SciELO - Scientific Electronic Library Online

 
vol.15 número1Transferencia de genes in vitro con polímeros catiónicos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Vaccimonitor

versión impresa ISSN 1025-028Xversión On-line ISSN 1025-0298

Vaccimonitor v.15 n.1 Ciudad de la Habana ene.-abr. 2006

 

ARTICULOS DE REVISION

 

De la secuencia de un genoma bacteriano a la identificación de candidatos vacunales.

 

Identifying Vaccine Candidates from the Sequence of a Bacterial Genome.

 

Daniel Yero Corona.

Instituto Finlay. Centro de Investigación-Producción de Vacunas. Ave. 27 No. 19805. La Lisa. A.P. 16017, C.P. 11600. Ciudad de La Habana, Cuba. E-mail: dyero@finlay.edu.cu


RESUMEN

Cada día hay más secuencias genómicas completas de un gran número de patógenos humanos. La disponibilidad de estas secuencias ha cambiado completamente el panorama para el desarrollo de vacunas, introduciendo una nueva línea de pensamiento en este proceso. Esta metodología comienza por la secuencia genómica y mediante un análisis computacional se predicen aquellos antígenos más probables a ser candidatos vacunales. Por ejemplo, con el uso de herramientas bioinformáticas se puede hacer un pesquisaje in silico de aquellas proteínas expuestas en la superficie bacteriana, con vistas a identificar antígenos candidatos vacunales. La confirmación in vitro de estos resultados de localización celular y el uso de modelos animales para evaluar la inmunogenicidad de los candidatos acota finalmente el número de candidatos definidos por la computadora. A este proceso, aplicado por primera vez a Neisseria meningitidis serogrupo B, se le denomina vacunología inversa. La genómica también brinda información sobre la biología y la virulencia de especies patogénicas mediante la genómica comparativa. En este trabajo de revisión, describimos cómo la genómica puede ser usada en la identificación de nuevos candidatos vacunales.

Palabras claves: Genómica, vacunas, bioinformática, vacunología inversa, Neisseria meningitidis.


ABSTRACT

Whole genome sequence data are increasingly available for a wide range of human pathogens. The availability of these sequences has changed our approach to vaccine development entirely and introduced a new way of thinking in this process. This approach starts from the genomic sequence and, by computer analysis, predicts those antigens that are most likely to be vaccine candidates. The use of bioinformatic tools allows the comprehensive in silico screening of genome data for surface-expressed proteins, in order to identify candidate vaccine antigens. In vitro confirmation of surface location and the use of animal models to test immunogenicity further refine the list of proteins likely to be of use as vaccine antigens. This process, first applied to serogroup B Neisseria meningitidis, has been termed as reverse vaccinology. Genomics also
enables valuable information concerning the biology and virulence of the pathogenic species to be extracted by comparative genomics. In this review, we describe how genomic approaches can be used to identify novel vaccine candidates.

Keywords: Genomics, Vaccines, Bioinformatics, Reverse Vaccinology, Neisseria meningitidis.


