SciELO - Scientific Electronic Library Online

vol.53 issue3Performance of energy and protein metabolism of female water buffaloes during early postpartum periodEffect of the enzymatic hydrolyzate of Saccharomyces cerevisiae yeast on the kinetics of ruminal degradation of nutrients of Cenchrus purpureus cv. OM - 22 (Cenchrus purpureus x Cenchrus americanus) forage author indexsubject indexarticles search
Home Pagealphabetic serial listing  


Services on Demand




  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO


Cuban Journal of Agricultural Science

Print version ISSN 0864-0408On-line version ISSN 2079-3480

Cuban J. Agric. Sci. vol.53 no.3 Mayabeque July.-Sept. 2019  Epub Sep 01, 2019



Stability of the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44 under different temperature conditions

Grethel Milián1  * 

Ana J. Rondón1 

M. L. Pérez2 

Yordanys Martínez1 

R. Boucourt4 

Marlen Rodríguez1 

A. Beruvides1 

Yadileiny Portilla3 

1Universidad de Matanzas. Autopista Varadero Km 3 ½, Matanzas, Cuba.

2Universidad Estatal Amazónica. Km. 2 ½. Vía a Tena (Paso Lateral), Puyo, Pastaza. Departamento de Ciencias de la Tierra. Ecuador.

3Universidad Autónoma de España, Madrid, España.

4Instituto de Ciencia Animal, Apartado Postal 24. San José de las Lajas, Mayabeque, Cuba.


In intensive livestock production, not all storage conditions are available for the conservation of biological products. Hence, the objective of this research is to verify the stability of three zootechnical additives: SUBTILPROBIO® C-31, C-34 and E-44 at room temperature (24 ± 3 ºC) and in refrigeration (4 ± 8 ºC). For this, three experiments were carried out: 1) microbiological quality of the additives, 2) viability of the endospores and 3) pH dynamics. The results revealed the absence of contaminating microorganisms in the additives, such as fecal and total coliforms, Pseudomonas auruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella. The count of yeasts (<103mL) and fungi (<10CFU.mL-1), acceptable for products of animal consumption. The viability of endospores showed no difference in both temperatures (16 Log CFU.mL-1). However, the pH showed differences (P <0.05) between the initial hour and the seventh day for both temperatures [environment: C-31: 6.38 / 5.70; C-34: 6.38 / 5.74; E-44: 6.38 / 5.77 and refrigeration: C-31: 6.38 / 4.52; C-34: 6.38 / 4.50; E-44: 6.38 / 4.49]. It can concluded that there is no difference for both temperatures, which makes viable the preservation of zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44 in both conditions.

Key words: conservation of biological products; Bacillus subtilis; viability of endospores


Currently, some studies have being performed to achieve good practices that guarantee a better use of food by animals in order to increase productivity (Toledo et al. 2018). Within these practices, it can be found the administration of safe and stable microorganisms to increase resistance to diseases and improve the nutritional state of animals. Probiotics are postulated as a potential replacement alternative to antibiotics used as subtherapeutics, as growth promoters. Its advantage is that they do not leave residues in the eggs or in the meat of birds and do not generate a risk of antibiotic resistance in the human microbiota (Arteaga et al. 2018). However, they have the disadvantage of high prices and stability over time (Pérez and Sablón 2017).

The choice of an appropriate conservation method is important to keep intact the characteristics of any biological product and suitability (Caicedo and Valle 2017). The existence of different methods of preservation of products with probiotic effect are known, such as lyophilization, microencapsulation and spray drying, among others, in order to maintain its extrinsic characteristics (Zhang et al. 2015 and Rueda et al. 2016). According to Rodríguez et al. (2016) and Molina (2016), one of the elements that affect the survival of microorganisms and conservation over time is temperature and pH. These two indicators are reported as methods of conserving viability of biological products (Montañez and Castro 2006). Hence, the objective of this research was to verify the stability of the SUBTILPROBIO® C-31, C-34 and E-44 zootechnical additives under conditions of refrigeration and room temperature.


Production of zootechnical additives. Zootechnical additives were obtained at the Centro de Estudios Biotecnológicos de la Facultad de Ciencias Agropecuarias, University of Matanzas. The methodology proposed by Milián et al. (2017b) was used. C-31, C-34 and E-44 strains of Bacillus subtilis, subtilis subspecies, were used, which were isolated and identified by Milián et al. (2014).

To verify the stability of these zootechnical additives at room temperatures (24 ± 3 ° C) and in refrigeration (4 ± 8 ° C), the rack test was carried out, and 15 bottles of both temperatures were taken and the following parameters were measured:

1. Microbiological quality of the additives. To confirm the microbiological quality of zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44 for their use in animals, counting of contaminating microorganisms was carried out according to the regulations in force, described for the Microbiological quality studies of the NC-ISO Human and Animal Consumption Foods according to Bennett and Lancette (2007) (table 1). This sampling was done in both temperatures, and they were taken at the beginning (1st day) and end of the experiment (180 days).

Table 1 Microbiological tests for determining contaminant microorganisms 

Microbiological tests Reference NC- ISO
Recount of total and fecal coliforms 4832: 2010
Recount of Pseudomonas auruginosa 4833-1: 2014
Recount of Staphylococcus aureus 6888-1: 2003
Recount of Bacillus cereus 4833-1: 2014
Counting of Salmonella in 25 mL 6579: 2008
Counting of Enterobacterias 4832: 2010
Recount of viable yeasts per mL 7954:2002
Recount of fungi 7954:2002

2. Viability of endospores. Samples were taken at 1, 7, 30, 60, 90 and 180 days, and were cultivated on plates with nutrient agar. Incubation was performed at 37 °C for 24 hours under aerobic conditions. Microorganism count was made through the number of colony forming units (CFU). It was determined by visual counting of colonies on plates with nutrient agar.

3. pH dynamics. To determine pH dynamics at both temperatures, samples were taken at 1, 7, 30, 60, 90 and 180 days, and three repetitions were made. The measurement of the pH values was carried out in a digital pH meter (Sartorius Meter PP-25).

Statistical processing. For data analysis, the statistical software INFOSTAT, version 2012 (Di Rienzo et al. 2012) was used. The analyses of variance were performed to verify differences among means, with a significance level of P <0.05. Duncan (1955) test was applied to perform multiple comparisons among means, in the treatments viability of endospores and pH dynamics.


Microbiological quality of zootechnical additives. The results from the microbiological quality study of the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44, at the two temperatures studied: room (24 ± 3ºC) and refrigeration (4 ± 8ºC) did not show the presence of contaminating microbial agents. The counts of yeasts and fungi were in the permissible ranges (yeast: <103 mL and fungi: <10UFC.mL-1) for the consumption of biological products.

These results can be associated to the ability of Bacillus genus to produce a wide variety of antimicrobial substances, all of a protein nature, which differ in their mode of action and chemical structure, which are discharged outside the cells. This allows them to establish and, in this way, inhibit the presence of pathogenic microorganisms in a biological product, as well as the production of hydrogen peroxide, which is recognized as an inhibitor of the growth of Gram- negative bacteria.

This research corresponds to reports of Flores et al. (2015) about the zootechnical additives, that although it is true that Lactobacillus, yeasts or other group of microorganisms may have a probiotic potential, it is essential to evaluate their microbiological quality, durability over time and components of each product that is used.

In this sense, research carried out by Milián et al. (2017a) and Rodríguez (2017) reported that one of the advantages of Bacillus genus is the ability to produce LFB 112-type bacteriocin and the lipopeptides Surfactin and Mycosubtilin. They inhibit the development of Gram-positive and Gram-negative bacteria, such as E. coli, Salmonella spp., C. perfringens, Streptococcus spp., S. aureus, Pasteurella multocida, and P. aeruginosa. The results are in line with the aforementioned, since the presence of these pathogens was not observed in the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44, so it can be deduced that the bacteriocins produced by B. subtilis had their effect.

Results homologous to those derivatives in this study, were those reported by Molero et al. (2017), when evaluating the microbiological quality and useful life of fermented probiotic beverages based on whey, obtaining a high level of inocuity, thanks to a low recount of mesophilic aerobes and absence of total and fecal coliforms and S. aureus.

Rondón 2009 and Pérez et al. 2016 performed similar studies to zootechnical additives PROBIOLACTIL® and PROBIOLEV®, where they obtained similar results to this research. The recount of fecal and total coliforms, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus, in all cases was negative, fungi (<10 CFU / mL-1), yeasts (<103 / mL) and Salmonella spp. (no presence).

Yeast levels obtained for the three additives are in the permissible range (<103mL), it is inferred that their inhibitory action had an effect on the quality of the additives as an antibacterial agent. Yeasts contain mannan oligosaccharides of (MOS) in their cell walls. These limit the adherence of lectinases to carbohydrates and reduce the colonization of pathogens such as E. coli and Salmonella spp. Many authors refer to the action of yeasts as inhibitors of pathogenic microorganisms (Alcázar et al. 2016 and Rodríguez 2017).

Viability of endospores. Viability of endospores in the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44, add no significant differences in the endospore counting (16 Log UFC.mL-1) at room temperatures (25 ± 3 ºC) and refrigeration (4 ± 8 ºC). This is explained by the ability of bacterial endospores to survive under extreme conditions. Reports by Espitia et al. (2014) demonstrate this, when they defined that spores of Bacillus contain a large amount of small proteins that resist sudden temperature changes, act against acids, formaldehydes and conservation techniques among others.

Caicedo and Chacón (2017) refer that strains of B. subtilis possess a quorum sensing mechanism that consists of the perception of cell density. It means that it allows the bacteria to act in a coordinated manner, giving the characteristic of survival by helping them to maintain itself in nature, since it responds to environmental conditions due to nutrient availability. This mechanism is due to peptides that control the expression of genes involved in sporulation.

Other research in the field of viability of endospores are reported by Raisman and González (2013), who refer that strains of Bacillus sphaericus and Bacillus permians under certain conditions, the viability of spores is so prolonged, that it is possible to consider that they can survive indefinitely.

The existence of many methods to conserve viability of biological products is reported worldwide. Cryopreservation is among these methods, which is adequate and is, after the lyophilization method, the most convenient to guarantee bacteria viability over time (Bagatolli 2017).

De Araujo (2016) referenced that microencapsulation under the spray drying technique is an alternative to maintain the integrity of probiotic strains. Their studies report a 72% and 70% of survival of bacilli and lactobacilli, respectively.

Gutiérrez (2016) defined that one of the most used technique in the industry to preserve biological products, due to its high reproducibility and economy, is spray drying. This author, when microencapsulated strains of Bacillus megaterium, Bacillus sphaericus and Bacillus polymyxa; Lactococcus lactis and Lactobacillus delbruecki sub bulgaricus, achieved viability for 30 days of storage.

pH dynamics. The results of the pH performance are shown in figure 1. For the three additives, the 7th-day pH value is observed as low with respect to its initial value at the two temperatures [room (25 ± 3 ºC) and refrigeration (4 ± 8 ºC)] and from there, it remains stable until the end of sampling.

The literature that deals with the subject of probiotics states that one of the characteristics of additives with cultures of Bacillus spp. is to favor the increase of lactobacilli. Therefore, in this result, the presence of lactic acid bacteria (LAB) could have an impact. Also the production of enzymes or some type of secondary metabolite produced by the bacillus. Nguyen (2017) and Nguyen and Nguyen (2017) stated that LAB are high producers of organic acids, which lower the pH and prevent colonization by undesirable bacteria.

pH a,b,c different letters differ at *P<0.05 (Duncan 1955), SE±0.01

Figure 1 Dynamics of pH of the zootechnical additive SUBTILPROBIO® C-31, C-34 and E-44 at room temperature (25 ± 3 ºC) and refrigeration (4±8 ºC) 

Adedeji et al. (2011) and López et al. (2013) define that pH is directly related to the degradation processes that occur during conservation. In this sense, when a biological product reaches pH values ​​between 3.8 and 4.2, its stability is achieved. This condition causes a restriction of the activity of proteolytic enzymes and the suppression of enterobacteria and Clostridium. The evaluated product is in the range 4 and 5.

Powthong and Suntornthiticharo (2015) state that the presence of LAB, in biological products, guarantees security and stability in its use as animal feed. The LAB are microorganisms that have diverse applications and one of the most important is the biopreservation and quality of sensory characteristics of food. Those facts referred by these authors are corroborated with the results obtained by Milián et al. (2013), when evaluating the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44 in in vivo microbiological indicators in EB24 broilers. They obtained increases in the counting of Lactobacillus spp. and decrease in coliforms at the level of caeca at 21, 35 and 42 days of sampling.

Research reported by Rendó et al. (2014) refer that, when the biological product obtained is adequate, sugars in the medium are mainly converted to lactic acid and acetic acid, responsible for the rapid fall of pH, which inhibits the growth of pathogenic microorganisms that cause great losses of biological foods for animals. The results of this research allow to correlate the previously mentioned facts, since the culture medium used for the elaboration of zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44, was formulated with final molasses as carbon source, which provides glucose, fructose and sucrose (Milián et al. 2017b).

The results obtained throughout the research are in line with the reports of Pérez et al. (2011) when they evaluated the stability in time of PROBIOMEX®, product of competitive exclusion based on lactic bacteria and Bacillus spp., with favorable results and similar to those obtained in this research. This mixture showed a high growth capacity and stability during storage for a period of 30 days under the same conditions of refrigeration and environment.

Similar results were obtained by García et al. (2013), when they evaluated the zootechnical additive PROBICID and demonstrated that it can be used and stored at 30ºC for up to 6 months.

The results of this research show the real possibility of the zootechnical additives SUBTILPROBIO® C-31, C-34 and E-44 for their conservation in both temperatures up to 180 days, since there have no biological or chemical negative effects that interfere in their quality.


Adedeji, L.O., Olapade- Ogunwole, F., Farayola, C. O. & Adejumo, I.O. 2011. Productivity effects of occupational hazards among poultry farmers and farm workers in Osogbo Local Govermment área of Osumn State. Inter. J. Of .Poult. Sci.10 (11), 876-870 [ Links ]

Alcázar, V., Elba, M.; Arrizon, G., Javier, P.; Gschaedler, M., Anne, C.; Lugo, C. & Eugenia, C. 2016. Extracción y cuantificación de los polísacaridos de la pared celular de las levaduras, egnosis.14:1-7. Universidad de Guadalajara Guadalajara, México. Disponible: ˂Disponible: ˂ ˃ [Consultado: 12 de febrero de 2019] [ Links ]

Arteaga, F., Laurencio, M., Rondón, A., Milián, G. & Boucourt, R. 2018. Isolation, selection and identification of Lactobacillus spp. with probiotic and technological potential, from digestive tract of backyard chickens. Revista de la Sociedad Venezolana De Microbiología. 38(1): 15-20. ISSN: 1315-2556 [ Links ]

Bagatolli, G. C. D. 2017. Validación de un método alternativo para la conservación de bacterias. Tesis de grado de Licenciatura en Bromatología. Universidad Nacional Cuyo, Argentina. Available: Available: [Consulted: 11 de marzo, 2019] [ Links ]

Bennett, R.W. & Lancette, G. A. 2007. Food and Drug Administration (FDA). Bactereological Analitical Manual. On- line ]

Caicedo, M. S. E y Chacón M. J. A. 2017a. Pruebas bajo invernadero de cepas de Bacillus subtilis como agente de biocontrol de Alternaria spp. en Brassica oleracea varitalica. Técnicas de Conservación de cepas. Trabajo de titulación previo a la obtención del título de Ingeniera en biotecnología de los recursos naturales. Universidad Politécnica Salesiana, Ecuador. p. 89. Available: <Available: > [Consulted: 11 de marzo del 2019] [ Links ]

Caicedo, W & Valle, S. 2017b. Alimento funcional: capítulo 8: Fermentación de tubérculos de taro (Colocasia esculenta (L) Scott). Un alimento funcional para porcinos en la región Amazónica. Editorial Académica Española. ISBN: 978-3-639-53478-8; p. 184-200 [ Links ]

De Araujo, N. U. 2016. Viabilidad de los Probióticos Bacillus polymyxa, Bacillus megaterium y Lactobacillus delbruekii subsp. bulgaricus microencapsulados bajo la técnica de secado por aspersión. Tesis en opción al título de master en Biotecnología. Universidad nacional de Colombia. p. 43. Available: ]

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL ]

Duncan, B. 1955. Multiple ranges and multiple F. Test Biometrics 11(1):1-42, ISSN:0006-341X, DOI:10-2307/3001478 [ Links ]

Espitia, L. C. H., Sánchez, S. J. L. & Bandala. E. R. 2014. Métodos para la inactivación de esporas en alimentos. Temas Selectos de Ingeniera de los Alimentos. 8 (1): 48-67 [ Links ]

Flores, M. L. G., García, H. Y., Proaño, O. F. B. & Caicedo, Q. W. O. 2015. Evaluación de tres dosis de un preparado microbiano, obtenido en Ecuador, en la respuesta productiva y sanitaria de cerdos en posdestete. Rev. Cien. Agri. 12(2):59-70. DOI: http://dx.doi. org/10.19053/01228420.4392 [ Links ]

García, Gloria Bueno., María Antonieta Brizuela-Herrada., Grizel Delgado-Arrieta., Paulina Serrano-Méndez. & Heidy Pérez-Leonard. 2013. Predicción de la estabilidad del probiótico PROBICID de Lactobacillus plantarun B-103-1-5 por el método de máxima probabilidad. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 47 (2): 35-41. ISSN: 0138-6204. Available: ]

Gutiérrez, L. A.R. 2016. Caracterización de cepas de Bacillus sp y Bacterias acido lácticas con actividad probiótica en el tracto digestivo de Tilapia roja (Oreochromis sp) como potencial consorcio para procesos de microencapsulación. Ph.D. Thesis, universidad Nacional de Colombia, Facultad de Medellín, Colombia, 105 p [ Links ]

López, M.P.C., Zolim, J.F.A., Alberton, L.R., Otutumi, L.K., Silveira, A.P. Mesa, S.K.L. 2013. Caracterización nutricional da silagem de bagaco de cana azúcar (Saccharum officinarum L.) adicionada ou nao de soro de queijo e/ou grao de milho. Arq. Cienc. Vet. Zool 16(1): 41-46 [ Links ]

Milián, G., Rondón, A. J., Pérez, M., Boucourt, R., Rodríguez, Z., Ranilla, M. J. Rodríguíz, M. & Carro, M.D. 2013. Evaluation of Bacillus subtilis biopreparations as growth promoters in chickens. Cuban Journal of Agricultural Science, 47 (1): 61-66, ISSN: 2079-3480 [ Links ]

Milián, G., Rondón, A. J., Pérez, M., Samaniego, L. M., Riaño, J., Boucourt, R., Ranilla, M.J., Carro, M. D., Rodríguez, M. & Laurencio, M. 2014. “Isolation and identification of strains of Bacillus spp. in different ecosystems, with probiotic purposes, and their use in animals”. Cuban Journal of Agricultural Science, 48(4): 347-351, ISSN: 2079-3480 [ Links ]

Milián, G., Rondón, A.J., Pérez, M., Fátima Arteaga., Yadileiny Portilla., Marlen Rodríguez., Pérez, Y., Beruvides, A. & M. Laurencio. 2017a. Characterization of Bacillus subtilis strains as candidates for the preparation of animal additives. Cuban Journal of Agricultural Science, 51 (2):209-216, ISSN: 2079-3480 [ Links ]

Milián, G., Rondón, A.J., Pérez, M., Fátima Arteaga., Yadileiny Portilla., Marlen Rodríguez., Pérez, Y., Beruvides, A. & M. Laurencio. 2017b. Methodology for the isolation, identification and selection of Bacillus. Cuban Journal of Agricultural Science, 51 (2):197-207, ISSN: 2079-3480 [ Links ]

Molero, M. M., Aiello, C. M., Araujo, M. J. & Briñez, Z. W. 2017. Calidad fisico-quimica, microbiológica y vida útil de bebidas probióticas fermentadas a base de lactosuero. Revista Científica, 27 (5). ISSN: 0798-2259 [ Links ]

Molina, R. M. M. 2016. Desarrollo de leche de soya en polvo con un ingrediente funcional por medio de la microencapsulación de cultivos probióticos (Lactobacillus casei 01) utilizando el método de secado por aspersión. Tesis en opción a Ing. Químico. Escuela Politécnica Nacional, Quito, Ecuador. 143p [ Links ]

Montañez, L. & Castro, CH. 2006. Resistencia de las endoporas de Bacillus subtilis en ambientes terrestres y extraterrestres extremos <> [ Links ]

NC ISO 4832:2010. Microbiología de los Alimentos de Consumo Humano y Animal. Método horizontal para la enumeración de Coliformes. Método de referencia. [ Links ]

NC ISO 4833-1:2014. Microbiología de la cadena alimentaria- Método horizontal para la enumeración de microorganismos- Parte 1: Conteo de colonias a 30ºC por la Técnica de placa vertida. [ Links ]

NC ISO 6579:2008. Microbiología de los Alimentos de Consumo Humano y Animal. Método horizontal para la detección de Salmonella spp. [ Links ]

NC ISO 6888-1:2003. Enumeración de Staphylococcus coagulasa positiva. Parte 1. Técnica utilizando el medio Agar Baird Parker. [ Links ]

NC ISO 7954:2002. Microbiología de Alimentos de Consumo Humano y Animal. Método para el conteo de levaduras. Vig. Mayo 2003. [ Links ]

Nguyen, T.T. & Nguyen, C. H. 2017. Effects of inclusión of protein hydrlysis from tra catfish by-product waste wáter in the diets on apparent ileal digestibility and total tract retention coefficients of local chikens. Livestock Research for Rural Development, 29 (3), 55 <> [ Links ]

Nguyen, T.T. 2017. Effects of ß-glucan, organic acids and probiotic in the diet on growth performance and health sattus of weanling pigs. 29 (6):1-8.file///F:/nthi29124.html [ Links ]

Pérez, M. P. & Sablón, N. 2017. Alimento funcional. Editorial Académica Española. ISBN: 978-3-639-53478-8 [ Links ]

Pérez, M. P., Milián, G. F., Boucourt, R. S. & Reynaldo, A. P. 2016. In vitro evaluation of pebiotics in hydrolysates of yeast (Saccharomyces cerevisiae) prepared by different methods. Revista La Técnica. ISSN: 1390-6895, ISSN: 2477-8982 [ Links ]

Pérez, M. P., Milián, G. F., Boucourt, R. S. & Samaniego, L.M. 2017. Levadura hidrolizada con actividad probiótica en aves. Editorial Académica Española Capítulo 7: 152- 183. ISBN: 978-3-639-53478-8 [ Links ]

Pérez, M., Laurencio, M., Rondón, A., Milián, G., Boucourt, R. & Arteaga, F. 2011. Actividad antimicrobiana de una mezcla probiótica de exclusión competitiva y su estabilidad en el tiempo. Rev. Salud Anim. 33(3): 147-153. ]

Powthong, P. & Suntornthiticharo, P. 2015. Isolation, Identification and Analysis of Probiotic Properties of Lactic Acid Bacteria from Selective Various Traditional Thai Fermented Food and Kefir. Pakistan Journal of Nutrition, 14 (2), 67-74 [ Links ]

Raisman, J. & Gonzáles, M. A. 2013. Endosporas y formas de persistencia. Hipertextos en el Área de la Biología. [Consultado: 26 de marzo 2019] [ Links ]

Rendón, M. E., Noguera, R. R. & Posada, S. L. 2014. Vinaza de caña como aditivo acidificante en la elaboración de ensilaje de maíz (Zea mays). Livestock Research for Rural Development, 26 (1), ISSN: 0121-3784, Available: ˂˃ [ Links ]

Rodríguez, M. 2017. Evaluación de la capacidad antibacteriana de PROBIOLEV® frente a bacterias patógenas. Ph.D. Thesis, Instituto de Ciencia Animal, La Habana, Cuba, 100 p [ Links ]

Rodríguez, S., Giraldo, G. I. & M. L. M. 2016. Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebióticos. Información Tecnológica. 27 (6): 135-144.doi: 10.4067/S0718-07642016000600014 [ Links ]

Rondón, A. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Ph.D. Thesis, Instituto de Ciencia Animal, La Habana, Cuba, 100 p [ Links ]

Rueda, R., Nicolás, H., Gracia, María Amalia., Santana, María Eugenia. & Horbath, J.E. 2016. Los mercados orgánicos en México como escenarios de construcción social de alternativas. Polis. 15 (43):581-605 [ Links ]

Toledo, A., Castillo, N. M., Carrillo, O. &. 2018. Probióticos: una realidad en el cultivo de camarones. Artículo de revisión. Rev. Prod. Anim.30 (2): 57-71, ISSN: 2224-7920 [ Links ]

Zhang, L., Li, J., Yun, T. T., Li, A. K., Qi, W. T., Liang, X. X., Wang, Y. W. & Liu S. 2015. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broiler. American Society of Animal Science. All rights reserved. J. Anim. Sci. 93: ISSN: 4796-4807, DOI: 10.2527/jas2015-9243 [ Links ]

Received: November 12, 2018; Accepted: July 02, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License