SciELO - Scientific Electronic Library Online

 
vol.28 número4Perfeccionamiento del diseño y evaluación de la sembradora de granos convencional “GUAJIRO AM 2010-1-5T”Caracterización de la velocidad del viento para el diseño de un sistema de riego por aspersión con bombeo eólico índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Ciencias Técnicas Agropecuarias

versão On-line ISSN 2071-0054

Rev Cie Téc Agr vol.28 no.4 San José de las Lajas oct.-dez. 2019  Epub 01-Dez-2019

 

ORIGINAL ARTICLE

Irrigation Regime for Crops in Manabí, Ecuador: Proposal for Five Permanent Crops

Dr.C. Ramón Pérez-LeiraI  * 

Dr.C. Jacqueline Domínguez-GutiérrezI 

IUniversidad Laica Eloy Alfaro de Manabí (ULEAM), Facultad de Ingeniería, Manta, Manabí, Ecuador.

ABSTRACT

The present work is a complement of the climatic and edaphological study developed in productive zones of the province of Manabí in Ecuador. The objective of the study was to determine the irrigation regime of five permanent crops in Manabí. The study focused on three agricultural areas of the Province (Chone, San Ramón and Mapasingue). Several scenarios were analyzed, including four edaphoclimatic zones combined with three irrigation management options. The results allow defining basic elements for the design and operation of irrigation systems and serve as a reference for studies oriented towards other crops and agricultural areas of Manabí.

Keywords: soil; evapotranspiration; crops; irrigation regime

INTRODUCTION

The 282 Act of the Ecuadorian Constitution reads ¨The State will Regulate Irrigation Water Use and Management for Food Production, under Equity, Efficiency and Environmental Sustainability. ¨

Though Ecuador is a country with a huge irrigation potential (more than 3 million hectares), total surface under irrigation is 942 thousand hectares. This means less than third part of the potential surface to be irrigated. The Irrigation & Drainage National Plan 2012-2026 stated that ¨…during these years, problems have been accumulated: the shortage of water availability, the increase of pollution influencing water quality, inequities in water access, low level of technology modernization and efficiency, barriers in water management coming from the responsible institutions, weakness in systems of management, operation and maintenance organizations, among others¨. (MAGAP, quoted by Pérez et al. (2018).

There are studies on irrigation regime on cotton done in Center and South America (Méndez et al., 2001), sugar cane (Avalos and Pacheco, 2012),banana (Toro et al., 2016) and potato (Sifuentes et al., 2018). In Ecuador irrigation regime researches have been developed on a variety of crops associated to pre and postgraduate papers, however, few scientific publications have been found about the theme. One of the most interesting papers is the one developed by Caicedo et al. (2015), where three schemes of irrigation scheduling for banana (Musa paradisiaca). One of the most popular computing tools for determine irrigation scheduling is CROPWAT version 8.0 (Swennenhuis, quoted by Caicedo et al. (2015), This version can be used for estimating crops´ water requirements based on climate, phenological and edafological data (Toro et al., 2016). Other authors such as Sosa et al. (2019), use this tool to search for relationships between Evapotranspiration of the Reference (Eto) and rainfall and predict the increase of the irrigation dose as climate changes (Duarte et al., 2017).

However, the program continues been limited because it considers Penman-Monteith method proposed by FAO for estimating Eto. One of the main limitations of this method is that it requires of precise measurements of air temperature, relative moisture, solar radiation and wind speed (Popova et al., qouted by Pinto et al., 2016).

In the proposal of an Irrigation Integral Management Model in Ecuador (Secretaría del Agua, 2016), it is stated ¨there is lack of programs complementary to the construction of the physical work, such as training and technical assistance programs, …¨. In the updating of Irrigation and Drainage National Plan 2018-2021, carried out by the Irrigation and Drainage Division (2018), it is recognized there is a negative water balance in some basins of Manabí province and it is proposed as an strategic objective ¨To improve efficiency and enlarge public and community heritage of irrigation and drainage in a sustainable management¨. Simultaneously to these policies, since January 2018, the University Lay Eloy Alfaro of Manabí developed the Research Project ¨Edaphoclimatic Study for Designing and Operation of Irrigation Systems in Manabí¨.

The present paper is a continuity of studies published by Pérez et al. (2018a, 2018b), focused on the study of climate variables and hydrophysical soil properties in agricultural areas of Manabí Province. The objective of this study was to define the Irrigation Regime of five crops of economic interest from the water balance developed in different sceneries in the province.

METHODS

To develop this survey, three agroproductive areas of interest were chosen at Manabí province: Northern part of Chone Province, San Ramón at Sucre Province and Mapasinge at Portoviejo Province. A spatial representation of the three zones is shown in Figure 1.

(Source: Elaboration of the Authors)

FIGURE 1 Location of the three survey areas at Manabí Province. 

Definition of Climate and Soil Features

This paper is based on the statistical analysis of the 23 years observing series in 49 meteorological stations in Manabí developed by Pérez et al. (2018a), to define rainfalls at 75% of probability and Crop Reference Evapotranspiration (Eto) of 25% occurrence probability. For water balance Eto values were taken, through Hargreaves-Samani method, due to the observations by De Figueredo et al. (2016), confirmed by Pérez et al. (2018a), who obtained more reliable results because of the lack of data at Manabí, Ecuador for applying Penman-Monteith method, considered by Sousa et al. (2016).

The hydrophysical properties of soils have been defined from trials ¨in situ¨ established by Pérez et al. (2018b) in the surveyed areas.

Definition of Crops´ Features for Irrigation Schedule

In this study, five crops of economic interest in the Province were considered: orange (Citrus sinensis), cocoa (Theobroma cacao), banana (Musa paradisiaca), papaya (Carica papaya) and passion fruit (Passiflora edulis).

Root depth data (H), crop coefficients (Kc) for calculating Evapotranspiration (Eto) for every phase of development and life cycle of each crop are shown on Table 1, taking into account authors´ considerations and the soil water depletion fraction for no stress (p) as defined by Allen et al. (2006).

TABLE 1 Values of crop coefficient (KC) and depth to be moisture (H) for development stages for each crop, according to authors´ recommendations 

Crop Development stage p Source
Orange Days 60 90 120 95 50 % Allen et al. (2006) Calderón (2014)
Kc 0.70 0.70 0.65 0.70
Days 365
H (m) 0.80
Cocoa Days 365 30 % Allen et al. (2006)
Kc 0.90
Days 365
H (m) 0.70
Banana Days 120 75 45 35 % Allen et al. (2006) Toro et al. (2016)
Kc 1.0 1.2 1.1
Days 240
H (m) 0.60
Papaya Days 60 90 60 155 35 % Allen et al. (2006) Chaterlán (2012)
Kc 0.90 1.00 1.10 0.90
Days 365
H (m) 0.60
Passion fruit Days 60 210 95 50 % Allen et al. (2006) Vinuesa (2009) Calderón (2014)
Kc 0.70 0.65 0.70
Days 365
H (m) 0.60

For estimating Water Schedule of the Project of each crop, four sceneries were analyzed starting from the results obtained by Pérez et al. (2018b):

  • Chone with fine texture soil (CH -TF)

  • Chone with medium texture soil (CH -TM)

  • Mapasingue with medium texture soil (MP-TM)

  • San Ramón with medium texture soil (SR-TM)

At the same time, irrigation for each scenery was analyzed for three p values (minimum recommended for each crop, a decrease of 25% of this value from considering hot and dry atmosphere conditions of Manabí, both values taking into account recommendations of Allen et al. (2006) and a steady value p= 15% for all crops). This fact generated 60 irrigation variants (five crops x four sceneries x three-soil water depletion fraction for no stress).

For estimating Project´ s Irrigation Schedule the proceedings described in the Cuban standard 48-46, cited by Duarte et al. (2015) were used. In that document, Kb values were replaced for the Kc ones of each crop shown at Table 1.

Once Project´ s Irrigation Schedule was defined, determining maximum Evapotranspiration of each crop and the fictitious flow rate were the following steps. These elements were the basement for hydraulic design of pressure irrigation systems (localized irrigation system or sprinkler irrigation system).

Critical Crop Evapotranspiration was obtained dividing monthly evapotranspiration of highest consumption (critical month) by the amount of days of the month.

Fictitious net flow rate: Obtained for critical condition by the following expression:

q=Dn3.6th

Where:

q

- Fictitious net flow rate (l/s/ha);

Dn

- Net partial irrigation dosage (m3/ha);

t

- Irrigation interval (days);

h

- Irrigation time (h). (8 hours daily were considered).

RESULTS AND DISCUSSION

Water requirement calculations corresponding to each crop in the four sceneries were done. The results obtained for orange crop are summarized in Table 2.

TABLE 2 Summary of the Annual Orange Irrigation Regime in Four Scenarios, expressed from Evapotranspiration, Effective Rainfall, Total Dose and Number of Irrigations 

Crop Stage Eto (mm) Effective Rainfall (mm) Total Irrigation Dose according to p* (mm) Number of Irrigations according to p*
50% 37% 15% 50 % 37 % 15 %
Orange CH-TF 901.3 426.0 349.0 387.6 471.7 2 3 9
CH-TM 901.3 424.2 498.1 491.3 498.4 3 4 10
MP-TM 990.2 355.2 601.7 556.6 676.9 4 5 15
SR-TM 990.2 254.3 622.4 691.2 747.3 4 6 16

* Extreme value of p= 50% is defined according to Allen et al. (2006).

As it can be appreciated, there was a trend to increase dose and number of irrigation as value p decreased. Higher irrigation requirement was evident in San Ramón area (SR) due to the existing evapotranspiration and effective rainfall conditions. The annual doses to apply to orange crop were from 349 mm-743 mm. These results were lower to the annual 800 mm obtained by CEBAS and CSIC (2014) at southern Spain in an arid climate with rainfalls lower than 300 mm a year. They were also inferior to the results reported by Santos et al. (2018),which were between 1270 mm and 1306 mm per year. However, there is a coincidence with values reported by Wiegand and Swason (cited by Levy & Boman (2003), in Texas.

The annual irrigation regime for cocoa tree cultivation, summarized in Table 3, showed irrigation values from 641 mm to 1062.2 mm a year. It was corroborated, Chone zone with less water requirements and irrigation amount during the year goes between 7 and 26 according to the soil water depletion fraction for no stress (p) selected to manage water regime.

TABLE 3 Summary of the Annual Cocoa Irrigation Regime in Four Scenarios, expressed from Evapotranspiration, Effective Rainfall, Total Dose and Number of Irrigations 

Crop Stage Eto (mm) Effective Rainfall (mm) Total Irrigation Dose according to p* (mm) Number of Irrigations according to p*
30 % 22 % 15 % 30 % 22 % 15 %
Cocoa CH-TF 1185.9 513.4 641.7 671.8 686.6 7 10 15
CH-TM 1185.9 511.9 697.0 639.3 696.5 8 10 16
MP-TM 1304.0 355.2 948.1 984.5 948.3 12 17 24
SR-TM 1304.0 254.3 1062.2 1018.5 1061.1 13 17 26

*Extreme value of p= 30% is defined according to Allen et al. (2006).

The results were very similar to those recommended by Rodríguez et al. (2010), for Manabí with values from 500 to 1200 mm a year. There was also similarity with the results obtained by Romero & Proaño (2008) in their study developed in Santa Elena Peninsula, in Ecuador. In that paper, annual irrigation doses were obtained for cocoa tree between 1023.93 and 1535.9 mm for different drip management conditions.

Nevertheless, some authors like Motato & Pincay (2015), make emphasis in paying close attention to water quality more than the quantity of water for irrigation of this crop due to salinity problems found in Manabí ´s subsurface water.

For the cultivation of banana, figures of greater magnitude were obtained, as shown in Table 4.

TABLE 4 Summary of the Annual Banana Irrigation Regime in Four Scenarios, expressed from Evapotranspiration, Effective Rainfall, Total Dose and Number of Irrigations 

Crop Stage Eto (mm) Effective Rainfall (mm) Total Irrigation Dose according to p* (mm) Number of Irrigations according to p*
35 % 26 % 15 % 35 % 26 % 15 %
Banana CH-TF 1435.5 555.0 824.7 884.5 902.4 9 13 23
CH-TM 1435.5 553.7 871.3 906.2 895.8 10 14 24
MP-TM 1581.8 337.7 1263.9 1232.6 1254.1 16 21 37
SR-TM 1581.8 254.3 1306.8 1334.9 1329.2 16 22 38

*Extreme value of p= 35% is defined according to Allen et al., (2006).

These results were similar to the ones obtained by Caicedo et al. (2015) into their programs through CROPWAT for irrigate banana in Babahoyo, Ecuador. The authors obtained values of Eto between 990.5 mm and 1340.7 mm a year. Though the annual amount of irrigations was between 20 and 23, total sheet to be applied was slightly lower because rainfall conditions in Babahoyo are less arid than in Manabí.

Annual Eto values also coincide with those reported by Toro et al. (2016) through simulations made with CROPWAT in Urabá, Colombia. These values were between 1188 mm and 1315 mm annually.

The summary of irrigation regime for papaya crop is shown in Table 5.

TABLE 5 Summary of the Annual Papaya Irrigation Regime in Four Scenarios, expressed from Evapotranspiration, Effective Rainfall, Total Dose and Number of Irrigations 

Crop Stage Eto (mm) Effective Rain (mm) Total Irrigation Dose according to p* (mm) Number of Irrigations according to p*
35 % 26 % 15 % 35 % 26 % 15 %
Papaya CH-TF 1263.1 534.0 733.1 748.4 745.5 8 11 19
CH-TM 1263.1 532.7 697.0 712.0 746.5 8 11 20
MP-TM 1388.9 355.2 1026.9 1056.5 1084.6 13 18 32
SR-TM 1388.9 254.3 1143.5 1152.9 1154.3 14 19 33

*Extreme value of p= 35% is defined according to Allen et al., (2006) considerations.

Bogantes et al. (2011) consider annual water consumption for this crop between 1200 and 1800 mm. However, Chaterlán (2012) obtains lower Eto values (931 mm) for papaya at southern Havana, in Cuba, under higher rainfall conditions for a p value of 40%.

A similar result was reported by Mellado et al. (2005) in Michoacán, Mexico. The authors developed a survey with the objective of evaluating the response of papaya, Marigold variety, in terms of yield, efficiency of water use, economical productivity to fertilizing and drip irrigation systems. For conditions of rainfall of 569 mm annually (similar to those in Manabí), they obtained annual irrigation sheets between 1050 mm and 1385 mm.

Passion fruit crop required an irrigation regime for each scenery, summarized in Table 6.

The consumptions obtained for this crop are very close to the ones reported by Guzmán (cited by Guerra et al., 2013) between 650 mm and 950 mm annually. However, they are lower to the ones obtained by Guerra et al. (2013) in their studies covering magnitudes between 1351.1 mm and 2303.7 mm annually.

TABLE 6 Summary of the Annual Passion Fruit Irrigation Regime in Four Scenarios, expressed from Evapotranspiration, Effective Rainfall, Total Dose and Number of Irrigations 

Crop Stage Eto (mm) Effective Rain (mm) Total Irrigation Dose according to p* (mm) Number of Irrigations according to p*
50 % 37 % 15 % 50 % 37 % 15 %
Passion fruit CH-TF 883.0 404.8 392.8 484.2 470.8 3 5 12
CH-TM 883.0 403.5 498.0 460.5 484.9 4 5 13
MP-TM 970.9 349.4 564.5 584.5 677.9 5 7 20
SR-TM 970.9 254.3 700.7 691.0 734.5 6 8 21

*Extreme value of p= 50% is defined according to Allen et al., (2006) considerations.

Equally, in Perú Chacón (2016), in a study that registered passion fruit´s consumptions during 5 successive years in La Libertad, Perú, obtained values fluctuating between 601.5 mm and 977.5 mm a year. These values are very close to the Eto ones obtained in the four sceneries analyzed in this study. Da Araujo et al., (2006), also obtained passion fruit´s consumptions in Piracicaba, Brazil of 781.01 mm in a year.

Basic Elements for Designing and Operation of Irrigation Systems

The results of maximum Evapotransporation estimation (Etm) obtained for each crop at different conditions, as well as the higher fictitious flow rate are summarized in Table 7. The Etm values of orange coincide with the records of Toledo et al. (quoted by Levy & Boman, 2003), who define an interval of 2-3 mm/day in Cuban conditions. However, they are considerably lower than the 4.5 mm/day reported by Shalhevet et al. (quoted by Levy & Boman, 2003), for Israel conditions.

TABLE 7 Values of Maximum Evapotranspiration and Fictitious Flow Rate (q) obtained for each crop at the Different Edaphoclimatic Conditions 

Crop CH-TF CH-TM MP-TM SR-TM
Etm (mm) q (L/s/ha) Etm (mm) q (L/s/ha) Etm (mm) q (L/s/ha) Etm (mm) q (L/s/ha)
Orange 2.8 0.45 2.8 0.47 3.1 0.64 3.1 0.71
Cocoa 3.7 0.65 3.7 0.96 4.0 0.94 4.0 1.01
Banana 4.5 0.84 4.5 0.86 4.7 1.20 4.7 1.27
Papaya 4.1 0.71 4.1 0.71 4.4 1.03 4.4 1.10
Passion fruit 2.6 0.46 2.6 0.47 2.8 0.64 2.8 0.70

An important issue to be considered to analyze water consumptions and irrigation needs of permanent crops, besides specific edaphoclimatic conditions of the province, is plantation density. It is confirmed that plantation frames of these crops are not identical in all irrigation research surveyed, which has a direct influence on magnitude of moisture available, taken by plant on the soil.

It is necessary to clear up, in all cases; fictitious net flow rate for designing irrigation in each crop should be increase according to estimated efficiency and the irrigation technique to be used. It was evident for all crops that Chone´s edaphoclimatic conditions are the best for cropping, compare with San Ramón and Mapasinge.

CONCLUSIONS

  • In this study, 12 scenarios of irrigation management were analyzed for orange, cocoa, banana, papaya and passion fruit crops in Ecuador (60 variants in total). That allowed defining water needs taking into account the edaphoclimatic zone and the soil water-depletion fraction defined for irrigation management without causing stress in the plant.

  • The possibility of defining Irrigation Regime of permanent crops from the statistical analysis of the climatic variables of the region and the determination “in situ” of the soil hydrophysical properties, give the result of these studies higher reliability than studies developed before about this data.

  • Crops with higher irrigation demand were banana, papaya and cocoa tree with annual dose between 641.7 mm and 1329.2 mm, according of shortage level defined for irrigation management.

  • Edaphoclimatic conditions in Chone are the best for the development of crops opposite to San Ramón area, where higher irrigation doses were required.

  • Water demand definition and irrigation regime for different conditions of management on studied crops is the base for designing new irrigation systems or for scheduling the one existing in the province, hence, its use can be immediate.

ACKNOWLEDGEMENT

To Engineers Marcos Israel Hinostroza García, Jordan Rene Manzaba Carvajal and Eric Cabrera Estupiñan for the support in the processing of climate information, prior to this publication.

We thank the Engineers Héctor Germán Cedeño Caicedo, José Darío Zambrano Gómez, Luis Alberto Moncayo Zambrano, Jonathan Ricardo Flecher Ponce, Carlos Geovanny Moreira Muñoz, Henry Emilio Delgado Anchundia, Adrián Ricardo Mendoza Briones and Luis Eduardo Chavez Garcia, for the support provided in the extraction and processing of soil samples in support of this investigation.

To Ms. Oravides Almagro Peñalver for her support in the translation of this document.

REFERENCES

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M.: Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos, no. ser. Estudio FAO Riego y Drenaje 56., Ed. Food & Agriculture Org., vol. 56, Roma, Italia, 2006, ISBN: 92-5-304219-2. [ Links ]

AVALOS, J.L.; PACHECO, S.J.: “Programación del riego de la caña de azúcar en la provincia de Villa Clara, Cuba”, Revista Ciencias Técnicas Agropecuarias, 21(4): 61-66, 2012, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

BOGANTES, A.A.; MORA, N.E.; UMAÑA, G.; QUIRÓS, Q.L.: Guía para el cultivo de la papaya en Costa Rica, [en línea], Inst. San José, MAG/UCR/INTA, San José. Costa Rica, 2011, Disponible en:Disponible en:https://www.researchgate.net/publication/319433988_GUIA_PARA_EL_CULTIVO_DE_LA_PAPAYA_EN_COSTA_RICA , [Consulta: 15 de febrero de 2019]. [ Links ]

CAICEDO CAMPOSANO, O.; BALMASEDA ESPINOSA, C.; PROAÑO SARAGURO, J.: “Programación del riego del banano (Musa paradisiaca) en finca San José 2, Los Ríos, Ecuador”, Revista Ciencias Técnicas Agropecuarias , 24(2): 18-22, 2015, ISSN: 2071-0054. [ Links ]

CAICEDO, C.O.; BALMASEDA, E.C.; PROAÑO, S.J.: “Programación del riego del banano (Musa paradisiaca) en finca San José 2, Los Ríos, Ecuador”, Revista Ciencias Técnicas Agropecuarias , 24(2): 18-22, 2015, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

CALDERÓN, B.S.P.: Evaluación del recurso hídrico en la eficiencia del desarrollo de los cultivos en cinco barrios de Tumbaco, Pichincha, [en línea], Universidad Central del Ecuador, Eng. Thesis, Ecuador, 2014, Disponible en:Disponible en:http://www.dspace.uce.edu.ec/bitstream/25000/3242/1/T-UCE-0004-100.pdf , [Consulta: 1 de mayo de 2018]. [ Links ]

CEBAS-CSIC: Guidelines on Best Irrigation Management Practices for citrus production in the Mediterranean Area. SIRRIMED., [en línea], Sustainable use of irrigation wáter in the Mediterranean Region, 2014, Disponible en:Disponible en:http://www.sirrimed.org/catalogo/d_2_6_2014-mar-31.pdf , [Consulta: 1 de octubre de 2019]. [ Links ]

CHACÓN, A.D.C.: Manejo Agronómico de la Passiflora edulis Sims bajo riego por goteo en Virú, La Libertad, [en línea], Universidad Nacional de Trujillo, Facultad de Ciencias Agropecuarias, Escuela Académico Profesional de Agronomía, Eng. Thesis, Trujillo, Perú, 2016, Disponible en:Disponible en:http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/7479/CHACON%20AGREDA%20Deyssi%20Consuelo.pdf?sequence=1&isAllowed=y , [Consulta: 15 de enero de 2019]. [ Links ]

CHATERLÁN, Y.: “Estimación de los coeficientes de cultivo de la papaya para mejorar la programación del riego en el sur de La Habana”, Revista Ciencias Técnicas Agropecuarias , 21(1): 37-42, 2012, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

DA ARAUJO, S.T.J.; FOLEGATTI, M.V.; DA SILVA, C.R.; JÚNIOR, J.A.; DE MATOS, P.R.C.: “Evapotranspiração e coeficientes de cultura do maracujazeiro amarelo conduzido sob duas orientações de plantio”, Irriga, 11(1): 90-106, 2006, ISSN: 1808-3765, DOI: http://dx.doi.org/10.15809/irriga.2006v11n1p90-106. [ Links ]

DE FIGUEREDO, D.G.; RODRIGUES, V.M.D..; BARCELLOS, A.D.; FABIANO, L.P.; DOS SANTOS, M.G.; DE FARIA, T.R.: “Desempenho de métodos na estimativa de evapotranspiração de referência para o estado da paraíba, brasil”, Irriga, 21(3): 481-490, 2016, ISSN: 1808-8546. [ Links ]

DUARTE, D.C.; HERRERA, P.J.; LÓPEZ, S.T.; GONZÁLEZ, R.G.; ZAMORA, H.E.: “Nuevas normas netas de riego para los cultivos agrícolas en Cuba”, Revista Ingeniería Agrícola, 5(4): 46-51, 2015, ISSN: 2306-1545, e-ISSN: 2227-8761. [ Links ]

DUARTE, D.C.E.; HERRERA, P.J.; ZAMORA, H.E.: “Predicción de las normas netas de riego a futuro en el pronóstico de riego”, Revista Ingeniería Agrícola, 7(3): 3-10, 2017, ISSN: 2306-1545, e-ISSN: 2227-8761. [ Links ]

GUERRA, D.D.; TAFUR, H.H.; RÍOS, R.L.: “Rendimiento y calidad de la fruta del maracuyá amarillo (Passiflora Edulis fo. Flavicarpa o. Deg.) en respuesta a la combinación del riego y la fertilización”, Ingeniería de Recursos Naturales y del Ambiente, 12: 109-117, 2013, ISSN: 1692-9918. [ Links ]

LEVY, Y.; BOMAN, B.: Water Management in Citrus, [en línea], 2003, Disponible en:Disponible en:https://www.researchgate.net/publication/293334460_Water_Management_in_Citrus , [Consulta: 1 de noviembre de 2019]. [ Links ]

MELLADO, V.A.; VOLKE, H.V.; TAPIA, V.M.; SÁNCHEZ, G.P.; QUEVEDO, N.A.: “Respuesta del papayo al riego ya la fertilización NPK en un vertisol”, Terra Latinoamericana, 23(1): 134-144, 2005, ISSN: 2395-8030. [ Links ]

MÉNDEZ, N.J.R.; SALAZAR, B.R..; MERAZO, P.J..; GIL, M.J..; KHAN, P.L.: “Efecto de tres frecuencias de riego sobre algunos caracteres de la planta en cuatro cultivares de algodón (Gossypium hirsutum I.) tipo Upland”, Revista UDO Agrícola, 1(1): 48-55, 2001, ISSN: 1317-9152. [ Links ]

MOTATO, A.N.; PINCAY, M.J.: “Calidad de los suelos y aguas para riego en áreas cacaoteras de Manabí”, La técnica, 14: 6-23, 2015, ISSN: 1390-6895. [ Links ]

PÉREZ, L.R.; CABRERA, E.E.; CEDEÑO, C.G.; DELGADO, A.H.E.; MENDOZA, B.A.R.; CHÁVEZ, G.L..: “El régimen de riego para cultivos en Manabí, Ecuador: estudio edafológico”, Revista Ciencias Técnicas Agropecuarias , 27(4): 1-8, 2018a, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

PÉREZ, L.R.; CABRERA, E.E.; HINOSTROZA, G.M.I.; MANZABA, C.J.R.: “El régimen de riego para cultivos en Manabí, Ecuador: estudio climatológico”, Revista Ciencias Técnicas Agropecuarias , 27(1): 5-12, 2018b, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

PINTO, E.J.S.; ALVES, V.E.O.; DA SILVA, R.R.; GONÇALVES, I.S.; DE OLIVEIRA, G.M.: “Ajuste da Equaҫão de Hargreaves y Smanai a partir de dados lisimétricos para o municipio de Juazeiro-BA”, Irriga, Irriga & Inovagri(Edição Especial): 108-114, 2016, ISSN: online 1808-8546/ISSN CD 1808-3765. [ Links ]

RODRÍGUEZ, M.; MOTATO, N.; ZAMBRANO, O.; TARQUINO, C.: Manejo técnico del cultivo de cacao en Manabí, [en línea], Inst. Instituto Nacional Autónomo de Investigación Agropecuaria, Estación Experimental Portoviejo. Ecuador, Portoviejo. Ecuador, 2010, Disponible en:Disponible en:http://repositorio.iniap.gob.ec/bitstream/41000/4875/1/iniappom75.pdf , [Consulta: 1 de marzo de 2019]. [ Links ]

ROMERO, J.; PROAÑO, J.: “Evaluación del Efecto del Riego por Goteo y Microaspersión en la productividad del cacao (Theobroma cacao) CCN 51 en un suelo Ustifluvent tipic en la zona Chongón- Península de Santa Elena. Provincia del Guayas”, [en línea], En: XI Congreso Ecuatoriano de la Ciencia del Suelo, Ecuador, 2008, Disponible en:Disponible en:http://www.secsuelo.org/wp-content/uploads/2015/06/12.-Jorge-Romero.-Riego.pdf , [Consulta: 1 de abril de 2019]. [ Links ]

SANTOS, K.S.; DE ALMEIDA, A.; DA SILVA, V.P.P.; DA SILVA, L.L.S.; COELHO, M.A.F.; HOLZAPFEL, E.H.: “Balanҫo de Água em solo cultivado sob pomar adensado de Laranja ‘Pêra’ enxertada em diferentes porta-enxertos”, Irriga, 23(2): 235-248, 2018, ISSN: 1808-3765. [ Links ]

SECRETARÍA DEL AGUA: Propuesta de Modelo de Gestión Integral de Riego en el Ecuador, [en línea], Inst. Secretaría del Agua, Subsecretaría de Riego y Drenaje, 2016, Disponible en:Disponible en:http://www.competencias.gob.ec/wp-content/uploads/2017/06/06IGC2016-MGRIEGO-SENAGUA-MODELO-DE-GESTIO%CC%81N-INTEGRAL-DEL-RIEGO.pdf , [Consulta: 1 de junio de 2019]. [ Links ]

SIFUENTES, I.E.; MERINO, L.R.I.; RUIZ, P.U.; OJEDA, B.W.; FLORES, G.H.; MACIAS, C.J.: “Humedad del Suelo Permisible (MDP) para el manejo del riego por goteo en papa (Solanum tuberosum L.) mediante un modelo integral”, En: IV Congreso Nacional de Riego y Drenaje COMEII 2018, Aguas Calientes, 2018. [ Links ]

SOSA, S.Y.; DUARTE, D.C.E.; PUENTE, P.A.; GONZÁLEZ, R.L.: “Caracterización de la evapotranspiración de referencia y su relación con las precipitaciones en Jagüey Grande, Matanzas”, Revista Ingeniería Agrícola , 9(1): 48-52, 2019, ISSN: 2306-1545, e-ISSN: 2227-8761. [ Links ]

SOUSA, P.F.F.; DAL, P.E.; MONTENEGRO, V.R.J.; VÁZQUEZ, M.R.J.; SÁNCHEZ, R.R.M.; ORELLANA, G.M.A.; ESCOBEDO, J.F.: “Estudo comparativo da evapotranspiração de referência entre localidades no estado de São Paulo e na província de Habana”, Irriga, 21(2): 395-397, 2016, ISSN: 1808-8546. [ Links ]

TORO, T.A.M.; ARTEAGA, R.R.; VÁZQUEZ, P.M.A.; IBÁÑEZ, C.L.A.: “Requerimientos de riego y predicción del rendimiento en el cultivo de banano mediante un modelo de simulación en el Urabá antioqueño, Colombia”, Tecnología y ciencias del agua, 7(6): 105-122, 2016, ISSN: 2007-2422. [ Links ]

VINUESA, I.R.J.: Diseño de un plan de manejo de riego para los cultivos de cítricos en El Zamorano, [en línea], El Zamorano, Bachelor of Science in Agronomy, Honduras, 2009, Disponible en:Disponible en:https://bdigital.zamorano.edu/bitstream/11036/403/1/T2860.pdf , [Consulta: 1 de abril de 2018]. [ Links ]

Received: February 14, 2019; Accepted: September 02, 2019

*Author for correspondence: Ramón Pérez-Leira, e-mail: rperezleira@gmail.com

Ramón Pérez Leira, Profesor Titular Principal, Universidad Laica Eloy Alfaro de Manabí (ULEAM), Facultad de Ingeniería, Manta, Manabí, Ecuador, e-mail: rperezleira@gmail.com

Jacqueline Domínguez Gutiérrez, Profesora Titular Principal, Universidad Laica Eloy Alfaro de Manabí (ULEAM). Facultad de Ingeniería, Manta, Manabí, Ecuador, e-mail: jarqui888@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License