SciELO - Scientific Electronic Library Online

 
vol.37 número2Balance hídrico de la cuenca Pijijiapan en Chiapas, MéxicoPrimeros resultados de la red actual de monitoreohidrometeorológico de Cuenca, Ecuador índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Ingeniería Hidráulica y Ambiental

versión impresa ISSN 1680-0338

riha vol.37 no.2 La Habana mayo.-ago. 2016

 

ARTÍCULO ORIGINAL

 

 

La sectorización en redes de agua potable para mejorarsu eficiencia hidráulica

 

Water supply network divisionin to sectors for a better hydraulic efficiency

 

 

Lucio Fragoso Sandoval,I Jaime Roberto Ruiz y Zurvia-Flores,I Gerardo Toxky López,II

I Profesores e Investigadores, Escuela Sup. de Ing. y Arq., Unidad Zacatenco, Inst. Politéc. Nac., México D. F., México.
II Exalumno de posgrado, Escuela Sup. de Ing. y Arq., Unidad Zacatenco, Inst. Politéc. Nac., México D. F., México.

 

 


RESUMEN

Se describe un proyecto cuyo objetivo fue realizar la sectorización de la red de agua potable del sector MHO-31 de la delegación Miguel Hidalgo de la ciudad de México, paramejorar la entrega, distribución y control de caudales,mediante, entre otros accesorios, la instalación de válvulas de seccionamiento y reguladoras de presión. Se utilizó el programa EPANET para realizar su análisis hidráulico. La calibración del modelo se efectuó en relación con las pérdidas de agua y el caudal, considerando datos medidos y el coeficiente del emisor. Se modeló la red con su alternativa de diseño, con las válvulas reguladoras de presión abiertas y posteriormente con las válvulas en operación.Con esto se logró recuperar un volumen por día de 14262, al reducirse las fugas de agua significativamente.


Palabras clave: eficiencia hidráulica,red de agua potable,regulación de presiones, sectorización.


ABSTRACT

A projectis described with the objective of making a division into subsectorsof the drinking water network of MHO-31 sectorof Miguel Hidalgo delegation in Mexico city, in order to make a better delivery, distribution and control of water discharge, by using,among other accessories, the installation of pass valves and pressureregulation valves. EPANET software was used to perform its hydraulic analysis.The network model calibration was made with respectto water loss and water discharge, taking intoaccount measured data and the emittercoefficient. The network was modeled for its design alternative, with the pressures regulation valves open and later with this valves in operation.Thisallowed a recovery of a water volume of 14262per day, so the water fligths were reduced in a significant way.


Key words: hydraulic efficiency, water supply network, pressure regulation, division into sectors.


 

 

INTRODUCCIÓN

Uno de los problemas más graves detectados en el sistema de distribución de agua potable en el Distrito Federal, en la ciudad de México, es el relacionado con las fugas, debido a los asentamientos o hundimientos del terreno natural por causa de la sobreexplotación de los acuíferos y a tuberías con un tiempo de servicio de más de 30 años. La falta de mantenimiento acelera el deterioro de la infraestructura, ocasionando el incremento de fugas. En el caso de los equipos de bombeo, no sólo se reduce la eficiencia en su operación incrementándose los consumos de energía eléctrica, sino también presentan fallas continuas y deficiencias que demeritan la calidad del servicio.

Lo antes expuesto justifica ampliamente al proyecto titulado «La sectorización hidráulica de redes de distribución de agua potable»y en particular de la red de alimentación en la delegación Miguel Hidalgo en el sector MHO-31, así como el análisis hidráulico del sistema a través del programa EPANET, además de proponer un sistema para el control de presiones, que disminuya las grandes pérdidas que presenta la red.

El índice de urbanización que tiene la delegación Miguel Hidalgo con referencia a las demarcaciones administrativas del centro del país, es muy alto y su principal característica es la consolidación urbana y la concentración de equipamiento urbano e infraestructura.