Texto completo en Formato PDF

REFERENCIAS

1. Hardy E, Martínez E, Diago D, Díaz R, González D, Herrera L. Largescale production of recombinant hepatitis B surface antigen from Pichia pastoris. J Biotechnol 2000; 77(2-3):157-167.
2. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269(5223):496-512.
3. Cordwell SJ. Exploring and exploiting bacterial proteomes. Methods Mol Biol 2004; 266:115-135.
4. Clayton RA, White O, Fraser CM. Findings emerging from complete microbial genome sequences. Curr Opin Microbiol 1998; 1(5):562-566.
5. De Groot AS, Bosma A, Chinai N, Frost J, Jesdale BM, Gonzalez MA et al. From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 2001; 19(31):4385-4395.
6. Zagursky RJ, Olmsted SB, Russell DP, Wooters JL. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Expert Rev Vaccines 2003; 2(3):417-436.
7. Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 2001; 19(17-19):2688-2691.
8. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17):3389-3402.
9. Camus JC, Pryor MJ, Medigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002; 148(Pt 10):2967-2973.
10. Chakravarti DN, Fiske MJ, Fletcher LD, Zagursky RJ. Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates. Vaccine 2000; 19(6):601-612.
11. Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM et al. A proteomic view on genome-based signal peptide predictions. Genome Res 2001; 11(9):1484-1502.
12. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340(4):783-795.
13. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gramnegative bacteria. Protein Sci 2003; 12(8):1652-1662.
14. Rey S, Acab M, Gardy JL, Laird MR, deFays K, Lambert C et al. PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Res 2005; 33 (Database issue):D164-D168.
15. Chen CP, Rost B. State-of-the-art in membrane protein prediction. Appl Bioinformatics 2002; 1(1):21-35.
16. Wimley WC. Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci 2002; 11(2):301-312.
17. Chen Y, Yu P, Luo J, Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 2003; 14(12):859-865.
18. Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004; 56(6):405-419.
19. Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2002; 99(26):17020-17024.
20. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8(1):11-22.
21. Hacker J, Blum-Oehler G, Hochhut B, Dobrindt U. The molecular basis of infectious diseases: pathogenicity islands and other mobile genetic elements. A review. Acta Microbiol Immunol Hung 2003; 50(4):321-330.
22. Snyder LA, Butcher SA, Saunders NJ. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 2001; 147(Pt 8):2321-2332.
23. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 2000; 68(7):4155-4168.
24. Preston A, Parkhill J, Maskell DJ. The bordetellae: lessons from genomics. Nat Rev Microbiol 2004; 2(5):379-390.
25. Sakharkar KR, Dhar PK, Chow VT. Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. Int J Syst Evol Microbiol 2004; 54(Pt 6):1937-1941.
26. Whittam TS, Bumbaugh AC. Inferences from whole-genome sequences of bacterial pathogens. Curr Opin Genet Dev 2002; 12(6):719-725.
27. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 1999; 397(6715):176-180.
28. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002; 184(19):5479-5490.
29. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393(6685):537-544.
30. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 1999; 284(5419):1520-1523.
31. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000; 287(5459):1816-1820.
32. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA et al. Complete genome sequence of Neisseriameningitides serogroup B strain MC58. Science 2000; 287(5459):1809-1815.
33. Holst J, Feiring B, Fuglesang JE, Hoiby EA, Nokleby H, Aaberge IS et al. Serum bactericidal activity correlates with the vaccine efficacy of outer membrane vesicle vaccines against Neisseria meningitidis serogroup B disease. Vaccine 2003; 21(7-8):734-737.
34. Adu-Bobie J, Lupetti P, Brunelli B, Granoff D, Norais N, Ferrari G et al. GNA33 of Neisseria meningitidis is a lipoprotein required for cell separation, membrane architecture, and virulence. Infect Immun 2004; 72(4):1914-1919.
35. Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, Capecchi B et al. NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 2002; 195(11):1445-1454.
36. Welsch JA, Moe GR, Rossi R, Adu-Bobie J, Rappuoli R, Granoff DM. Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. J Infect Dis 2003; 188(11):1730-1740.
37. Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Arico B et al. Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 2003; 197(6):789-799.
38. Fletcher LD, Bernfield L, Barniak V, Farley JE, Howell A, Knauf M et al. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect Immun 2004; 72(4):2088-2100.
39. Hou VC, Koeberling O, Welsch JA, Granoff DM. Protective antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed genome-derived neisserial antigen 1870. J Infect Dis 2005; 192(4):580-590.
40. Sierra GV, Campa HC, Varcácel NM, García IL, Izquierdo PL, Sotolongo PF et al. Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 1991; 14(2):195-207.
41. Rico CO, Pereira CC, Fernández AA. [The post-licensing efficacy of VA-MENGOC-BC in children under 6 in Holguin, Cuba. The first year of observation]. Rev Cubana Med Trop 1995; 47(1):59-64.
42. Ariel N, Zvi A, Grosfeld H, Gat O, Inbar Y, Velan B et al. Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening. Infect Immun 2002; 70(12):6817-6827.
43. Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 2001; 69(3):1593-1598.
44. Etz H, Minh DB, Henics T, Dryla A, Winkler B, Triska C et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc Natl Acad Sci U S A 2002; 99(10):6573-6578.
45. Capo S, Nuti S, Scarselli M, Tavarini S, Montigiani S, Mori E et al. Chlamydia pneumoniae genome sequence analysis and identification of HLA-A2-restricted CD8+ T cell epitopes recognized by infectionprimed T cells. Vaccine 2005; 23(42):5028-5037.
46. Stephens RS, Lammel CJ. Chlamydia outer membrane protein discovery using genomics. Curr Opin Microbiol 2001; 4(1):16-20.
47. Ross BC, Czajkowski L, Hocking D, Margetts M, Webb E, Rothel L et al. Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 2001; 19(30):4135-4142.
48. Srinivasa Rao PS, Lim TM, Leung KY. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 2003; 71(3):1343-1351.
49. Betts JC. Transcriptomics and proteomics: tools for the identification of novel drug targets and vaccine candidates for tuberculosis. IUBMB Life 2002; 53(4-5):239-242.

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons