eggs consumed by females of three species of predatory mites/ Parámetros estimados de la regresión logística de la proporción de huevos de Raoiella indica consumidos por hembras de tres especies de ácaros depredadores. 

Species Parameters Value (± SE) d f χ2 P Functional response
T. ornatus

  • Intercept

  • Linear

  • 7.0937 ± 0.8198

  • -0.3955 ± 0.0604

  • 1

  • 1

  • 74.8

  • 42.8

  • <0.0001

  • <0.0001

Quadratic 0.00703 ± 0.00136 1 26.7 <0.0001 II
Cubic -0.00004 ± 9.184E-6 1 20.7 <0.0001
A. largoensis

  • Intercept

  • Linear

  • 27.9692 ± 4.1455

  • -0.8248 ± 0.1363

  • 1

  • 1

  • 45.5

  • 36.6

  • <0.0001

  • <0.0001

Quadratic 0.00599 ± 0.00106 1 32.1 <0.0001 II
Cubic 0.000108 ± 0.000014 1 55.7 <0.0001
Intercept 5.5486 ± 0.6772 1 67.1 <0.0001
I. zuluagai Linear -0.2848 ± 0.0515 1 30.6 <0.0001 II
Quadratic 0,00482 ± 0,00119 1 16.48 <0.0001
Cubic -0.00003 ± 8.158E-6 1 11.75 0.0006

Fig. 1 Mean number (± SE) of Raoiella indica eggs consumed by females of three species of predatory mites in relation to prey density. /Número medio (±EE) de huevos de Raoiella indica consumidos por hembras de tres especies de ácaros depredadores con relación a la densidad de presas. 

Fig. 2 Mean (± SE) proportion of Raoiella indica eggs consumed by females of three species of predatory mites in relation to prey density. /Proporción media (±EE) de huevos de Raoiella indica consumidos por hembras de tres especies de ácaros depredadores con relación a la densidad de presas. 

The attack rate (a’) did not vary among predator species. Handling time (Th) was shorter for A. largoensis in comparison with T. ornatus and I. zuluagai (Table 2). The prey consumption peak estimated for A. largoensis was higher than those estimated for T. ornatus and I. zuluagai (Table 2). The predator A. largoensis also had a higher variation in the consumption of R. indica eggs in comparison with the remaining two species (F2,36= 66.36, p< 0.001) (Fig 3).

Table 2 Estimates of the parameters attack rate (a'), handling time (Th) and consumption peak of three species of predatory mites preying upon eggs of Raoiella indica for 24 hours/ Estimaciones de los parámetros tasa de ataque (a'), tiempo de manipulación (Th) y pico de consumo de tres especies de ácaros depredadores depredando huevos de Raoiella indica por 24 horas. 

a' ± SE (95% CI) Th ± SE (95% CI) 1Th1Th (95% CI)
T. ornatus

  • 0.0101 a ± 0.0013

  • (0.0074 - 0.0126)

  • 1.1234 b ± 0.0301

  • (1.0636 - 1.1832)

  • 0.981 b

  • (0.845 - 0.941)

A. largoensis

  • 0.0205 a ± 0.0047

  • (0.0111 - 0.0299)

  • 0.5064 a ± 0.0094

  • (0.4877 - 0.5252)

  • 1.975 a

  • (1.904 - 2.049)

I. zuluagai

  • 0.0108 a ± 0.0033

  • (0.0040 - 0.0176)

  • 0.9924 b ± 0.0442

  • (0.9045 - 1.0803)

  • 1.00 b

  • (0.930 - 1.111)

Means followed by same letter within a column do not differ based on confidence intervals. / Las medias seguidas por la misma letra dentro de una columna no difieren según los intervalos de confianza.

The number of eggs laid by A. largoensis steadily increased with prey density, peaking at 50 R. indica eggs and decreasing afterwards (Fig 4) (Y= -0.33149 + 0.008510x - 0.00081997x2 , r²= 0.98, P=0.0003). The oviposition of T. ornatus linearly increased with prey density (Fig 4) (y= 0.35528 + 0.01176x , r2= 0.87, P =0.0022 (Fig 4). Unlike A. largoensis and T. ornatus, the oviposition of I. zuluagai was not related to R. indica egg density (p> 0.05).

Fig. 3 Mean (± SE) variation in Raoiella indica eggs consumption by females of three species of predatory mites in relation to handling time. Equal letters do not differ significantly by Tukey tests. /Variación media (±EE) en el consumo de huevos de Raoiella indica por hembras de tres especies de ácaros depredadores con relación al tiempo de manipulación. Las letras iguales no difieren significativamente según las puebras de Tukey. 

Fig. 4 Mean (± SE) number of eggs laid by females of three species of predatory mites in relation to Raoiella indica egg density. /Número medio de huevos (±EE) depositados por hembras de tres especies de ácaros depredadores con relación a la densidad de huevos de Raoiella indica

DISCUSSION

The predatory mites A. largoensis, I. zuluagai and T. ornatus exhibited a type II functional response to eggs of R. indica, in which there was an increase in consumption due to a greater availability of prey up to a certain density, reaching stability at high densities (19), which may be associated with satiety of the predator. These results indicate that these predators are more efficient at low to moderate prey densities.

Phytoseiid mites usually present type II functional responses to pest mites (25). For instance, type II response curves were also observed for the phytoseiids Typhlodromus pyri Scheuten preying upon protonymphs and deutonymphs of the European red mite Panonychus ulmi Koch (Acari: Tetranychidae) (26), Euseius alatus DeLeon, and Amblyseius herbicolus (Chant) feeding on larvae and nymphs of the false spider mite Brevipalpus phoenicis Geijkes (Acari: Tenuipalpidae) (27, 28). In agreement with our results, Carrillo & Peña (7) and Mendes et al (29) also found this type of functional response in A. largoensis feeding upon eggs of R. indica.

The phytoseiids A. largoensis, I. zuluagai, and T. ornatus are classified as generalist type III predatory mites. They feed upon pest mites and small arthropods as well as pollen and sugary exudates (30), which helps to sustain their populations even during scarcity. Due to their feeding habits, the populations of generalist predators tend to disperse less to new patches and are more stable than specialist predator populations in agroecossystems (31). The consumption curves were similar among predators, and only the average amount of eggs preyed by them varied. A. largoensis was more efficient, consuming around 1.5 to 2 times more eggs at the highest prey density than I. zuluagai and T. ornatus, respectively. This differential consumption among predators could be explained by the relative size of each predator species (32), since A. largoensis and I. zuluagai are larger than T. ornatus. Furthermore, A. largoensis and I. zuluagai are more active than T. ornatus, a behavior that may increase the probability of finding prey (18), as well as increasing the energy expenditure of predators leading to increasing prey consumption.

The proportion of prey consumed by A. largoensis was close to 1 up to 40 R. indica eggs, in line with Carrillo & Peña (7). In contrast, the proportion of prey consumed by I. zuluagai and T. ornatus was close to 1 only at the lowest densities (5 and 10 R. indica eggs, respectively), probably due to the difficulty of both predators in finding prey at low densities (26).

Carrillo & Peña (7) showed that A. largoensis significantly preferred and consumed more eggs of R. indica than its immatures stages or adults. Eggs of R. indica are easily accessible for predatory mites because they last for approximately 9 days, the longest developmental stage of this pest (33). In addition, R. indica eggs do not exhibit antipredator behavior. Here, the attack rate (a') did not vary among predators; however, A. largoensis consumed more R. indica eggs in shorter time compared to I. zuluagai and T. ornatus. According to Holling (19), the handling time includes the period necessary to kill and consume the prey. A longer handling time may suggest that the predator spends a longer period with one prey, taking a longer time to find and consume another prey (34). Therefore, A. largoensis needs less time to consume R. indica eggs, which may result in more time to attack and catch another prey. This can be observed by the negative relationship between variation in prey consumption and handling time, in which A. largoensis had a shorter manipulation period and a higher consumption variation when compared to T. ornatus and I. zuluagai (Fig 3). This relationship can also be altered in conspecific populations that have different times of association with the pest; for instance, native populations of A. largoensis in long association with R. indica exhibit a more aggressive behavior, a greater variation in prey consumption, and, consequently, a shorter handling time than those populations that have not been in contact with the pest (29).

The number of eggs laid by A. largoensis and T. ornatus females increased with prey density, indicating that these predators obtained nutritional benefits that promoted reproduction (35). This may indicate that the consumption of R. indica eggs by these predators may contribute to their numerical increase in the field. Similarly, females of Euseius concordis Chant (Acari: Phytoseiidae) oviposited more when fed upon eggs of the cassava green mite Mononychellus tanajoa Bondar (Acari: Tetranychidae) than when they did on immature stages or adults (35). Furthermore, A. largoensis preferred eggs over other developmental stages of R. indica and also exhibited a similar oviposition peak (7). In contrast, I. zuluagai oviposition was not related to prey density, suggesting that R. indica eggs are not an optimal developmental stage for its reproduction. However, it is possible that the consumption of mixed-life stages or other developmental stages of R. indica are more suitable for I. zuluagai as observed for other phytoseiid predators. For instance, P. persimilis, G. occidentalis, and N. californicus preferred nymphs to eggs of P. citri, suggesting that consumption of nymphs was more profitable in terms of nutritional value for these predators (18).

Our results indicate that the predatory mites A. largoensis, I. zuluagai, and T. ornatus may contribute to the control of R. indica, mainly at low to moderate densities. However, A. largoensis was the most efficient predator because it consumed the greatest number of prey with the shortest handling time and showed the highest reproductive potential when fed upon R. indica. Further field studies are needed to confirm the potential of these phytoseiids in controlling R. indica, especially A. largoensis. However, as these three predatory mites co-occur on coconut palms, further research should also focus on whether they could have an additive, neutral or negative effect on R. indica control in the field. Intraguild interactions among these predators could play a role in mediating biological control of R. indica when these predators are used. Also, augmentation or mass field releases should be evaluated as strategies for R. indica management.

ACKNOWLEDGEMENTS

Funding was provided by the National Council for Scientific and Technological Development (CNPq) and the Maranhão State Foundation for Research Aid (FAPEMA).

REFERENCES

1. Amaro G, Morais EGF. Potential geographical distribution of the red palm mite in South America. Exp Appl Acarol. 2013:60(3):343-355. [ Links ]

2. Moraes GJ, Castro TMMG, Kreiter S, Quilici S, Gondim Jr MG, De Sá Lan. Search for natural enemies of Raoiella indica Hirst in Reunion Island (Indian Ocean). Acarol. 2012:52:129-134. [ Links ]

3. Ramos-Lima M, Moreno-Rodriguez D, Vargas-Sandoval M. Nuevas palmas hospedantes de Raoiella indica (Acari: Tenuipalpidae) en Cuba. Rev Colomb Entomol. 2017:43(1):113-120. [ Links ]

4. Gómez-Moya C, Lima TPS, Morais EGF, Gondim MGC, de Moraes GJ. Hosts of Raoiella indica Hirst (Acari: Tenuipalpidae) native to the Brazilian Amazon. J Agri Sci. 2017:9(4):86-94. [ Links ]

5. Navia D, Marsaro Jr AL, Silva FR, Gondim Jr MGC, Moraes GJ. First report of the red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil. Neotrop Entomol. 2011:40:409-411. [ Links ]

6. Melo J W S, Navia D, Mendes JA, Filgueiras RMC, Teodoro AV, Ferreira JMS, et al., The invasive red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil: range extension and arrival into the most threatened area, the Northeast region. Int J Acarol. 2018:44(1-5):146-149. [ Links ]

7. Carrillo D, Peña JE. Prey-stage preferences and functional and numerical responses of Amblyseius largoensis (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol. 2012:57:361-372. [ Links ]

8. Domingos CA, Oliveira OL, Morais EGF, Navia D, Moraes GJ, Gondim Jr MGC. Comparison of two populations of the pantropical predator Amblyseius largoensis (Acari: Phytoseiidae) for biological control of Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol. 2013:60:83-93. [ Links ]

9. Assis CPO, Morais EGF, Gondim Jr MGC. Toxicity of acaricides to Raoiella indica and their selectivity for its predator, Amblyseius largoensis (Acari: Tenuipalpidae, Phytoseiidae). Exp Appl Acarol. 2012:60:357-365. [ Links ]

10. Agrofit- Sistemas de Agrotóxicos Fitossanitários. Ministério da Agricultura, Pecuária e Abastecimento - Coordenação-Geral de Agrotóxicos e Afins/DFIA/SDA. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons Acesso em: 10 jan. 2018. [ Links ]

11. Gondim Jr MG, Castro TMN, Massaro Jr AL, Navia D, Melo,JWS, Demite PR, Moraes GJ. Can the red palm mite threaten the amazon vegetation? Syst Biodivers. 2012:10:527-535. [ Links ]

12. Gonzalez M, Reyes AI, Ramos M. Enemigos naturales asociados a Raoiella indica Hirst (Acari: Tenuipalpidae) en Santiago de Cuba. Rev Proteccion Veg. 2013: 28(3):215-218. [ Links ]

13. Ramos M, Moreno D. Relación de Raoiella indica Hirst (Acari: Tenuipalpidae) con los ácaros depredadores y las especies de palmas en Cuba. Entomol Mex. 2015:2:26-33. [ Links ]

14. Carrillo D, Hoy MA, Peña JE. Effect of Amblyseius largoensis (Acari: Phytoseiidae) on Raoiella indica (Acari: Tenuipalpidae) by predator exclusion and predator release techniques. Flo Entomol. 2014:97:256-261. [ Links ]

15. Navia D, Moraes de GJ, Lofego AC, Flechtmann CHW. Acarofauna associada a frutos de coqueiro (Cocos nucifera L.) de algumas localidades das Américas. Neotrop Entomol. 2005:34:349-354. [ Links ]

16. Reis AC, Gondim Jr MGC, Moraes de GJ, Hanna R, Schausberger P, Lawson-Balagbo LE, Barros R. Population dynamics of Aceria guerreronis Keifer (Acari: Eriophyidae) and associated predators on coconut fruits in northeastern Brazil. Neotrop Entomol. 2008:37:457-462. [ Links ]