Los objetivos planteados en el presente trabajo son dos: con base en la red primaria y secundaria realizar una división de la red de distribución de agua potable de la delegación Miguel Hidalgo del sector MHO-31 en subsectores que permitan un control de caudales tanto en la entrega como en la distribución; y regular la presión interna en las tuberías, mediante la instalación de válvulas de seccionamiento y válvulas reguladoras de presión (VRP) lo que derivó en una importante reducción de fugas (Capella 2002), (CONAGUA 2008).

La hipótesis de partida este proyecto es que, a través de la sectorización y regulación de presiones, se mejora significativamentela eficiencia hidráulica de la red de distribución de agua potable en estudio, recuperándose volúmenes importantes de agua potable, al reducirse en alto grado las fugas.

Para manejar la información de esta infraestructura, se utilizaron planos elaborados en AutoCad, los cuales sirvieron para dar la ubicación referencial y caracterización de la infraestructura del sistema.

ANTECEDENTES

La Delegación Miguel Hidalgo tiene una superficie de 47 km2, se encuentra ubicada en la zona poniente del Distrito Federal, limitando al Norte con la delegación Azcapotzalco, al Sur con las delegaciones Benito Juárez, Álvaro Obregón y Cuajimalpa, al Este con la delegación Cuauhtémoc, y al Oeste con los municipios de Huixquilucan y Naucalpan, Estado de México.

El nivel de servicio de agua potable en la delegación es del 100 por ciento, ya que toda la población cuenta con agua entubada dentro de su vivienda.

En una red de distribución tan extensa como la del Distrito Federal, se presentan una cantidad considerable de fugas y fuertes variaciones de presión, debido a las interconexiones y formas de operación entre tuberías, además de la topografía de la zona.

Definición de sector

Dentro del subsector de agua potable (CONAGUA 2006), el término sectorización es conocido como la formación de zonas de suministro autónomas, mas no independientes, dentro de una red de distribución; en otras palabras, es la división o partición de la red en muchas pequeñas redes, con el fin de facilitar su operación. De este modo, es mucho más sencillo controlar los caudales de entrada en cada sector, las presiones internas de la tubería, la demanda y el consumo, así como las pérdidas de agua, tanto en fugas como en usos no autorizados. Aún más, puede conducirse el agua por la red primaria, sin exceso de conexiones con la secundaria, desde la fuente de alimentación hasta los puntos más lejanos.

Distrito hidrométrico es un sector hidrométrico o bien un sector, que en otras palabras es una sección de la red de distribución de agua potable, perfectamente delimitada por medio de válvulas de seccionamiento, adecuadamente instrumentada para aforar el caudal de entrada, para medir y controlar la presión de operación, a fin de brindar la misma calidad de servicio de suministro a la totalidad de los usuarios de la red.

Debe contarse con la información completa del sistema de distribución (catastro), y la forma de operación real, a fin de estar en posibilidades de utilizar un software o modelo numérico que permita simular el funcionamiento hidráulico del sistema, lo que deberá verificarse a través de algunas mediciones estratégicas, y realizar así la calibración del modelo.

La necesidad de llevar a cabo la sectorización de la red de distribución se hace mayor mientras ésta sea más grande, y por consecuencia su operación se vuelve más compleja. De este modo, destacan dos características principales de las grandes redes: funcionan con diversos niveles de presión a lo largo de la red, en el transcurso del día y de la noche y están formadas por una exagerada cantidad de circuitos cerrados, lo que en el medio se conoce como «fuertemente mallada».

Etapas de la sectorización

El proceso de esta acción es largo y absorbe una importante cantidad de recursos humanos y económicos, por lo que debe partir de una planeación bien definida y sobre todo comprometida por parte de los responsables de la prestación del servicio de agua potable a una localidad (CONAGUA 2006). Las etapas que deben seguirse durante la sectorización son:

1) Catastro del sistema de distribución de agua potable.

2) Anteproyecto del sistema, definiendo puntos de alimentación y posibles interconexiones controladas para protección de eventualidades.

3) Diseño e implementación de un sector piloto, incluyendo las válvulas de seccionamiento necesarias, los mecanismos para el control de las presiones, la medición de gastos de alimentación, así como la variación diaria de la demanda, ya sea que ésta sea supuesta o inferida por algunas mediciones.

4) Calibración de un modelo de simulación hidráulica sobre la base de las mediciones citadas en el punto anterior.

5) Ajustar el proyecto piloto a partir de la modelación, controlando las presiones, midiendo los gastos, y evaluando la relación entre presión y fugas.

6) Ampliación de la experiencia piloto a dos o tres sectores más.

7) Con los resultados obtenidos, puede evaluarse el proyecto integral de sectorización, con una muy buena aproximación sobre los costos y los beneficios que pueden esperarse.

Sectorización y puntos de alimentación

Los criterios a seguir para llevar a cabo la división en sectores, parten de la infraestructura existente y de las diferentes zonas de presión en operación normal antes de iniciarse el proceso, de lo que resulta una primera propuesta de sectorización, y las adecuaciones que siguen, pueden realizarse atendiendo las siguientes recomendaciones (Ochoa y Bourguet 2001):

1) Generalmente se pueden considerar de 1 a 5 sectores por cada 100 hectáreas (1 km2); en zonas con alta densidad de población, los sectores pueden ser de 10 a 15 hectáreas. Algunos expertos dimensionan los sectores en función del número de usuarios o de tomas.

2) Cualquiera de las recomendaciones que haya sido seleccionada para definir el tamaño de los sectores, deberá ajustarse a la geometría de la red, sobre todo a la adaptación de las condiciones de operación actuales y la facilidad de contar con un punto de suministro, aunque siempre será prudente contar con una alimentación de respaldo, aunque ésta se mantenga cerrada y sólo se utilice en contingencias.

3) Minimizar las variaciones de presión de servicio al interior del sector; esto es, mantener una cierta uniformidad de presiones entre los 15 y 50 mca, correspondientes a la dinámica mínima y estática máxima, respectivamente.

4) Siempre será conveniente verificar las velocidades del agua, las que podrán estar comprendidas entre 0,6 y 2,0 m/s.

Algunos de los problemas más comunes en la delimitación de los sectores, se refieren a la caída de la presión en algunos puntos, la presencia de altas velocidades y la elevación de la presión durante las horas de menor consumo. Generalmente, este tipo de inconvenientes se reducen al considerar dos puntos de alimentación o al incluir la instalación de dispositivos reductores de presión, aunque en ocasiones será necesaria la construcción de líneas de interconexión adicionales(CONAGUA 2006). La sugerencia se basa en la separación de la red primaria y la secundaria, de modo que no decaiga la presión interna de la conducción principal. De este modo se ha dado paso a la construcción de redes en bloques que van sustituyendo las redes secundarias convencionales, tal y como se ilustra en las figuras 1 y 2.

Probado y elegido el esquema de sectorización, se procede entonces a la selección de los elementos de control, que son los medios para operar el sistema, para aislar alguna zona de la red, reducir o mantener la presión del agua y/o permitir el flujo entre sectores.

Algunas recomendaciones complementarias, que buscan contar con un sistema de distribución confiable, son las siguientes:

· Mantener interconexiones entre sectores y entre fuentes de suministro, con válvulas cerradas, de modo que puedan derivarse caudales en casos extraordinarios.

· Verificar la capacidad de conducción de las líneas principales, considerando las situaciones de emergencia en las que deban alimentar a otros sectores. De ser necesario, incrementar el diámetro de esa tubería.

Finalmente, la selección del esquema de sectorización idóneo será aquél que mejor se adapte a las necesidades propias de cada sistema de distribución, pero ante todo, evaluar el costo en la construcción de nuevas líneas de conducción y tanques de regulación, cortes, instalación de válvulas, etc.

