SciELO - Scientific Electronic Library Online

 
vol.56 número2Respuesta inmune y bioquímica sanguínea en pollos de ceba, alimentados con harina de forraje de tithonia en la etapa de finalizaciónSelección de un medio de cultivo para el crecimiento de Pichia guilliermondii LEVICA- 27 como aditivo activador de la fermentación ruminal índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Cuban Journal of Agricultural Science

versión impresa ISSN 0864-0408versión On-line ISSN 2079-3480

Cuban J. Agric. Sci. vol.56 no.2 Mayabeque abr.-jun. 2022  Epub 31-Mayo-2022

 

Review Article

Phytobiotic additives and their effect on the productive performance of pigs

1Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador

2Granja Agropecuaria Caicedo, Puyo, Pastaza, Ecuador

ABSTRACT

Phytobiotics are bioactive principles found in the roots, stems, leaves and fruits of plants and are supplied in the pig diet as essential oils, powders and extracts. These additives are used as food palatability improvers, they increase the secretory production of salivary glands, stomach juices, pancreatic enzymes and hepatic bile acids. They are also involved in the functioning of the enzymes of the intestinal mucosa and intestinal brush border, in gastric and intestinal motility, endocrine stimulation and in antioxidant and anti-inflammatory activity, as well as in intestinal health and productive performance. These compounds show bactericidal effects against Enterococcus faecalis, Clostridium spp, Staphylococcus aureus, Escherichia coli and Salmonella spp. Due to the action they exert on the cell membrane, they cause instabilities that compromise the osmotic balance and cause the lysis of the bacteria. In addition, they show immunomodulatory action, since they can act on T cells, B cells, NK cells (Natural Killer) and macrophages. For these reasons, different researchers are carried out internationally with the aim of evaluating the effect of phytobiotic additives on microbiological, immunological, histological, blood, productive and reproductive indicators in pigs. This review aims to assess the use of phytobiotic additives (essential oils, powders and extracts) in the different stages of pig production. Results of the bioactive components of essential oils, powders, plant extracts and production rates in the different pig categories are shown.

Key words: antidiarrheal; antioxidant; bioactive components; plants; intestinal health; pigs

INTRODUCTION

Pork meat is a highly demanded production worldwide, due to its rapid growth and good food conversion rate. The food for pigs represents between 60 and 70 % of total production costs (Caicedo and Caicedo 2021). In traditional pig farming, antibiotics and growth promoters were indiscriminately used, which gave rise to the appearance of resistant microorganisms and affected carcass quality (Rakotoharinome et al. 2014).

In this context, new research arises with natural additives from medicinal plants (phytobiotics), which allow the partial or total substitution of drugs in pigs diet. Beneficial bioactive compounds include carvacrol, thymol, γ-terpinene, p-cymene, sabinene, α-thujene, α-terpinene, linalool, eugenol, flavonoids, n-alkanes, sesquiterpenes, eugenol, coumarins, anthocyanidins, and saponins. However, for its implementation in the animal diet, some processing is necessary to improve the stability and quality of the product (Santamaría et al. 2015, Zaldumbide 2015, Carrión and García 2010 and Morejón 2016). The literature reports that the bioactive components of vegetables are supplied as essential oils, extracts and powders (Vázquez et al. 2013, Jaime et al. 2015 and Roura 2019).

These additives improve the taste of food, the secretion of digestive enzymes, gastric and intestinal motility, endocrine and immune stimulation, anti-inflammatory, antioxidant activity and, therefore, improvements in intake, digestibility, Food conversion and the animals weight are obtained (Gheisar and Kim 2017, Madrid et al. 2018 and Herrera and Trigueros 2019). In addition, they have great bactericidal potential against Enterococcus faecalis, Clostridium spp, Staphylococcus aureus, Escherichia coli and Salmonella spp (Ahmed et al. 2013 and Cárdenas 2014).

The increase in the palatability of diets is associated with the sensory characteristics that vegetable additives provide to pig food (Liptosa 2020). There are different products that act as antioxidants in the pig's gastrointestinal tract, able of delaying or preventing cell oxidation (Saldivar 2019). The microbial action is due to the pressure it exerts on the cell membrane, which gives place to imbalances that compromise the osmotic balance and that end with the lysis of the bacteria (Vásquez 2015 and Suryanarayana and Durga 2018). The health and integrity of the gastrointestinal tract is key in the productivity of animals; a healthy digestive tract will be one that maintains its structural and biochemical functionality, and that also has a balanced microbial population (Saldivar 2019). In fact, most antibodies are produced in the intestines, so a proper feeding management allows keeping the animal healthy (FAO 2016).

The objective of this study was to assess the use of phytobiotic additives (essential oils, powders and extracts) in the different stages of pig production.

PHYTOBIOTIC ADDITIVES FOR USE IN PIGS

At the international level, there are about 60 families of widely distributed plants, among which are: Compositae, Labiatae, Lauraceae, Myrtaceae, Pinaceae, Rosaceae, Rutaceae and Umbelliferae. Generally, they are families of plants that are found in temperate zones, such as Mediterranean and tropical countries. The active compounds of plants are in their leaves (basil, eucalyptus, peppermint, marjoram, mint, rosemary, sage, lemon balm), roots (angelica, saffron, turmeric, ginger, valerian), seeds (anise, dill, fennel, cumin), stem (cinnamon), flowers (lavender, chamomile, thyme, rose) and fruits(lemon, tangerine, orange, caraway, coriander, bay leaf, nutmeg, pepper), being stored in the secretory cells, cavities, carcass, epidermal cells or glandular trichomes that are obtained by means of steam distillation (Calsamiglia et al. 2017).

Martínez and Herradora (2019) state that 10 % of the plants that exist in the world can be considered medicinal, with many phytochemical properties. For many centuries they have been used to prevent or cure diseases that affect humans and animals. The secondary metabolites of plants are organic compounds, which are formed as a result of the main biosynthetic and metabolic ways. The presence and quantity of metabolites depends on the part of the plant that is used: stems, seeds, flowers, berries, bark or roots and both. In addition, its concentration can also be influenced by environmental conditions, the appearance of pests, as well as the sowing and harvesting season of the plant (Champagne and Boutry 2016).

In order to obtain these compounds, different methodologies are carried out for their use from the fragment of the plant. In the human and animal food industry, essential oils, powders and plant extracts are frequently used. The use of commercial or experimental phytobiotics for the pigs diet maintains a progressive rhythm, especially since the need to replace antibiotic growth promoters of synthetic origin was anticipated at the beginning of the 21st century, which began in 2006 in the European Union and, more recently, in countries such as United States and Mexico (Roura 2019). It should be noted that these additives do not have a withdrawal time, and do not generate residuality in the carcasses and, therefore, do not affect the health of consumers.

ESSENTIAL OILS

Essential oils (EO) are characterized by being aromatic substances, because their volatile components produce odors and flavors characteristic of plants (Arteaga et al. 2019). The EO contains highly volatile aromatic molecules such as (alkanes, alcohols, aldehydes, ketones, esters, and acids), monoterpenes, sesquiterpenes, and phenylpropanes. In addition, they contain compounds such as carvacrol, thymol, γ-terpinene, p-cymene, sabinene, α-thujene, α-terpinene, linalool and eugenol, depending on the plant species (Martínez et al. 2015).

A procedure for extracting EO consists of placing a 500 g sample of coarse air-dried powder (30 °C for 6 h) in the distiller, with a particle size <0.5 mm. The distillation process is carried out with a continuous flow of water steam (close to 100 °C). The process is stopped after 40 min, when it is observed that the oil volume readings remain constant. Later, the oil is separated and passed over anhydrous sodium sulfate. Then, it is passed through paper filter and kept at 4 °C in sealed vials in the dark up to 24 h, in order to ensure that oxidative degradation does not occur for their later use (Artega et al. 2019).

The supplementation of pigs diet with essential oils influences on the protection of the intestinal wall, and offers a line of defense against pathogens (Omonijo et al. 2018). The epithelial cells that make up the intestine wall need to be healthy to neutralize toxins and prevent pathogens from passing directly into the bloodstream (Jiménez 2015). As the antagonistic bacteria (Bifidobacterium and Lactobacillus) increase, they strengthen the intestinal wall and supply energy to the epithelial cells. Van and Van (2009) mentioned that EO inhibits the formation of flagella in Escherichia coli, which affects their growth and multiplication.

Hall et al. (2021) conducted a study in lactating sows supplemented with oregano EO. These authors obtained heavier piglets at one week of age, 10 weeks after weaning and at the slaughter time. Also, health records showed that piglets from litters supplemented with EO significantly reduced the incidence of therapeutic treatment and mortality. In another study, with male and female fattening pigs, the inclusion of oregano EO in the diet improved the productive yield and carcass characteristics of the animals (Janacua-Vidales et al. 2018).

Research concerning the use of EO in pig diets emphasizes its many benefits on food palatability, intestinal health, and animal productivity. Tables 1 and 2 show different commercial and experimental presentations of essential oils used in pigs.

Table 1 Different commercial and experimental presentations of essential oils used in pigs diet 

Species (plant) Used part Commercial name Trading house Country Composition Category Dose Benefits References
Oregano (O. vulgares L.) Leaves and flowers Orevitol®-L CKM Peru

  • Thymol and carvacrol

  • Pre-weaning piglets

  • Post- weaning piglets

  • Pregnant and suckling sows

  • 150 to 500 mL/1000 L H2O.

  • High biological activity

  • Antimicrobial

  • Blocks the coccidia cycle

  • Renewal of the intestinal epithelium

Baca and Ampuero (2019)
Oregano (O. vulgares L.) Leaves and flowers Regano 4XL PREMIUM S.A. Costa Rica

  • Thymol and carvacrol

  • Growing pigs

  • Fattening pigs

  • 1.5 mL/kg of food

  • Restorative of the intestinal biota

  • Antioxidants

  • Immunizer

  • Weight gain promoter

Jiménez (2015)
Thyme (T.vulgares), Rosemary (R.officinalis L.), oregano (O. vulgares L.) Leaves and flowers Aromex ®- YO GmbH Germany

  • Thymol, carvacrol and flavonoids

  • Growing pigs

  • Fattening pigs

  • Inclusion of 0.01 % in the diet

  • Antiviral

  • Antimicrobial

  • Antioxidant

  • Antiseptic

Yan et al. (2010)
True cinnamon (Cinnamomum cassia), Fenugreek (Trigonella foenumgraecum), Subterranean clover (Trifolium subterraneum) Leaf, seed and stem Aromex ®- ME GmbH Germany

  • N-alkanes, sesquiterpenesand oxigenated compounds such as hexanol, eugenol and mucilage

  • Growing pigs

  • Fattening pigs

  • Inclusion of 0.01 % in the diet

  • Reduces heat strees

  • Antimicrobial

  • Antioxidant

Lan and Kim (2018)
Oregano (O. vulgare) Leaves Orego-Stim Meriden Animal Health Ltd. United Kingdom

  • Carvacrol (81.92 %) and thymol (3.50 %).

  • Pregnant sows

  • Suckling sows

  • 15 g/kg of food

  • Better piglet performance

  • Decreased stress

Tan et al. (2015)
Broccoli extract (Brassica oleracea var. italica) and turmeric essential oils (Curcuma longa), thyme (T. vulgares), rosemary (R. officinalis L.) oregano (O. vulgares) Different parts Sipernat® GmbH Germany

  • Terpenes, carvacrol, thymol and 1.8-cineole

  • Post- weaning piglets

  • 150 mg/kg of food

  • Antioxidant

  • Antiviral

  • Anti-inflammatory

  • Immunomodulator

Mueller et al. (2012)

Table 2 Productive indicators in pigs supplemented with essential oils 

Products Stage Indicators References
Orevitol®-L 500 ppm Post-weaning Treatment days (12)
Initial weight, kg (6.60)
Final weight, kg (7.77)
Daily food intake, kg (1.61)
Food conversion, kg/kg (1.07)
Baca and Ampuero (2019)
Oregano essential oil 0.6 cm3/animal Post- weaning Treatment days (42)
Initial average weight, kg (8.30)
Final weight, kg (24.91)
Daily weight gain, kg (0.38)
Guerra et al. (2008)
Brocoli extract (Brassica oleracea var. italica) and turmeric essential oils (Curcuma longa), thyme (T. vulgares), rosemary (R. officinalis L.) and oregano (O. vulgares, inclusion of 150 mg/kg food Post- weaning Treatment days (28)
Initial weight, kg (9.50)
Final weight, kg (21)
Daily food intake, kg (1.73)
Daily weight gain, kg (0.76)
Food conversion, kg/kg (1.41)
Mueller et al. (2012)
Aromex ®- YO (thyme, rosemary, oregano, inclusion of 0.01 % in the diet Growing Treatment days (42)
Initial average weight, kg (23.67)
Weight gain, kg (25.66)
Final average weight, kg (49.33)
Food conversion, kg/kg (2.45)
Total food intake, kg (63.04)
Yan et al. (2010)
Aromex ®- ME (Original cinnamon, fenugreek, subterranean clover), inclusion of 0.01 % in the diet Growing Treatment days (42)
Initial average weight, kg (24.08)
Weight gain, kg (28.92)
Final average weight, kg (53)
Food conversion, kg/kg (2.26)
Total food intake, kg (65.48)
Lan and Kim (2018)
Regano 4XL 1.5 mL/kg of food Fattening Treatments days (60)
Initial weight, kg (55.76)
Final weight, kg (112.86)
Total food intake, kg (105)
Food conversion, kg/kg (1.83)
Jiménez (2015)
Orego-Stim, inclusion of 15 g/kg of food Pregnancy Treatment days (115)
Daily food intake, kg (2.50)
Initial average weight, kg (234)
Final average weight, kg (268.10)
Average number of piglets born/sow (11.28)
Average number of piglets alive/sow (11.16)
Average number of piglets weaned/ sow (9.60)
Weight of piglets at farrowing, kg (1.56)
Tan et al. (2015)

VEGETABLE POWDERS

To obtain plant powders, the root, stem and foliage of plant species with medicinal potential, free of pests and diseases, are used (Granados-Echegoyen et al. 2016). A low-cost methodology consists on dehydrating the samples for 7 d in the shade on perforated cardboard plates, which are removed twice a day. Subsequently, they are placed in an oven, with air recirculation for 1 h at 60 °C (Salazar et al. 2019). Next, the samples are grinded in a parallel blade hammer mill, to 1 mm particle size (Más Toro et al. 2017). They are kept at room temperature in amber bottles to avoid loss of active substances due to light action (Yin et al. 1993).

The active substances present in the powder of medicinal plants have antibacterial, antiviral, antifungal, antitumor, anthelmintic, analgesic, anti-inflammatory, hypotensive and immunostimulant properties (Más Toro et al. 2017). By adding medicinal plant powders to the pigs diet in the digestive tract, the development of intestinal pathogens (E. coli, Bacteroides spp. and Clostridium spp) is inhibited and increases the beneficial microbial population that contributes to improving digestion and absorption of nutrients, with increased weight gain, as well as a decrease in diarrheal syndrome in post-weaning piglets (Segarra 2016).

Vegetable powders are easy to prepare, and special equipment is not required for their preparation, as is the case with EO. The use of vegetable powders can be a good alternative as an additive in pigs diet in order to reduce dependence on antibiotics and synthetic growth promoters, which cause resistance of pathogenic microbes and residuality on the carcass. Tables 3 and 4 show different vegetable powders used as additives in pig production.

Table 3 Different vegetable powders used in pig diet 

Species (plant) Used part Presentation Composition Category Dose Benefits References
Ginger(Zingiber officinale) Rhizome Pure powder

  • Acids (linoleic, ascorbic)

  • Shoagoles

  • Gingerol

  • Amino acids (arginine, niacin, threonine)

  • Post-weaning piglets

  • Growing pigs

  • Fattening pigs

  • Inclusion of 300 to 400 mg/kg of food

  • Reduces parasitic, fungal and bacterial load

  • Effect on intestinal microvilli

Reyes (2015)
Cashew (Anacardium occidentale), guava (Psidium guajava), moringa (Moringa oleifera) Leaf Mixed powder

  • Quinones tripterpenes and steroids, free amino acids, reducing carbohydrates, phenols, tannins, anthocyanidins

  • Post- weaning piglets

  • Inclusion of 1% in the diet

  • Nutraceutical properties (antibacterial, antioxidants and anti-inflammatory)

  • Decreases the incidence of diarrhea

Aroche-Ginarte et al. (2017)
Guava (P. guajava), Cashew (A. occidentale) Leaf Mixed powder

  • Tannins, coumarins and anthocyanidins

  • Pre and post weaning piglets

  • Inclusion of 0.5 and 1 % in the diet

  • Antidiarrheal

  • Growth promoter

  • Anti-inflammatory

  • Antioxidant and antibacterial

Más Toro et al. (2016)
Guava (P. guajava) Leaf Pure powder

  • Polysaccharides, pectins, vitamins, steroids, glycosides, tannins, flavonoids and saponins

  • Post-weaning piglets

  • Inclusion of 1 g/100 g of food

  • Antioxidant capacity

  • Better intake

  • Reduction of diarrhea

Caicedo et al. (2021)
Garlic (A. sativum) Bulb Fermented powder

  • Diallyl disulfide, allicin and allicin

  • Fattening pigs

  • Inclusion of 2 to 4g/kg of food

  • Better yield

  • Better marbling of meat

  • Antimicrobial

Yan et al. (2012)
Moringa (M. oleifera) Leaves and stem Pure powder

  • Phenols, flavonoids, proanthocyanidins and flavonols.

  • Pregnant sows

  • Inclusion of 8 % in the diet

  • Better productive yield

  • Antioxidant

  • Higher protein level in colostrum

Jia-Jie et al. (2020)
Red quebracho (Schinopsis balansae) Stem Pure powder

  • Polyphenols, catenins

  • Fattening pigs

  • Inclusion of 500 g/t of food

  • Bactericide

  • Better intestinal integrity

  • Better absortion of nutrients and drier feces

Rojas (2016)

Table 4 Productive indicators in pigs supplemented with vegetable powders 

Products Stage Indicators References
Cashew leaves , inclusion of 1% in the diet Pre-weaning Treatment days (12)
Initial weight, kg (5.0)
Final weight, kg (6.6)
Daily food intake, kg (0.05)
Weight gain kg (1.60)
Food conversion, kg/kg (1.51)
Mas Toro et al. (2016)
Mixture of cashew leaves, guava and moringa, inclusion of 1 % in the diet Post- weaning Treatment days (42)
Initial weight, kg (7.86)
Final weight, kg (23.56)
Daily food intake, kg (0.37)
Daily weight gain, kg (0.37)
Weight gain, kg (15.70)
Food conversion , kg/kg (2.39)
Aroche-Ginarte et al. (2017)
Guava leaf, inclusion of 1 g/100 g of food Post-weaning Treatment days (15)
Initial weight, kg (9.17)
Final weight, kg (13.52)
Daily food intake, kg (0.35)
Daily weight gain, kg (0.29)
Weight gain, kg (4.35)
Food conversion, kg/kg (1.35)
Caicedo et al. (2021)
Dried ginger rhizome, inclusion of 400 mg/kg of food Growing Treatment days (70)
Initial weight, kg (10.83)
Final weight, kg (42.55)
Daily weight gain, kg (0.45)
Daily food intake, kg (1.01)
Food conversion, kg/kg 2.21
Weight gain, kg (31.72)
Total food intake , kg (70.28)
Reyes (2015)
Stem of red quebracho , inclusion of 500 g/t of food Fattening Treatment days (30)
Initial weight, kg (73.61)
Weight gain, kg (20.61)
Daily weight gain, kg (0.68)
Food conversion, kg/kg (3.02)
Total food intake kg (62.22)
Final weight, kg (94.22)
Rojas (2016)
Dried garlic, inclusion of 2 g/kg of food Fattening Treatment days (84)
Initial weight, kg (55.91)
Weight gain, kg (65)
Daily weight gain, kg (0.77)
Food conversion, kg/kg (2.25)
Total food intake, kg (189)
Final weight, kg (121.18)
Yan et al. (2012)
Moringa leaf, inclusion of 8 % in the diet Pregnancy Treatment days (150)
Food intake before mating kg/d/sow (2.50)
Intake during pregnancy kg/d/sow (2.10)
Average initial weight of sows, kg (140)
Average number of piglets born /sow (13.50)
Average number of piglets alive/sow (11.57)
Litter weight at born, kg (19.16)
Average weight of the piglet at born, kg (1.38)
Jia-Jie et al. (2020)

VEGETABLE EXTRACTS

Plant extracts belong to the group of additives classified as aromatic and flavoring, which include all natural products and the corresponding synthetic products that can be used in all animal species, without limitation of age or dose. The use of macerates, decoction, infusion and boiled preparations is the most common way of taking advantage of plant resources to overcome various disorders such as rheumatism, diarrhea, diabetes mellitus, cough, bical ulcers, cholesterol reduction and as an antibacterial against Vibrio cholerae, Shigella flexneri, S. aureus, Salmonella spp., E. coli, Pseudomonas aeruginosa and Candida albicans (Gonçalves et al. 2008, Gutiérrez et al. 2008, Birdi et al. 2010, Metwally et al. 2010, Sanda et al. 2011, Shruthi et al. 2013 and Morais-Braga et a.l 2016).

Plant extracts are cheaper and more practical compared to powders and EO. They are easy to prepare and apply. Regarding the benefits obtained when using them, their stability and tolerance should be highlighted, since they can be used in all animal species, without restriction of age or product concentration (Hanczakowska and Swiatkiewicz 2012, García- Risco et al. 2015 and Santamaría et al. 2015).

Plant extracts are a good alternative for use as an additive in pig diets, since they are low cost and provide benefits in the sensory characteristics of the food, with the consequent increase in dry matter intake. The researches in pigs show that the use of plant extracts improves productive yield, digestibility of dry matter and protein. In addition, it provides anti-inflammatory and antimicrobial effects against various pathogens, with improvements in meat quality parameters (Isley et al. 2003, Liu et al. 2013, Devi et al. 2015 and Hanczakowska et al. 2015). Tables 5 and 6 show different studies with plant extracts for use in pigs.

Table 5 Different commercial and experimental presentations of plant extracts used in pig diet 

Species (plant) Used part Commercial name Trading house Country Composition Category Dose Benefits References
Mixture between Thyme (T. vulgaris) and carob (Ceratonia siliqua) Whole plant and seeds Dysantic® Vetanco Argentina Galactopyranose, thymol, carvacrol and flavonoids

  • Post-weaning and growing pigs

  • Inclusion of 0.1 and 0.2 % in the food

  • Bactericide

  • Viricide

  • Inmune modulator

  • Stability of the gastrointestinal biota

Zamora (2018)
Mixture of artichoke(Cyna-ra sculymus), celery(Apium graveolens), beet (Beta vulgaris), onion (Allium cepa), garlic (Allium sativum), spinach(Spina-cea olerace), avocado(Persea americana), oat (Avena sativa) and parsley (Petroselinum crispun) Several parts Protorgan® GUWLAB Mexico Polyphenols, quercetins, apigenin, phytoestrogens Fattening and growing pigs

  • Inclusion of 0.1 and 0.15 % in the food

  • Grow promoter

  • Antioxidant

  • Improved intake and weight gain

Dávila-Ramírez et al. (2020)
Soapbark (Mapudungun küllay) Leaves and flowers Hibotek CCLabs Ecuador Fatty acids Omega 3 vitamin E. Heterogeneous group of sterol glycosides and triterpenoids

  • Growing and fattening pigs

  • Inclusion of 150, 200, 250 and 300 p.p.m. in the food

  • Grow promoter

  • Environmental ammonia reducer

  • Antibiotic action,

  • Antiprotozoarica and Antifungal.

De La Cueva (2013)
Cinnamon (Cinnamomum verum) Stem Re ProPlus PlusVet Animal Health China Plant extracts, organic acids, natural origin omega-3fatty acids and mycotoxin sequestrants.

  • Pregnancy sows

  • Inclusion of 10 g/sow/day

  • Improved intestinal health

  • Increased milk production

  • Reduces the incidence of mastitis, metritis and agalactia

  • Increased food intake during lactation

PVAH (2019)
Wild anise (Piper auritum Kunth) Leaves Cooked extract of wild anise foliage - - Polyphenols and tannins

  • Post-weaning piglets

  • Inclusion of 10 mL/100 g of food

  • Improves food intake, weight gain, Food conversion and final weight.

  • Decreases the incidence of diarrhea

Caicedo et al. (2019)
Ginger (Zingiber officinale) Rhizome Soapbark extract - - Fatty acids, fiber, essential oils, amino acids and minerals. Aromatic principles: zingiberene bisabolene Punget principles: gingerols and shogaols

  • Growing and fattening pigs

  • Inclusion of 0.25, 0.5, 0.75 and 1 % in the food

  • Acts as stimulant and antibacterial

  • Improves digestion by increasing absorption

  • Avoid respiratory problems

  • Increases blood flow

Segarra (2016)
Spanish chestnut (Castanea sativa) Leaves Spanish chestnut extract - - Heterogeneouspolymeric tannins formed by phenolic acids, in particular gallic acids, and simple sugars.

  • Growing and fattening pigs

  • Inclusion of 0.2% in the food

  • Reduces oxidative stress

  • Improve their productive performance

  • Antimicrobial activity

Aguirre-Meza et al. (2016)
Guava (P. guajava) Leaf Cooked extract of guava foliage - - Polysaccharides, pectins, vitamins, steroids, glycosides, tannins, flavonoids and saponins

  • Post-weaning pigs

  • Inclusion of 10 mL/100 g of food

  • Antioxidant capacity

  • Improved intake, weight gain, Food conversion, final weight

  • Reduction of diarrhea

Caicedo et al. (2021)

Table 6 Productive indicators in pigs supplemented with botanical extracts 

Product Stage Indicators References
Dysantic® (thyme), inclusion of 0.1 % in the diet Pre- weaning Treatment days (24)
Initial weight, kg (6.68)
Final weight, kg (8.96)
Daily food intake, kg (0.28)
Daily weight gain, kg (0.17)
Food conversion, kg/kg (1.13)
Zamora (2018)
Wild anise, inclusion of 10 ml/100 g of food Post-weaning Treatment days (14)
Initial weight, kg (6.06)
Final weight, kg (8.94)
Daily food intake, kg (0.34)
Daily weight gain, kg (0.23)
Weight gain, kg (2.88)
Food conversion, kg/kg (1.71)
Caicedo et al (2019)
Hibotek (Soapbark), inclusion of 300 ppm in the diet Growing Treatment days (90)
Initial weight, kg (15.22)
Final weight, kg (73.82)
Daily weight gain, kg (0.74)
Daily food intake, kg (1.64)
Food conversion, kg/kg (3.81)
Weight gain, kg (58.60)
Total food intake ,kg (147.64)
De La Cueva (2013)
Protorgan®, inclusion of 0.1% in the diet Growing Initial weight, kg (30)
Final weight, kg (70)
Daily food intake, kg (2.3)
Food conversion, kg/kg (2.3)
Dávila-Ramírez et al (2020)
Ginger rhizome, inclusion of 0.75% in the diet Growing Treatment days (80)
Initial weight, kg (17.45)
Final weight, kg (82.5)
Daily weight gain, kg (0.80)
Daily food intake, kg (2.80)
Food conversion, kg/kg (2.87)
Weight gain, kg (65.05)
Total food intake, kg (227.27)
Segarra (2016)
Spanish chestnut, inclusion of 0.2% in the diet Fattening Treatment days (40)
Initial weight, kg (60.18)
Weight gain, kg (27.99)
Daily weight gain, kg (0.68)
Food conversion, kg/kg (3.07)
Final weight, kg (88.17)
Aguirre-Meza et al. (2016)
Re ProPlus (cinnamon), inclusion of 10 g/day in the diet Pregnancy Pregnancy days (70)
Treatment days (45)
Average number of piglets born/sow (12.07)
Average number of piglets alive/sow (11.37)
Average weight of piglets at born, kg (1.04)
PVAH (2019)

CONCLUSIONS

The use of commercial and experimental phytobiotic additives constitutes an alternative to the excessive use of synthetic antibiotics, which act as growth promoters in pigs. These additives are supplied to animals as essential oils, powders and extracts to improve food intake, weight gain, Food conversion, final weight, carcass characteristics and reduce the incidence of diarrhea after weaning. The supplementation with phytobiotics in pigs diet is totally innocuous, that is, it does not have a withdrawal period, without wastes in tissues, and does not generate microbial resistance.

REFERENCES

Aguirre-Meza, R., Romo-Rubio, J., Barajas-Cruz, R., Romo-Valdez, J., Güémez-Gaxiola, H. & Urías-Castro, C. 2016. “Respuesta productiva de cerdos en crecimiento-finalización a la suplementación”. Abanico Veterinario, 6(3): 55-64, ISSN: 2448-6132. https://doi.org/10.21929/abavet2016.63.5. [ Links ]

Ahmed, S.T., Hossain, M.E., Kim, G.M., Hwang, J.A., Ji, H. & Yang, C.J. 2013. “Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets”. Asian-Australasian Journal of Animal Sciences, 26(5): 683-690, ISSN: 1976-5517. https://doi.org/10.5713/ajas.2012.12683. [ Links ]

Aroche-Ginarte, R., Martínez-Aguilar, Y., Ayala-González, L., Rodríguez-Bertot, R. & Rodríguez-Fraga, Y. 2017. “Comportamiento productivo e incidencia de diarrea en cerdos posdestete suplementados con polvo mixto de hojas de plantas con propiedades nutracéuticas”. Revista Ciencia y Agricultura, 14(2): 19-26, ISSN: 2539-0899. https://doi.org/10.19053/01228420.v14.n2.2017.7145. [ Links ]

Arteaga, Y., Bravo, L.R., García, Y., Tapuy, A.S., Bermúdez, A. & Guzmán, D.M. 2019. “Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design”. Heliyon, 5 (6): e01942, ISSN: 2405-8440. https://doi.org/10.1016/j.heliyon.2019.e01942Links ]

Baca, N. & Ampuero, A. 2019. “Efecto de la inclusión de aceite esencial de orégano en la dieta de lechones destetados sobre parámetros productivos”. Revista de Investigaciones Veterinarias del Perú, 30(4): 1537-1542, ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i4.17145. [ Links ]

Birdi, T., Daswani, P., Brijesh, S., Tetali, P., Natu, A. & Antia, N. 2010. “Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhea”. BMC Complementary and Alternative Medicine, 10: 33, ISSN: 1472-6882. http://dx.doi.org/10.1186/1472-6882-10-33. [ Links ]

Caicedo, W. & Caicedo, L. 2021. “Comportamiento productivo de cerdos comerciales en crecimiento alimentados con ensilado de papa (Solanum tuberosum L.) de rechazo”. Livestock Research for Rural Development, 33(4), Article #51, ISSN: 2521-9952. Available: http://www.lrrd.org/lrrd33/4/3351orlan.html. [ Links ]

Caicedo, W., Ferreira, F.N.A., Arteaga, Y., Flores, A., Buenaño, C., Pérez, M., Silva Neta, C.S. & Ferreira, W.M. 2021. “Guava (Psidium guajava L.) leaf meal and cooked extract in post-weaning piglets´ diets improve production rates and control the incidence of diarrhea”. Livestock Research for Rural Development, 33(1), Article #11, ISSN: 2521-9952. Available: http://www.lrrd.org/lrrd33/1/orlan3311.html. [ Links ]

Caicedo, W., Pérez, M., Sánchez, J., Flores, A. & Duchitanga, E. 2019. “Contenido de fenoles totales y actividad antioxidante del follaje de anís silvestre (Piper auritum Kunth) y su efecto nutracéutico para cerdos en posdestete”. Revista de Investigaciones Veterinarias del Perú, 30(4): 1470-1480, ISSN: 1609-9117. http://dx.doi.org/10.15381/rivep.v30i4.17264. [ Links ]

Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L. & Ferret, A. 2007. “Essential Oils as Modifiers of Rumen Microbial Fermentation”. Journal of Dairy Science, 90(6): 2580-2595, ISSN: 0022-0302. http://dx.doi.org/10.3168/jds.2006-644. [ Links ]

Cárdenas, M. 2014. Utilización de mananoligosacáridos en dietas de cerdos en etapa de crecimiento. Veterinarian Thesis. Universidad Politécnica Salesiana, Cuenca, Ecuador, 100 p. [ Links ]

Carrión, A.V. & García, C.R. 2010. Preparación de extractos vegetales: determinación de eficiencia metódica. Biochemistry Thesis. Universidad de Cuenca, Cuenca, Ecuador, 150 p. [ Links ]

Champagne, A. & Boutry, M. 2016. “Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species”. Biochimica et Biophysica Acta, 1864 (8): 1039-1049, ISSN: 0304-4165. http://dx.doi.org/10.1016/j.bbapap.2016.02.010. [ Links ]

Dávila-Ramírez, J., Munguía-Acosta, L., Morales-Coronado, J., García-Salinas, A., González-Ríos, H., Celaya-Michel, H., Sosa-Castañeda, J., Sánchez-Villalba, E., Anaya-Islas, J. & Barrera-Silva, A. 2020. “Addition of a Mixture of Plant Extracts to Diets for Growing-Finishing Pigs on Growth Performance, Blood Metabolites, Carcass Traits, Organ Weight as a Percentage of Live Weight, Quality and Sensorial Analysis of Meat”. Animals, 10(7): 1229, ISSN: 2076-2615. http://dx.doi.org/10.3390/ani10071229. [ Links ]

De La Cueva, E. 2013. Inclusión de niveles de extracto de quillaja en el engorde de cerdos en el cantón Santo Domingo. Engr Thesis. Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador, 80 p. [ Links ]

Devi, S.M., Park, J.W. & Kim, I.H. 2015. “Effect of plant extracts on growth performance and insulin-like growth factor 1 secretion in growing pigs”. Revista Brasileira de Zootecnia, 44(10): 355-360, ISSN: 1806-9290. https://doi.org/10.1590/S1806-92902015001000003. [ Links ]

FAO. 2016. Organización de las Naciones Unidas para la Alimentación y Agricultura. Producción y Sanidad Animal. Available: http://www.fao.org/ag/againfo/themes/es/pigs/home.html. [ Links ]

García-Risco, M., Vázquez, E., Sheldon, J., Steinmann, E., Riebesehl, N., Fornari, T. & Reglero, G. 2015. “Supercritical fluid extraction of heather (Calluna vulgaris) and evaluation of anti-hepatitis C virus activity of the extracts”. Virus Research, 198: 9-14, ISSN: 0168-1702. https://doi.org/10.1016/j.virusres.2014.12.022. [ Links ]

Gheisar, M.M. & Kim, I.H. 2017. “Phytobiotics in poultry and swine nutrition - a review”. Italian Journal of Animal Science, 17(1): 1-8, ISSN: 1594-4077. https://doi.org/10.1080/1828051X.2017.1350120. [ Links ]

Gonçalves, F.A., Andrade Neto, M., Bezerra, J.N.S., Macrae, A., De Sousa, O.V., Fonteles-Filho, A.A. & Vieira, R.H.S.D.F. 2008. “Antibacterial activity of guava, Psidium guajava Linnaeus, leaf extracts on diarrhea-causingenteric bacteria isolated from seabob shrimp, Xiphopenaeus kroyeri (Heller)”. Revista do Instituto de Medicina Tropical de São Paulo, 50(1): 11-15, ISSN: 1678-9946. https://doi.org/10.1590/s0036-46652008000100003. [ Links ]

Granados-Echegoyen, C., Ortega-Morales, B.O., Chan-Bacab, M.J., Reyes-Estébanez, M.M. & Camacho-Chab, J.C. 2016. “Polvos de especies vegetales para el control de Sitophilus zeamais Motschulsky (coleoptera: curculionidae)”. Entomología mexicana, 3: 430-435, ISSN: 2448-475X. [ Links ]

Guerra, C., Galán, J., Méndez, J. & Murillo, E. 2008. “Evaluación del efecto del extracto de orégano (Oreganum vulgare) sobre algunos parámetros productivos de cerdos destetos”. Revista Tumbaga, 1(3): 16-29, ISSN: 1909-4841. [ Links ]

Gutiérrez, R.M.P., Mitchell, S. & Solis, R.V. 2008. “Psidium guajava: A review of its traditional uses, phytochemistryand pharmacology”. Journal of Ethnopharmacology, 117(1): 1-27, ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2008.01.025. [ Links ]

Hall, H.N., Wilkinson, D.J. & Le Bon, M. 2021. “Oregano essential oil improves piglet health and performance through maternal feeding and is associated with changes in the gut microbiota”. Animal Microbiome, 3, Article #2, ISSN: 2524-4671. https://doi.org/10.1186/s42523-020-00064-2. [ Links ]

Hanczakowska, E. & Swiatkiewicz, M. 2012. “Effect of herbal extracts on piglet performance”. Czech Journal of Animal Science, 57(9): 420-429, ISSN: 1805-9309. [ Links ]

Hanczakowska, E., Swi ̨Atkiewicz, M. & Grela, E.R. 2015. “Effect of dietary inclusion of a herbal extract mixture and different oils on pig performance and meat quality”. Meat Science, 108: 61-66, ISSN: 0309-1740. https://doi.org/10.1016/j.meatsci.2015.05.020. [ Links ]

Herrera, G.A. & Trigueros, J.M. 2019. Efecto del fitobiótico Digestarom® Finish en el desempeño productivo de cerdos de engorde. Engr. Thesis. Escuela Agrícola Panamericana, Zamorano, Honduras, 19 p. [ Links ]

Isley, S.E., Miller, H.M., Greathead, H.M.R. & Kamel, C. 2003. “Plant extracts as supplements for lactating sows: Effects on piglet performance sow food intake and diet digestibility”. Animal Science, 77(2): 247-254, ISSN: 1748-748X. https://doi.org/10.1017/S1357729800058987. [ Links ]

Jaime, L., Vázquez, E., Fornari, T., López‐Hazas, M.C., García‐Risco, M.R., Santoyo, S. & Reglero, G. 2015. “Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO2 extraction”. Journal of the Science and Food Agriculture, 95(4): 722-729, ISSN: 1097-0010. https://doi.org/10.1002/jsfa.6788. [ Links ]

Janacua-Vidales, H., Alarcón-Rojo, A., Olguín-Arredond, H., Quintero-Elisea, J. & Cardona-Hernández, M. 2018. “Aceites esenciales de orégano en la dieta de cerdos para mejorar las características de la canal”. CULCyT, 65: 85-90, ISSN: 2007-0411. [ Links ]

Jia-Jie, S., Peng, W., Guo-Ping, C., Jun-Yi, L., Qian-Yun, X., Geng-Yuan, C., Jia-Han, W., Bin, Z., Yue-Qin, X., Qing-Yan, J., Ting, C. & Yong-Liang, Z. 2020. “Effect of Moringa oleifera supplementation on productive performance, colostrum composition and serum biochemical indexes of sow”. Journal of Animal Physiology and Animal Nutrition, 104(1): 291-29. ISSN: 1439-0396. https://doi.org/10.1111/jpn.13224.9. [ Links ]

Jiménez, O. 2015. Evaluación de los parámetros productivos en cerdos de raza Landrace a base de aceite de orégano como promotor de crecimiento, en el barrio el Rosal del cantón Mejía. Veterinarian Thesis. Universidad Técnica de Cotopaxi, Latacunga, Ecuador, 106 p. [ Links ]

Lan, R. & Kim, I. 2018. “Effects of feeding diets containing essential oils and betaine to heat-stressed growing-finishing pigs”. Archives of Animal Nutrition, 72(5): 368-378, ISSN: 1477-2817. https://doi.org/10.1080/1745039X.2018.1492806. [ Links ]

Liptosa. 2020. Nuevas Aplicaciones de Fitobióticos y Nutraceúticos a la salud Intestinal. Available: https://millingandgrain.co/entrada/nuevas-aplicaciones-de-fitobioticos-y-nutraceuticos-a-la-salud-intestinal-22066. [ Links ]

Liu, Y., Song, M., Che, T.M., Almeida, J.A.S., Lee, J.J., Bravo, D. & Pettigrew, J.E. 2013. “Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli”. Journal of Animal Science, 91(11): 5294-5306, ISSN: 1525-3163. https://doi.org/10.2527/jas.2012-6194. [ Links ]

Madrid, T., López, A. & Parra, J. 2018. “Efecto del aceite esencial de orégano (Lippia origanoides) sobre metabolitos sanguíneos en pollos de engorde”. Revista de Medicina Veterinaria, 1(37): 25-33, ISSN: 2389-8526. https://doi.org/10.19052/mv.vol1.iss37.3. [ Links ]

Martínez, K. & Herradora, M. 2019. Fitobióticos ¿Una Alternativa Real?. Available: https://bmeditores.mx/porcicultura/fitobioticos-una-alternativa-real-2485/. [ Links ]

Martínez, R. Ortega, M., Herrera, J., Kawas, J., Zárate, J. & Robles, R. 2015. “Uso de aceites esenciales en animales de granja”. Interciencia, 40(11): 744-750, ISSN: 0378-1844. [ Links ]

Más Toro, D., Martínez, Y., Rodríguez, R., Pupo, G., Rosabal, O. & Olmo, C. 2017. “Preliminary analysis of secondary metabolites in mixed powders of leaves of medicinal plants”. Revista Cubana de Plantas Medicinales, 22(1): 1-9, ISSN: 1028-4796. [ Links ]

Más Toro, D., Martínez, Y., Rodríguez, R., Salazar, I., Aroche, R., López, B. & Marcella, D. 2016. “Efecto de la suplementación dietética con polvos de hojas de guayaba (Psidium guajava) y marañón (Anacardium occidentale) en el comportamiento productivo y la incidencia de diarrea en cerdos antes y después del destete”. Revista Computarizada de Producción Porcina, 23(2): 106-113, ISSN: 1026-9053. [ Links ]

Metwally, A.M., Omar, A.A., Harraz, F.M. & El Sohafy, S.M. 2010. “Phytochemical investigation and antimicrobialactivity of Psidium guajava L. leaves”. Pharmacognosy Magazine, 6: 212-218, ISSN: 0976-4062. https://doi.org/10.4103/0973-1296.66939. [ Links ]

Morais-Braga, M.F.B., Carneiro, J.N.P., Machado, A.J.T., Dos Santos, A.T.L., Sales, D.L., Lima, L.F., Figueredo, F.G. & Coutinho, H.D.M. 2016. “Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms”. Journal of Ethnopharmacology, 194: 1140-1152, ISSN: 0378-8741. https://doi.org/10.1016/j.jep.2016.11.017. [ Links ]

Morejón, S. 2016. Evaluación de un extracto alternativo comercial de plantas medicinales en la dieta de cerdos de línea comercial topins en la etapa de acabado. Engr Thesis. Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 104 p. [ Links ]

Mueller, K., Blum, N., Kluge, H., Bauerfeind, R., Froehlich, J., Mader, A., Wendler, K. & Mueller, A. 2012. “Effects of broccoli extract and various essential oils on the intestinal and fecal microflora and on xenobiotic enzymes and the system piglet antioxidant”. Open Journal of Animal Sciences, 2(2): 78-98, ISSN: 2161-7627. https://doi.org/10.4236/ojas.2012.22012. [ Links ]

Omonijo, F.A., Ni, L., Gong, J., Wang, Q., Lahaye, L. & Yang, C. 2018. “Essential oils as alternatives to antibiotics in swine production”. Animal Nutrition, 4(2): 126-136, ISSN: 2405-6545. https://doi.org/10.1016/j.aninu.2017.09.001. [ Links ]

PlusVet Animal Health (PVAH). 2019. Expertos en fitobióticos y salud digestiva. Available: http://plus.vet/home/our-products/reproplus. [ Links ]

Rakotoharinome, M., Pognon, D., Randriamparany, T., Ming, J.C., Idoumbin, J.P., Cardinale, E. & Porphyre, V. 2014. “Prevalence of antimicrobial residues in pork meat in Madagascar”. Tropical Animal Health Production, 46(1): 49-55, ISSN: 0049-4747. https://doi.org/10.1007/s11250-013-0445-9. [ Links ]

Reyes, M. 2015. Evaluación del Desempeño Sanitario al Aplicar Zingiber officinale (Jengibre), en la Alimentación de Cerdos York*Landrace, en la etapa Post - Destete - Acabado. Engr Thesis. Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 148 p. [ Links ]

Rojas, V. 2016. Evaluación de Schinopsis lorentzii en cerdos utilizando dietas durante la fase de engorde. Engr Thesis. Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador, 92 p. [ Links ]

Roura, E. 2019. Los Fitobióticos como estimulantes digestivos en nutrición porcina. Available: https://nutricionanimal.info/los-fitobioticos-actuan-como-estimulantes-digestivos/Links ]

Salazar, I., Rodríguez, R., Betancourt, C., Martínez, Y. & Guillaume, J. 2019. “Análisis de los metabolitos secundarios del polvo de hojas de Origanum vulgare y Ficus pandurata”. Revista de Producción Animal, 31(1): 61-63, ISSN: 2224-7920. [ Links ]

Saldivar, D. 2019. Fitobióticos en el Mantenimiento de la Salud Intestinal y Desempeño Productivo en Cerdos. Available: https://bmeditores.mx/porcicultura/fitobioticos-en-el-mantenimiento-de-la-salud-intestinal-y-desempeno-productivo-en-cerdos-2309/Links ]

Sanda, K.A., Grema, H.A., Geidam, Y.A. & Bukar-Kolo, Y.M. 2011. “Pharmacological aspects of P. guajava: An update”. International Journal of Pharmacology, 7(3): 316-324, ISSN: 1811-7775. https://doi.org/10.3923/ijp.2011.316.324. [ Links ]

Santamaría, C., Martín-González, A. & Astorga, F. 2015. “Extractos vegetales aplicación para la reducción de stres”. Revista nutriNews, No.2: 75-80. Available: https://nutricionanimal.info/download/0315-ena-WEB.pdf. [ Links ]

Segarra, C. 2016. Uso de extracto de raíz de jengibre, (Zingiber officinale Roscoe) en la alimentación de Cerdos. Engr Thesis. Universidad de las Fuerzas Armadas, Santo Domingo, Ecuador, 46 p. [ Links ]

Shruthi, S.D., Roshan, A., Sharma, S. & Sunita, S. 2013. “A review on the medicinal plant Psidium guajava Linn. (Myrtaceae)”. Journal of Drug Delivery & Therapeutics, 3 (2): 162-168, ISSN: 2250-1177. [ Links ]

Suryanarayana, M.A. & Durga, S. 2018. “Role of Phytogenic Feed Additives in Swine Production-A Review”. International Journal of Environment, Agriculture and Biotechnology, 3(3): 1071-1078, ISSN: 2456-1878. https://doi.org/10.22161/ijeab/3.3.46. [ Links ]

Tan, C., Wei, H., Sun, H., Ao, J., Long, G., Jiang, S. & Peng, J. 2015. “Effects of Dietary Supplementation of Oregano Essential Oil to Sows on Oxidative Stress Status, Lactation Feed Intake of Sows, and Piglet Performance”. BioMed Research International, 525218, ISSN: 2314-6141. http://dx.doi.org/10.1155/2015/525218. [ Links ]

Van, G. & Van, A. 2009. Aceites esenciales y ácidos orgánicos contra E. coli (1+1=3). Available: https://www.3tres3.com/articulos/aceites-esenciales-y-acidos-organicos-contra-e-coli-1-1=3_2550/. [ Links ]

Vásquez, E. 2015. Actividades Biológicas de Extractos de Plantas y de sus Combinaciones. PhD Thesis. Universidad Autónoma de Madrid, Madrid, España, 224 p. [ Links ]

Vázquez, E., García-Risco, M.R., Jaime, L., Reglero, G. & Fornari, T. 2013. “Simultaneous extraction of rosemary and spinach leaves and its effect on the antioxidant activity of products”. Journal of Supercritical Fluids, 82: 138-145, ISSN: 0896-8446. https://doi.org/10.1016/j.supflu.2013.07.004. [ Links ]

Yan, L., Meng, Q.W. & Kim, I. 2012. “Effects of fermented garlic powder supplementation on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs”. Animal Science Journal, 83(5): 411-417, ISSN: 1740-0929. https://doi.org/10.1111/j.1740-0929.2011.00973.x. [ Links ]

Yan, L., Wang, J., Kim, J., Meng, Q., A.O, X., Hong, S. & Kim, H. 2010. “Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower-finisher pigs”. Livestock Science, 128(1-3): 115-122, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2009.11.008. [ Links ]

Yin, Y.L., Zhong, H.Y., Huang, R.L., Chen, C.M., Li, T.J. & Pai, Y.F. 1993. “Nutritive value of feedstuffs and diets for pigs. I. Chemical composition, apparent ileal and fecal digestibility”. Animal Feed Science and Technology, 44(1-2): 1-27, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90034-H. [ Links ]

Zaldumbide, M. 2015. Evaluación de dietas con dos niveles de aceite de orégano sobre el desempeño productivo en lechones destetados hasta la fase inicial. Veterinarian Thesis. Universidad Central del Ecuador, Quito, Ecuador, 79 p. [ Links ]

Zamora, F. 2018. Extractos comerciales de tomillo (Thymus vulgaris) y de algarrobo (Ceratonia siliqua) en la dieta de lechones destetados. Engr Thesis. Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú, 50 p. [ Links ]

Received: May 05, 2021; Accepted: October 29, 2021

*Email: orlando.caicedo@yahoo.es

Conflict of interest: The authors declare that there are no conflicts of interests among them

Author´s contribution: W. Caicedo: Conceptualization, Investigation, Formal analysis, Writing - original draft, Deisy Margoth Chinque: Investigation, Formal analysis, Vanessa Jimena Grefa: Investigation, Formal analysis

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License