17. Houck MA, Strauss RE. The comparative study of functional responses. Experimental design and statistical interpretation. Can Entomol. 1985:117:67-629. [ Links ]

18. Xiao Y, Fadamiro HY. Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Bio Control. 2010:53:345-352. [ Links ]

19. Holling CS. Some characteristics of simples types of predation and parasitism. Can Entomol. 1959:9:385-396. [ Links ]

20. Juliano SA. Nonlinear Curve Fitting: Predation and functional response curves. In.: Scheiner SM, Gurevitch J. Design and Analysis of Ecological Experiments, New York: Chapman & Hall. 1993. [ Links ]

21. SAS Institute (2002) SAS/STAT Users guide, version 8.02, TS level 2 MO. SAS Institute Inc., Cary, North Carolina. [ Links ]

22. Fan Y, Petitt FL. Biological control of broad mite, Polyphagotarsonemus latus (Banks), by Neoseiulus barkeri Hughes on pepper. Bio Control. 1994:4:390-3. [ Links ]

23. Rogers D. Random search and insect population models. J An Ecol. 1972:41:353-360. [ Links ]

24. Poletti M, Maia AHN, Omoto C. Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Bio Control. 2007:40:30-36. [ Links ]

25. Sabelis MW. Predator-prey interaction: predation on spider mites. In: Sabelis MW, Helle W (eds). Spider mites: their biology, natural enemies and control. Elsevier, Amsterdam, 1985:103-29. [ Links ]

26. Wei Q, Walde SJ. The functional response of Typhlodromus pyri to its prey, Panonycus ulmi: the effect of pollen. Exp Appl Acarol. 1997:21:677-684. [ Links ]

27. Reis PR, Sousa E, Teodoro AV, Neto MP. Effect of prey density on the functional and numerical responses of two species of predaceous mites (Acari: Phytoseiidae). Neotrop Entomol. 2003:32:461-467. [ Links ]

28. Reis PR, Teodoro AV, Pedro Neto M, Silva EA. Life history of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) on coffee plants. Neotrop Entomol. 2007:36:282-287. [ Links ]

29. Mendes JA, Lima DB, Souza Neto EP, Gondim Jr MGC, Melo JWS. Functional response of Amblyseius largoensis to Raoiella indica eggs is mediated by previous feeding experience. Syst Appl Acarol. 2018:23(10):1907-1914. [ Links ]

30. McMurtry JA, Moraes GJ, Sourassou NF. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol. 2013:18(4):297-320. [ Links ]

31. McMurtry JA. Dynamics and potential impact of generalist phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp Appl Acarol. 1992:14:371-38. [ Links ]

32. Sandness JN, McMurtry JA. Functional response of three species of phytoseiidae (Acarina) to prey density. Can Entomol. 1970:102:692-704 [ Links ]

33. Nageshachandra BK, Channabassavana GP. Development and ecology of Raoiella indica Hirst (Acari: Tenuipalpidae) on coconut. In: Griffits DA, Bowman CE (eds). Acarol.1984:785-790. [ Links ]

34. Lima DB, Melo JWS, Gondim Jr MGC, Guedes RNC, Oliveira JEM, Pallini A. Acaricide-impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis. Ecotoxicol. 2015:24:1121-1130. [ Links ]

35. Costa EC, Teodoro AV, Rêgo AS, Pedro Neto M, Sarmento RA. Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite. Exp Appl Acarol. 2014:64:277-286. [ Links ]

Received: July 30, 2019; Accepted: March 04, 2020

*Autor para correspondencia: Caroline Rabelo Coelho. E-mail: carolinecoelho7@gmail.co

Los autores declaran que no existe conflicto de intereses

Author Contribution Statement: Caroline Rabelo Coelho: Desarrolló los prototipos y realizó pruebas para evaluar los resultados. Participó en la búsqueda de información y en el análisis y en la revisión y redacción del informe final. Andreia Serra Galvão: Participó en la búsqueda de información, en el diseño de la investigación. Participó en el análisis de los resultados y redacción del borrador del artículo y la revisión crítica de su contenido y en la aprobación final. Maria Clezia dos Santos: Participó en las pruebas realizadas para evaluar los resultados. Participó en la recolección de los datos. Participó en la revisión crítica de su contenido y en la aprobación final. Adriano Pimentel Farias: Colaboró en la investigación, contribuyó al desarrollo de los ensayos, prototipos y participó en las pruebas realizadas para evaluar los resultados. Participó en la revisión crítica de su contenido y en la aprobación final. Adenir Vieira Teodoro: Concibió la idea: Colaboró en la investigación, contribuyó al desarrollo de los prototipos. Participó en la búsqueda de información. Participó en la redacción del borrador del artículo y la revisión crítica de su contenido y en la aprobación final.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License