Consideraciones relevantes del proyecto

Para definir la zona de estudio del presente trabajo, se consideró la red secundaria de la Ciudad de México, y en particular de la delegación Miguel Hidalgo y de ésta el sector MHO-31, considerando además las conexiones existentes a la red primaria y sus zonas de influencia. Al conocer las características hidráulicas de los sectores, se pueden ir aislando del resto del sistema, lo que permitió conocer su funcionamiento hidráulico, para posteriormente proponer mejoras en el uso de la infraestructura, tener control de las presiones y de pérdidas y una administración del agua de acuerdo con el costo del servicio.

Según estudios previos realizados para el control de presiones en la zona poniente y parte de las regiones Centro y Surdel Distrito Federal, se dividieron en cuatro zonas, se delimitaron y analizaron alrededor de 80 sectores que representaron estudiar alrededor de 110 km2, (IIUNAM 2005). Como resultado del análisis de los sectores a través de planos, simulaciones, recorridos de campo y el total de la información recabada, en lo que respecta a fuentes de suministro o en general al funcionamiento hidráulico de los sectores, en la tabla 1, se presenta parte de la alternativa de sectorización en la Delegación Miguel Hidalgo (3 de 32 sectores), con la cual se mejoróel control y el abasto de agua en la región.

Con la finalidad de tener una mayor certidumbre en los datos de entrada para las simulaciones en el programa se recurrió, para determinar la población de cada sector,a la información del Instituto Nacional de Estadística e Informática (INEGI), por medio de Áreas Geográficas de Estadística Básica (AGEBS). Posteriormente, con esta información se obtuvo el consumo para cada sector considerando una dotación de 200 L/hab/d. En la tabla 2, se muestran los mismos 3 sectores de la tabla 1, así como su población, sus gastos de consumo para cada unoy los datos de consumo obtenidos de la información proporcionada por la Comisión de Aguas del Distrito Federal (CADF).En relación con la demanda, para determinar el agua que recibe la red de distribución, ésta es igual al consumo de agua que reciben los usuarios en sus domicilios más las fugas.

La influencia que tienen las presiones sobre el nivel de fugas se puede ver en la gráfica elaborada por el British Water Council, a partir de un estudio de varias redes del Reino Unido. En esta gráfica influyen tanto los gastos de fugas debidos a la presión como la incidencia de roturas de la red. Una lectura de esta gráfica (figura 3), es la siguiente: para 30 mca de presión media nocturna se tiene un índice o porcentaje de fugas de 20; para 60 mca de presión media nocturna se tiene un índice de 45. Es decir, la expectativa de fugas sería de más del doble si la presión de la red es de 60 mca, en vez de 30 mca (CONAGUA 2006).

DESARROLLO DEL PROYECTO, DISEÑO Y SIMULACIÓN HIDRAÚLICA DEL SECTOR

La metodología utilizada se integró con las siguientes fases:

- Trabajos preliminares

- Análisis y diseño

- Desarrollo y ejecución

- Implantación

- Producción y Mantenimiento

Trabajos preliminares

Para llevar a cabo la sectorización de la red de distribución en la delegación Miguel Hidalgo y en particular del sector MHO-31 de dicha demarcación, se utilizó el catastro existente, verificando en campo la infraestructura hidráulica real, sobre todo los límites del sector, con el personal técnico del área de operación del Sistema de Aguas de la Ciudad de México (SACM). Con la información disponible de la red primaria y secundaria del SACM Y CADF, se procedió a proponer la definición de los sectores, tomando en cuenta:

· Área promedio del sector = 8,48 km2.

· Población del sector = 30638 habitantes.

· Límites políticos delegacionales y estatales.

· Vialidades primarias y calles de Importancia.

· Infraestructura e instalaciones importantes como el sistema de drenaje profundo, metro, bosques, barrancas, etc.

· Operación de la red de distribución.

El SACM, por medio del área de Sectorización y Automatización, proporcionó el plano operativo y de construcción del sector MHO-31 Lomas, de la Región Poniente, en el cual se muestra la planimetría de la zona en estudio, así como la red de distribución de agua potable con que cuenta el sistema. No se presenta aquí por razones de espacio, pero se puede consultar en (SACM 2009).

Descripción y datos básicos del Sector MHO-31

El sector comprende las colonias Lomas de Chapultepec, Lomas de Barrílaco, Lomas de Virreyes, Molino del Rey, Lomas de Reforma y Reforma Social.

Las principales vialidades de este sector son las avenidas, Paseo de la Reforma y Paseo de las Palmas (SACM 2009).

La Dirección de Sectorización y Automatización del SACM fijó el gasto de agua potable que requiere el Sector Lomas según el número de habitantes, la población de proyecto y la dotación. En la tabla 3 se presentan los gastos de diseño del sector.

En cuanto a la topografía, elsector tiene un desnivel de 120m aproximadamente, como puede verse en la figura 4, donde se omiten en las cotas el valor de 2000 msnm.

Reconocimiento del sector MHO-31

Se realizaron recorridos dentro del sectory en sus límites para verificar su funcionamiento, estos recorridos se realizaron con personal técnico de operación, sectorización, el área comercial del SACM y personal de la Delegación, con la finalidad de verificar sus límites y posteriormente realizar los levantamientos de las diferentes cajas de cruceros, para conocer el estado actual de la infraestructura hidráulica.

Uno de los puntos de encuentro para estos recorridos fue la zona conocida como los Manómetros, que se ubica en el cruce de Av. Paseo de la Reforma y Bosques de Reforma.

Toma de presiones, su análisis y procesamiento en el sector Lomas

Una vez terminados los trabajos anteriores, se realizó la toma de presiones en diferentes puntos del Sector,mismas que se graficaron para determinar las zonas que contabanconpresiones altas. Como ejemplo, la Calle Monte Líbano mostró un comportamiento de la presión a lo largo de un día; en un rango de 2,2 en el día a 5,0 kg/cm2 en la noche(SACM 2009).Por otra parte, se instalaron equipos(data logger) en algunas tomas domiciliarias para tener también monitoreadas las presiones en algunos puntos considerados problemáticos en el Sector.

Fuentes de abastecimiento al sector MHO-31

Uno de los sitios de abastecimiento al Sector Lomas es el pozo llamado Chapultepec y abastece únicamente al subsector VIIIP. De éste se conoce la curva de comportamiento de la bomba, su curva de evolución, sus datos de gasto durante un día. El otro punto de suministro es el denominado Manómetros, del tanque Maple con una línea de 914 mm (36") de diámetro. De este punto se derivan cuatro líneas de alimentación que distribuyen el agua a la zona de proyecto, que son las que suministran a los subsectores Reforma, Palmas, Vertientes y Sierra Breña, del sector MHO-31y son:

Una línea de 305mm (12") de diámetro para el subsector Reforma.

Una línea de 305mm (12") de diámetro para el subsector Palmas.

Una línea de 150mm (6") de diámetro para el subsector Vertientes.

Una línea de 100mm (4") de diámetro para el subsector Sierra Breña.

Se propusieron dos subsectores generales (subsector Palmas y subsector Reforma, que se abastecerán de forma independiente, con líneas de 305 mm (12"), otra línea de 150mm (6"), para reforzar las zonas más cercanas en la entrada del sector, que corresponden al subsector Vertientes y la última de 100mm (4") para Sierra Breña. Además en este sitio se construyó un centro de medición y uno de control, donde se albergó el inicio de las tres primeras líneas con sus respectivos medidores de flujo de carrete y sus válvulas reguladoras de presión (VRP).

De acuerdo con los resultados de los recorridos realizados y con la información recopilada en gabinete, como los datos topográficos, se efectúo la definición de la red de distribución existente y vialidades importantes dentro del sector, se definieron cuatro subsectores, como puede verse en la tabla 4. En la figura 5 se muestra la subdivisión del sector MHO-31.

Análisis Hidráulico

La red de tuberías de la zona de estudio fue georreferenciada, incluyendo las tuberías y lasválvulas reguladoras de presión y de seccionamiento. Una parte fundamental del proyecto es la modelación matemática para definir el comportamiento hidráulico de la red de distribución de agua potable de la zona de estudio, la cual se realizó con el programa EPANET (Rossman 2002). En este trabajo se describen las actividades realizadas a groso modo, para tener una mejor idea de este proceso, consultar a (Fragoso et al. 2013).

En la figura 5 se muestran las tuberías que conforman la red de distribución del sector MHO-31 que está constituida por 719 nodos y 1037 tubos.

Con los datos básicos tanto de demandas como de infraestructura y operación hidráulica, se efectuó la modelación de la red, con y sin control de presiones; después de haberse calibrado ésta. En la figura 5 se observa la red de distribución sin coeficiente del emisor y con las válvulas abiertas (sin control de presiones).

Calibración del modelo

El método de calibración aquí utilizada fue el de ensayo y error manual libre, que consiste en ir ajustando las variables topológicas (proponiendo un valor inicial al coeficiente del emisor) e introducirlo al modelo para que calcule las variables hidráulicas, utilizando las ecuaciones de resistencia; si los valores calculados de éstas son similares a las medidas, se habrá calibrado el modelo, de lo contrario se propondrá un nuevo valor del coeficiente del emisor (Saldarriaga y Jurado 2008). La calibración del modelo se realizó primero en relación con las fugas de la red, paralo que se utilizó el porcentaje de fugas determinado en un estudio realizado para el SACM, antes Dirección General de Construcción y Operación Hidráulica (DGCOH), denominado «Trabajos de Campo para la Recopilación de Información, y Encuestas para la Cuantificación de Caudales Perdidos en las Redes de Agua Potable del Distrito Federal»; y realizado porEPSCSACV (1996). Esta calibración se obtuvo proponiendo un valor inicial del coeficiente del emisor de n=0,10, resultando un porcentaje de pérdidas de agua del 70,96 %; y después de ajustar varias veces el valor de dicho coeficiente, altenerun valor de 0,0112, las pérdidas calculadas fueron del 37,19%, que es similar al valor determinado en el estudio antes citado.

Además, el modelo de la red se calibró también en relación con el caudal. El inicio de esta calibración, se realizó mediante la curva de evolución del sistema, en la cual no se consideraal coeficiente del emisor. Los datos proporcionados por el SACM fueron de 177,30, 177,25, 176,82 y 176,26 todos en L/s, ver figura 6.

El cálculo considerando al coeficiente del emisor se realizó varias veces, ajustando su valor hasta igualar los datos calculados con los proporcionados por el SACM.El valor del coeficiente con el cual se inició fue de 0,10 y el valor del coeficiente del emisor con que se obtuvo la calibración del modelo fue de 0,0089, los datos incluidos en la curva de evolución se aprecian en la figura 7, denominada curva de evolución final con datos de calibración.

Finalmente en el informe de la calibración de caudales del modelo de la red de distribución del sector Lomas MHO-31, se aprecia que elcaudal medioobservado fue de 177,03 L/s y elcaudal medio calculado de 177,15 L/s, presentando el análisis estadístico efectuado a estos datos un coeficiente de correlación con valor de 0,987.

Control de presiones

Los resultados de la simulación hidráulica del modelo muestran las variaciones de las presiones dentro del sector, sin control, es decir con las válvulas abiertas, ver figura 5. Además puede notarse que, en la mayor parte de la zona de proyecto del sector en estudio, se observan presiones mayores que 5 kg/cm2. Únicamente en el subsector ocho en Palmas y en la zona cercana a la alimentación se observan presiones menores que 3 kg/cm2(SACM 2009).

De acuerdo con lo anterior se propusieron válvulas reguladoras de presión, para controlar las altas presiones y evitar con esto la ruptura de las tuberías, así como el incremento de fugas. A continuación se procedió a analizar (a través de simulaciones hidráulicas), los diferentes escenarios del sistema de distribución de agua potable con las válvulas reguladoras de presión en operación, y para diferentes horas del día, obteniendo los resultadosque se pueden ver en las figuras 8 y 9, en las que aparecen las presiones para las 2:00 y para las 7:00 horas del día respectivamente. Se puede determinar en estas figuras que las condiciones de operación del sector, mejoran de manera importante, es decir, se reducen las presiones anteriores (con válvulas abiertas superiores a los 5 kg/cm2)y únicamente aparecen presiones entre 10 y 40 mca, presentándose únicamente pequeñas áreas con algunos problemas de presión. En las mismas figuras se observa que son realmente pequeñas las zonas con presiones mayores que 5 kg/ cm2, en éstas se observa que la mayor parte de la zona tiene una presión entre 1 y 3 kg/cm2, otra pequeña franja al centro de la zona de estudio tiene una presión que va de 3 a 5 kg/cm2. Siendo, de acuerdocon la normatividad de México, 1,5 kg/cm2 la presión mínima y 5 kg/cm2 la máxima.

Determinación del volumen recuperado en el sector MHO-31

Como resultado de lassimulaciones hidráulicas del modelo de la red de distribución de la delegación Miguel Hidalgo y en particular del sector MHO-31, con el programa EPANET, el volumen total recuperado durante un día es de 14262 m3, que corresponde a un gasto medio diario recuperado de 165 L/s, ver tabla 5, donde además se muestran los volúmenes recuperados y calculados con válvulas abiertas (sin regular presión) y funcionando (regulando presión). En en la tabla 6 se presentan los porcentajes de las fugas de agua de la red, de 76,8 % (sin regular presión) y de 25,3 (regulando presión).

Selección de las válvulas reguladoras de presión (VRP)

En esta parte del trabajo se realizó la revisión de los diámetros de cada una de las válvulas para los casos de gasto mínimo y gasto máximo. Para la selección de las válvulas reguladoras de presión se utilizó un programa de Bermad (2012).

Construcción del sector

Para esto se requirió de: la construcción de los sitios de medición del sector y de los sitios de regulación, lasinterconexiones en el sector,cancelaciones de cruceros, puesta en marcha del sectorMHO-31, instrumentación de los sitios de medición y la calibración de los sitios de regulación.Y fue necesario realizar la rehabilitación de 1426 m de tubería (en varios tramos), 8 válvulas de seccionamiento de 4", 7 de 6" y 2 de 12" de diámetro y se instalaron 15 válvulas reguladoras de presión de diferentes diámetros, ver tabla 7.

RESULTADOS

Los resultados obtenidos en el desarrollo de este trabajo son:

1) Se recupera un volumen de agua por día de 14262 m3, que corresponde a un gasto medio recuperado de 165 Ls, ver tabla 5.

2) Las fugas de la red se reducen del 76,8 % (sin regular presión) al 25,3 % (regulando presión), ver tabla 6.

CONCLUSIONES

De acuerdo con los resultados antes presentados se comprobó la hipótesis de partida de que a través de la sectorización y regulación de presiones de la red de distribución semejora su eficiencia hidráulica. Adicionalmente se plantean las siguientes conclusiones:

· Los objetivos del trabajo se cumplieron y con la sectorización y regulación de presiones seobtiene un mejor control del gasto suministrado y de las presiones en el sector Lomas, recuperando un volumen muy importante de agua, además de abatir sustancialmente las pérdidas de agua (fugas).

· Con la sectorización y regulación de presiones se tiene un mejor control de las fugas al detectarlas de manera electrónica en tiempo real,y se tiene una mayor facilidad para repararlas.

· El volumen de agua recuperado se utiliza en otras zonas urbanas con déficit en este servicio.

RECOMENDACIONES

· Se deberán implementar los programas de supervisión y de mantenimiento a los sitios de control y medición instalados en los subsectores para mejorar su confiabilidad y operatividad en el tiempo.

· De igual manera se deberán implementar programas para verificar que las válvulas en los sitios de control y entradas a los subsectores no tengan movimientos o variaciones en su apertura para no afectar el funcionamiento del sistema.

· Se deberá tener una buena comunicación con el personal de operación, ya que son las personas autorizadas para realizar movimientos en la red, y que a su vez tengan un buen conocimiento del sistema en conjunto para que lo operen de manera correcta y eficaz.

· Se deben detectar y reparar las fugas.

AGRADECIMIENTOS

Un agradecimiento especial al Sistema de Aguas de la Ciudad de México y a la Comisión de Aguas del Distrito Federal por su gran apoyo con información y asesorías en el desarrollo del presente trabajo.

 

 

REFERENCIAS BIBLIOGRÁFICAS

1. Bermad «Water control solutions». Bermad Enterprise, disponible en www.bermad.com, Jerusalem, Israel. (2012).

2. Capella V. A., «Control de presiones y reducción de fugas en el sector Sta. Lucia 1, D. F.». Informe Técnico, SEMARNAT-CONAGUA, México. (2002).

3. CONAGUA «Sectorización de redes de agua potable», Subdirección General de Infraestructura Hidráulica Urbana, Comisión Nacional del Agua, México. (2006).

4. CONAGUA «Planeación de acciones de incremento y control de la eficiencia en sistemas de agua potable», Subdirección General de Infraestructura Hidráulica Urbana, Unidad de Agua Potable y Saneamiento, Gerencia de Estudios y Proyectos. SEMARNAT-CONAGUA, México. (2008).

5. IIUNAM «Estudio de la problemática de las acciones de reducción de fugas en las redes de agua potable y propuesta para mejorar su eficiencia». Convenio de colaboración CNA-SGIHU,-GEP-001/2006, proyecto 5125, Instituto de Ingeniería, UNAM, México. (2005).

6. EPSCSACV «Trabajos de campo para la recopilación de información y encuestas para la cuantificación de caudales perdidos en las redes de agua potable del Distrito Federal». Empresa Planeación, sistemas y control S.A. de C.V., Depto. del Distrito Federal, Dirección General de Construcción y Operación Hidráulica, Secretaría de Obras y Servicios, México. (1996).

7. Fragoso S. L., Ruiz Z. J. R. y Juárez L. B. A. «Sistema para control y gestión de redes de agua potable de dos localidades de México». Ingeniería Hidráulica y Ambiental, (2013), vol. 34, no. 1, pp. 112-126, ISSN 1815-591X, Centro de Investigaciones Hidráulicas, Instituto Superior Politécnico José Antonio Echeverría (Cujae), Cuba.

8. Ochoa A. L. y Bourguet O. V., «Reducción integral de pérdidas de agua potable», Informe Técnico, Instituto Mexicano de Tecnología del Agua (IMTA), México. (2001).

9. Rossman L. A. «EPANET 2, Manual de Usuario, Versión 2.0»,Traducción del Grupo de Modelación de Fluidos de la Universidad Politécnica de Valencia, Environmental Protection Agency EPA-GMF, Cincinnati, USA. (2002).

10. SACM «Informe final de Sectorización»,Sistema de Aguas de la Ciudad de México, Secretaría de Obras y Servicios, México. (2009).

11. Saldarriaga J. y Jurado C. «Metodología de calibración de redes de distribución de agua potable», XVIII Seminario Nacional de Hidráulica e Hidrología, del 23 al 24 de mayo del 2008. Bogotá, Colombia. (2008).

 

 

Recibido: 2 de mayo de 2015.
Aprobado: 25 de noviembre de 2015.

 

 

Lucio Fragoso Sandoval, Jaime Roberto Ruiz y Zurvia-Flores, Gerardo Toxky López. Profesores e Investigadores, Escuela Sup. de Ing. y Arq., Unidad Zacatenco, Inst. Politéc. Nac., México D. F., México. Exalumno de posgrado, Escuela Sup. de Ing. y Arq., Unidad Zacatenco, Inst. Politéc. Nac., México D. F., México. e-mail: lfragoso@ipn.mx, e-mail: jaruizz@ipn.mx, e-mail: toxlo_@hotmail.com.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons