SciELO - Scientific Electronic Library Online

 
vol.56 número4Inclusión de emulsionante en dietas con reducción de energía para gallinas ponedoras índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Cuban Journal of Agricultural Science

versión On-line ISSN 2079-3480

Cuban J. Agric. Sci. vol.56 no.4 Mayabeque oct.-dic. 2022  Epub 01-Dic-2022

 

Ciencia Animal

Rendimiento, índices hematológicos y química sanguínea de dos razas de pollos de engorde alimentados con harina de hojas de Ficus exasperate y dietas suplementadas con vitamina C

0000-0002-7806-6662C.O Osowe1  , 0000-0001-9652-7250O.A Adu1  , 0000-0002-2175-1490O.D Oloruntola2  *  , 0000-0003-3471-7758C.A Chineke1 

1Department of Animal Production and Health, The Federal University of Technology, Akure, Nigeria.

2Department of Animal Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria.

RESUMEN

Un total de 240 pollos de engorde Arbor Acre (AB) y 240 Cobb 500 (CO) que recibieron polvo de hojas de Ficus exasperate (1% PHFE) y dietas suplementadas con 200 mg/kg de vitamina C (VC) se estudiaron para determinar el rendimiento y los índices sanguíneos. Las dietas 1 y 2 (controles) se suministraron a AB y CO, respectivamente; las dietas 3 y 4 (suplementadas con VC) se suministraron a AB y CO, respectivamente; las dietas 5 y 6 (suplementadas con PHFE) se suministraron a AB y CO, respectivamente; mientras que las dietas 7 y 8 (suplementadas con VC+PHFE) se suministraron a AB y CO, respectivamente. A las 6 semanas de edad, la ganancia de peso corporal (GPC) de CO mejoró (P<0.05) en las aves AB, mientras que la VC mejoró la GPC de CO por encima de AB. La VC mejoró la tasa de conversión alimentaria (TCA). La VC y PHFE aumentaron el volumen de células empaquetadas y los glóbulos rojos (GR); mientras que los GR de CO fue mayor (P<0.05) que AB. La VC y el PHFE aumentaron la concentración de hemoglobina. El conteo de glóbulos blancos mejoró (P<0.05) por PHFE. La VC y la VC x PHFE redujeron (P<0.05) la concentración de aspartato aminotransferasa sérica. La VC y el PHFE redujeron (P<0.05) la concentración de creatinina sérica. El PHFE reduce (P <0.05) el colesterol sérico. En conclusión, los suplementos de CO y 200 mg/kg de vitamina C favorecen un aumento de peso corporal óptimo. Para una mejor inmunidad e hipocolesterolemia, está indicada la suplementación con PHFE al 1 %; mientras que PHFE al 1 % podría combinarse con 200 mg/kg de vitamina C para mejorar el consumo de alimento, el recuento de glóbulos rojos, el volumen de células empaquetadas y la concentración de hemoglobina; para prevenir daños en el hígado y los tejidos y proteger las células renales del daño en pollos de engorde.

Palabras-clave: aviar; estructura genética; fitógenos; ácido cítrico; estrés

En el trópico, donde en la mayoría de los lugares las especies de aves de corral se crían fuera de su zona termoneutral de 18 ºC-24 ºC, los efectos negativos de la alta temperatura ambiente en el rendimiento y el estado de salud de los pollos de engorde van en aumento (Olanrewaju et al. 2010), y esto es motivo de preocupación. Esto se debe a los problemas climáticos, que han resultado en un estrés por calor generalizado entre las especies de ganado (Kpomasse et al. 2021). Informes anteriores indican que la suplementación con antioxidantes mejoró los efectos del estrés por calor en las aves de corral; y hay llamados para el ajuste de las dietas de las aves a las condiciones climáticas de las regiones donde se producen (Suganya et al. 2015, Adeyeye et al. 2020 y Kpomasse et al. 2021).

Los suplementos se incluyen en una dieta nutricionalmente equilibrada para provocar el crecimiento, el estado antioxidante y la mejora de la tasa de conversión alimentaria del huésped (Dhama et al. 2014). Los antibióticos, prebióticos, antioxidantes, probióticos, coccidiostáticos, enzimas exógenas y fitogénicos o fitoquímicos se encuentran entre los suplementos dietéticos populares utilizados en la industria de pollos de engorde (Dhama et al. 2014).

Existe una legislación contra el uso de antibióticos como suplementos o promotores del crecimiento en la producción animal y la creciente concienciación y demanda de los consumidores de proteína animal libre de antibióticos (Gadde et al. 2017). Sin embargo, los fitogénicos o hierbas y la vitamina C se utilizan cada vez más como complementos alimenticios en la producción animal para impulsar el crecimiento y mejorar el estado antioxidante de los animales (Adeyeye et al. 2020, Adebayo et al. 2020 y Kpomasse et al. 2021).

Las plantas aromáticas/fitógenos se han empleado desde la antigüedad por sus beneficios terapéuticos, así como por su capacidad para dar aroma y sabor a comidas o alimentos. Los productos de medicina natural elaborados a partir de hierbas se han utilizado como aditivos alimentarios en la producción de pollos para aumentar el crecimiento mediante la combinación de moléculas activas y complejas, como las que se encuentran en los fitógenos (Khan et al. 2012a,b). Se ha demostrado en ensayos que la suplementación con alimentos fitogénicos promueve o mantiene la microbiota intestinal, lo que mejora la nutrición, el crecimiento y la salud del huésped a través de una mejor utilización de los nutrientes (Hashemi y Davoodi 2011, Oloruntola et al. 2020 y Oloruntola et al. 2021). Se ha demostrado que los componentes activos de las hierbas inhiben la peroxidación de lípidos y reducen el complejo de hierro, además de producir óxido nítrico, eliminar radicales superóxido y peróxido de hidrógeno de los macrófagos activados (Dhama et al. 2014, Oloruntola et al. 2020 y Oloruntola et al. 2021).

Se ha demostrado que la suplementación con vitamina C mejora el vigor del crecimiento, la estimulación del sistema inmunitario, la conversión alimentaria y la regulación de la microbiota intestinal. Además, la vitamina C es importante para mejorar la utilización y el metabolismo del alimento, así como para reducir el estrés. (Sahin et al. 2003 y Dhama et al. 2014).

El "árbol de hojas de papel de lija", Ficus exasperata Vahl. (Moraceae), se está utilizando para varias dolencias, lo que provocó un aumento en la investigación para respaldar sus afirmaciones conservadoras (Bafor e Igbinuwen 2009). Las hojas de F. exasperata tienen actividades anticonvulsivas, antibacterianas, hipoglucemiantes, antiulcerosas, hipotensoras, hipolipidémicas, antiinflamatorias, inhibidoras de la oxitocina, antipiréticas y ansiolíticas (Ahmed et al. 2012). El estudio anterior de la composición y propiedades de Ficus exasperate realizado por Osowe et al. (2021) revela que la hoja de F. exasperate tiene 11.41% ceniza, 17.26 % fibra bruta, 9.61 % grasa bruta, 15.01 % proteína bruta; 85% DPPH, 8 mg/g de vitamina C, 165.28 mg/g de flavonoides, 56.52 mg/g de fenoles, 3.33 mg/g, 80.72 mg/g de saponinas y 81 mg/g de alcaloides.

El desarrollo de pollos de engorde, los índices sanguíneos, los índices bioquímicos séricos y el estado antioxidante están influenciados por las dosis de suplementos de fitógenos, vitaminas y minerales, la línea genética y la edad(Al-Masad 2012, Oloruntola et al. 2018 y Adebayo et al. 2020). Como resultado, el objetivo de este estudio es examinar dos razas de pollos de engorde (Arbor acre y Cobb 500), criados a una temperatura ambiente tropical típica (27,77±0,4 grados Celsius) y alimentados con dietas sumpelentadas de 1 % de harina de hojas de Ficus exasperate y 200 mg/kg de vitamina C, en el rendimiento, índices hematológicos, índices de bioquímica sanguínea y estado antioxidante.

Materiales y Métodos

Aprobación ética. Recolección, procesamiento y análisis de fitógenos. Los estándares y criterios del experimento para animales y protocolo animal fueron aceptados por el Comité de Ética e Investigación del Departamento de Producción y Salud Animal de la Federal University of Technology, Akure (FUTA), Nigeria. El experimento se llevó a cabo en febrero y marzo de 2021, con una temperatura ambiente promedio de 27,77±0,4ºC y humedad relativa de 74,5 %. Osowe et al. (2021) describieron el procedimiento para recolectar, preparar y analizar el harina de hojas de Ficus exasperata (PHFE).

Vitamina C e Ingredientes para Piensos Experimentales. Los mercados locales en Akure, Nigeria, se utilizaron para obtener polvo de vitamina C (Avondale Laboratories Limited, Banbury, Inglaterra) y otros ingredientes para piensos como maíz, salvado de maíz, salvado de arroz, harina de soja, aceite de soja, harina de pescado, piedra caliza, harina de huesos, sal común, premezcla para pollos de engorde, metionina y lisina.

Dietas experimentales, diseño experimental y el entorno de vida de las aves. Para atender los requerimientos dietéticos de los pollos de engorde experimentales de iniciación y finalización (proteína bruta: 22.18 % y 20.03 %; fibra bruta: 3.51 % y 3.59 %; grasa bruta: 4.22 % y 2.39 %; energía metabolizable: 12.61 kcal/kg y 12.99.1 KJ/kg), se compuso una dieta experimental básica para la fase inicial (0 a 21 días) y la fase final (21-42 días) (tabla 1). Se determinó el contenido de proteína bruta y grasa bruta de las dietas experimentales (AOAC 2016).

Table 1 Composition of the experimental diets 

Ingredients (%) Starter phase Finisher phase
Maize 50.35 58.35
Maize bran 3.00 0.00
Rice bran 0.00 3.00
Soybean meal 38.00 30.00
Soy oil 1.00 1.00
Fish meal 3.00 3.00
Limestone 0.50 0.50
Bone meal 3.00 3.00
Salt 0.30 0.30
Premix 0.30 0.30
Methionine 0.30 0.30
Lysine 0.25 0.25
Nutrient composition (%)
*Crude protein 22.18 20.03
*Crude fibre 3.51 3.59
*Crude fat 4.22 2.39
Metabolizable energy (Kcal/kg) 3018.0 3108.10
Methionine 0.46 0.45
Lysine 1.12 1.09
Available phosphorus 0.47 0.42
Calcium 1.02 0.95

La dieta base se dividió en ocho porciones iguales y se denominó dietas 1 a 8 para cada fase. Las dietas 1 y 2 se suministraron a Arbor acre y Cobb 500, respectivamente, sin suplementos; las dietas 3 y 4 se suministraron a Arbor acre y Cobb 500, respectivamente, suplementadas con 200 mg/kg de vitamina C en polvo; las dietas 5 y 6 se suministarron a Arbor acre y Cobb 500, respectivamente, y se suplementaron con 1 % de PHFE; mientras que las dietas 7 y 8 se suministraron a Arbor acre y Cobb 500, respectivamente, suplementadas con 200 mg/kg de vitamina C y 1 % de PHFE, respectivamente.

La prueba de alimentación se llevó a cabo en la Granja de Enseñanza e Investigación de FUTA en Nigeria. Para este experimento, se utilizaron un total de 480 pollos de engorde (240 Arbor acre; 240 Cobb 500). Específicamente, se asignaron aleatoriamente 240 pollos de engorde Arbor acre a las dietas 1, 3, 5 y 7 en un arreglo completamente aleatorizado; mientras que 240 Cobb 500 de un día también se asignaron a las dietas 2, 4, 6 y 8 al azar. Seis veces, cada dieta se repitió con diez aves cada vez (10 aves/repetición). Se usaron virutas de madera para cubrir el piso (2m x 1m) del corral experimental que alojaba cada réplica a una profundidad de 3 cm. Para mantener calientes a los pollitos, se colocaron lámparas de calor encima de la incubadora. La temperatura en el área experimental se mantuvo a 31±2 ºC durante la primera semana, luego bajó 2 ºC cada semana hasta alcanzar los 26±2ºC. El primer día se dejó encendida la luz durante 24 horas y los días siguientes durante 23 horas.

Características del comportamiento. El peso corporal (PC) y el consumo de alimento (CA) de las aves de engorde experimentales se examinaron y midieron cada siete días. La ganancia de peso corporal promedio (GPC) se calculó utilizando la diferencia entre el peso corporal inicial y final de las aves. La tasa de conversión alimentaria se calculó dividiendo la cantidad de alimento consumido por la cantidad ganada en peso.

Muestras de sangre. El día 42 del estudio de alimentación, se seleccionaron al azar 24 aves (3/repeticiones) de cada grupo dietético y se les extrajo sangre usando una jeringa y una aguja a través de la vena del ala. Para proteínas séricas (proteína total, albúmina, globulina), componentes bioquímicos (creatinina y colesterol), actividades enzimáticas (aspartato aminotransferasa y alanina transaminasa; una porción de la muestra de sangre (4 mL) se vertió en un frasco de muestra de sangre simple. La muestra de sangre en cada uno de los frascos de muestra se centrifugó antes del análisis y el suero se decantó en otro frasco simple antes de congelarse a -20°CA Reflectron ®Plus 8C79 (Roche Diagnostic, GombH Mannheim, Alemania) y se usaron kits para detectar proteínas séricas, componentes bioquímicos y actividad enzimática. Para la medición de los índices hematológicos, la sangre sobrante (2 mL) se colocó en un tubo de recolección de muestras de sangre con ácido etilendiaminotetraacético. Se siguieron los procedimientos estándar para determinar los índices hematológicos (Cheesbrough 2000).

Evaluación de datos estadísticos. Los datos se analizaron utilizando el procedimiento SPSS versión 20 General Linear Model para un diseño completamente aleatorizado con arreglo factorial 2x2x2. Los datos se probaron para los efectos principales (razas, vitamina C e inclusión de PHFE) y sus interacciones.

Se usó P<0.05 para determinar la significación. Las medias se separaron usando la prueba de rango múltiple de Duncan usando SPSS.

Resultados

Comportamiento. La respuesta del comportamiento del crecimiento de diferentes razas de pollos de engorde al harina de hoja de Ficus exasperata y la suplementación dietética con vitamina C se muestra en la tabla 2. En la fase inicial (1-3 semanas), PHFE redujo significativamente (P<0.05) el CA. Esto da como resultado el CA reducido (P<0.05) registrado en los tratamientos 5, 6, 7 y 8 en comparación con los tratamientos de control (1 y 2). La tasa de conversión alimentaria (TCA) mejoró (P<0.05) por raza con la suplementación de PHFE; por consiguiente, la TCA fue mejor (P<0.05) en la raza AB, en comparación con la raza CO, y en el tratamiento suplementado con PHFE (5, 6, 7 y 8) en comparación con los tratamientos de PHFE sin suplemento (1, 2, 3 y 4).

Table 2 The growth performance response of different breeds of broiler chickens to Ficus exasperata, leaf powder and Vitamin C dietary supplementations 

TRT BRD VC, mg/kg FELP, % IW- g/b BWG, 1-3 wks FI, 1-3 wks FCR, 1-3 wks BWG, 4-6 wks FI, 4-6 wks FCR, 4-6 wks BWG, 1-6 wks FI, 1-6 wks FCR, 1-6 wks
1 AB 0 0 37.65 845.36 1024.24a 1.21ab 1490.22b 3269.07 2.26ab 2335.58b 4293.32 1.86ab
2 CO 0 0 37.55 792.34 984.24a 1.24a 1887.54a 2751.00 1.47c 2679.88a 3735.23 1.39c
3 AB 200 0 37.32 812.60 988.37a 1.22ab 1604.74b 2563.15 1.59bc 2417.34b 3551.52 1.46bc
4 CO 200 0 37.54 807.01 1004.17a 1.24a 1915.37a 2678.75 1.39c 2722.38a 3682.92 1.35c
5 AB 0 1 37.59 838.44 894.84bc 1.06d 1451.00b 3402.66 2.37a 2289.45b 4297.51 1.88a
6 CO 0 1 37.51 777.79 853.88c 1.09cd 1486.68b 3374.69 2.27ab 2264.47b 4228.58 1.86ab
7 AB 200 1 37.64 797.96 869.13c 1.08d 1561.69b 3106.75 1.98abc 2359.63b 3975.89 1.68abc
8 CO 200 1 37.40 815.29 947.31b 1.16bc 1622.26b 2876.20 1.77abc 2437.56b 3823.52 1.56abc
SEM 0.04 8.45 14.63 0.01 39.86 90.05 0.09 37.67 89.01 0.05
P-value 0.59 0.55 0.01 0.01 0.01 0.07 0.02 0.01 0.19 0.03
AB 37.55 823.59 944.15 1.14b 1526.91b 3085.41 2.05a 2350.51b 4029.56 1.72
CO 37.50 798.11 947.40 1.18a 1727.96a 2920.16 1.73b 2526.07a 3867.56 1.54
SEM 0.06 12.27 12.25 0.01 32.39 107.14 0.10 28.64 115.15 0.06
P-value 0.61 0.16 0.85 0.01 0.01 0.29 0.04 0.01 0.33 0.06
0 37.57 813.48 939.30 1.15 1578.86b 3199.36a 2.09a 2392.35b 4138.66a 1.75a
200 37.47 808.21 952.25 1.17 1676.01a 2806.21b 1.68b 2484.23a 3758.46b 1.51b
SEM 0.06 12.22 12.25 0.01 32.39 107.14 0.10 28.64 115.15 0.06
P value 0.29 0.76 0.46 0.17 0.05 0.02 0.01 0.03 0.03 0.01
0 37.51 814.33 1000.25a 1.23a 1724.46a 2815.49b 1.68b 2538.79a 3815.75 1.52b
1 37.53 807.37 891.29b 1.10b 1530.41b 3190.07a 2.10a 2337.78b 4081.37 1.75a
SEM 0.06 12.22 12.25 0.01 32.39 107.14 0.10 28.64 115.15 0.06
P value 0.81 0.69 0.01 0.01 0.01 0.02 0.01 0.01 0.12 0.01
Interactions P-value
BRD x VC 0.21 3.28 6.36 0.45 0.11 0.50 0.64 0.15 0.86 0.52
BRD x FELP 1.50 0.40 0.78 0.47 11.14 0.05 1.33 13.55 0.09 1.63
VC x FELP 0.61 0.40 1.45 1.49 0.32 0.01 0.05 0.54 0.01 0.03
BRD x VC x FELP 1.84 0.19 0.83 0.53 0.37 1.90 1.46 0.77 1.40 1.58

Means with a different superscript in the same column are significantly (P<0.05) different; TRT: Treatments; BRD: Breeds; VC: Vitamin C; FELP: Ficus exasperata IW: Initial weight; BWG: Body weight gain; FI: Feed intake; FCR: Feed conversion ratio; AB: Arbor acre; CO: Cobb 500; SEM: Standard error of the means.

En la fase final (4-6 semanas), la ganancia de peso corporal (GPC), CA y TCA se vieron afectados (P<0.05) por los tratamientos dietéticos. La GPC de CO fue mayor (P<0.05) que AB, la suplementación con vitamina C mejoró la (P<0.05) GPC; mientras que la suplementación con PHFE redujo (P<0.05) la GPC. En consecuencia, la mejor (P<0.05) GPC se registró en los tratamientos 2 y 4. La Raza x PHFE y la vitamina C x PHFE fueron significativas (P<0.05) para la GPC. La suplementación con vitamina C redujo significativamente (P<0.05) el CA; mientras que la suplementación con PHFE incrementó (P<0.05) el CA. La Vitamina C x PHFE mejoró la TCA. La TCA mejoró (P<0.05) con la raza y la suplementación con vitamina C; mientras que el PHFE afectó la TCA.

En la fase general (1-6 semanas), la raza y la suplementación con vitamina C mejoraron (P<0.05) la GPC; mientras que el PHFE retarda la GPC. En consecuencia, la GPC registrada en los tratamientos 2 y 4 fue mayor (P<0.05), en comparación con el resto de los tratamientos 1, 3, 5, 6, 7 y 8. La Vitamina C x PHFE fue significativa (P<0.05) para el CA. La suplementación con vitamina C redujo el CA. La vitamina C x PHFE fue significativa (P<0.05) para la TCA. La suplementación con vitamina C mejoró (P<0.05) TCA; mientras que el PHFE afectó la TCA. Por consiguiente, hubo una mejorra de la TCA (P<0.05) en los tratamientos 2 y 4, en comparación con los tratamientos 1, 3, 5, 6, 7 y 8.

Índices hematológicos. Todos los índices hematológicos de este estudio se vieron afectados significativamente (P<0.05) por los efectos del tratamiento, excepto (P>0.05) para la concentración media de hemoglobina celular (CMHC), granulocitos y monocitos (tabla 3). El volumen de células empaquetadas (VCE) se vio significativamente afectado (P<0.05) por la raza x vitamina C, la vitamina C x PHFE y la raza x vitamina C x PHFE. Además, la suplementación con vitamina C y PHFE mejoró (P<0.05) el nivel de VCE. En consecuencia, el VCE fue más alto (P<0.05) en los tratamientos 6 y 7, en comparación con los tratamientos 1, 2, 3, 4, 5 y 8. Los conteos de glóbulos rojos (GR) se vieron afectados influidos significativamente (P<0.05) por la vitamina C x PHFE y la raza x vitamina C y PHFE. El conteo de GR de CO fue más bajo (P<0.05) que AB; mientras que la vitamina C y PHFE mejoraron de forma independiente (P<0.05) el conteo de glóbulos rojos. Por lo tanto, el conteo de glóbulos rojos de las aves en el tratamiento 7 fue mayor (P<0.05) en comparación con los tratamientos restantes.

Table 3 The haematological indices response of different breeds of broiler chickens to Ficus exasperata leaf powder and Vitamin C dietary 

TRT BRD VC, mg/kg FELP, % PCV, % RBC, x106/l HB, g/dl MCHC, g/dl MCV, fl MCH, Pg/cell WBC, x109/l GRA, x109/l LYM, x109/l MON, x109/l
1 AB 0 0 31.50c 2.25d 10.50cd 33.34 137.51b 40.84b 2.65d 0.79 1.64bc 0.22
2 CO 0 0 30.50de 2.02d 10.16ed 33.32 139.42ab 44.47ab 2.82cd 0.78 1.29c 0.74
3 AB 200 0 30.12de 2.63c 10.04ed 33.33 114.76c 38.25c 2.75d 0.92 1.71b 0.12
4 CO 200 0 31.37cd 2.75c 10.46cd 33.34 113.89c 37.96c 2.79cd 1.06 1.46bc 0.27
5 AB 0 1 32.50b 2.00d 9.83e 33.33 137.66b 42.22b 3.15abc 0.76 1.86b 0.52
6 CO 0 1 33.94ab 2.04d 11.31ab 33.33 143.51a 46.83a 3.32a 0.93 1.81b 0.58
7 AB 200 1 34.50a 3.45a 11.50a 33.33 85.54d 28.51d 3.50a 0.88 2.58a 0.04
8 CO 200 1 32.72b 3.21b 10.90bc 33.33 88.55cd 34.07cd 3.19ab 0.96 1.75b 0.47
SEM 0.48 0.14 0.16 0.00 5.71 2.05 0.7 0.03 0.08 0.07
P-value 0.01 0.01 0.01 0.57 0.01 0.01 0.01 0.23 0.01 0.21
AB 31.41 2.73a 10.46 33.30 122.12b 40.70b 3.01 0.83 1.95a 0.23
CO 32.13 2.50b 10.71 33.30 133.76a 44.58a 3.03 0.94 1.58b 0.52
SEM 0.24 0.06 0.83 0.00 2.79 0.93 0.05 0.04 0.06 0.09
P-value 0.06 0.01 0.06 1.00 0.01 0.01 0.81 0.13 0.01 0.06
0 31.36b 2.07b 10.45b 33.33 139.77a 50.59a 2.98 0.82 1.65b 0.52
200 32.18a 3.16a 10.72a 33.32 104.11b 34.70b 3.06 0.96 1.87a 0.23
SEM 0.24 0.06 0.08 0.00 2.79 0.93 0.06 0.04 0.06 0.09
P value 0.03 0.01 0.01 0.67 0.01 0.01 0.39 0.03 0.02 0.06
0 30.87b 2.41b 10.29b 33.33 130.15 43.38 2.75b 0.89 1.52b 0.33
1 32.66a 2.83a 10.88a 33.32 125.73 41.91 3.29a 0.88 2.01a 0.40
SEM 0.24 0.06 0.08 0.00 2.79 0.93 0.06 0.04 0.06 0.09
P value 0.01 0.01 0.01 0.67 0.28 0.28 0.01 0.92 0.01 0.64
Interactions P-value
BRD x VC 0.01 0.12 0.01 0.22 0.35 0.35 0.08 0.82 0.07 0.99
BRD x FELP 0.10 0.06 0.11 0.67 0.11 0.11 0.31 0.64 0.42 0.75
VC x FELP 0.01 0.01 0.01 0.41 0.01 0.01 0.69 0.32 0.25 0.95
BRD x VC x FELP 0.01 0.01 0.01 0.11 0.59 0.59 0.29 0.36 0.02 0.19

Means with a different superscript in the same column are significantly (P<0.05) different; TRT: Treatments; BRD: Breeds; AB:Abore acre; CO: Cobb 500; VC: Vitamin C; FELP: Ficus exasperate leaf powder; PCV: Packed cell volume; RBC: Red blood cells; HBc: Haemoglobin conc.; MCHC: Mean cell haemoglobin concentration; MCV: Mean cell volume; MCH: Mean cell haemoglobin; WBC: White blood cells; GRA: Granulocytes; LYM: Lymphocytes; MON: Monocytes; SEM: Standard error of the means.

La concentración de hemoglobina (CH) fue significativamente afectada (P<0.05) por la raza x vitamina C, vitamina C x PHFE y raza x vitamina C y PHFE. La suplementación con vitamina C y PHFE mejoró de forma independiente (P<0.05) la CH de los pollos de engorde. Por lo tanto, la CH significativamente más alta (P<0.05) se registró en el tratamiento 7, en comparación con los controles y el resto de los tratamientos. El VCM y HCM fueron influidos (P<0.05) por la interacción de la vitamina C y PHFE. Además, el VCM y HCM mejoraron (P<0.05) por la raza, pero se vieron afectados (P<0.05) por la suplementación con vitamina C. Por lo tanto, los mejores (P<0.05) valores de VCM y HCM registrados en el tratamiento 6 fueron similares (P>0.05) al tratamiento 2, pero significativamente (P<0.05) más altos que los tratamientos 1, 3, 4, 6, 7 y 8 . Los conteos de glóbulos blancos (GB) aumentaron (P <0,05) con la suplementación de PHFE.

Por consiguiente, los conteos de GB más altos (P<0.05) registrados en los tratamientos 6 y 7 fueron similares (P>0.05) a los tratamientos 5 y 8 pero fueron más altos (P<0.05) que en el resto de los tratamientos. La raza x vitamina C y PHFE fueron significativos (P<0.05) para los conteos de linfocitos. Los conteos de linfocitos más altos (P<0.05) se registraron en AB; mientras que los suplementos de vitamina C y PHFE mejoraron de forma independiente el conteo de linfocitos. Por tanto, los conteos de linfocitos fueron los más altos (P<0.05) en el tratamiento 7, en comparación con el control y los otros tratamientos.

Química del suero. Los perfiles bioquímicos séricos de diferentes razas de pollos de engorde alimentados con polvoharina de hojas de Ficus exasperata y dietas suplementadas con vitamina C se muestran en la tabla 4. Los suplementos de vitamina C x PHFE fueron significativos (P<0.05) para la aspartato aminotransferasa sérica (AST). La suplementación con vitamina C redujo (P<0.05) la concentración de AST, por lo que la menor (P<0.05) concentración de AST registrada en los tratamientos 3, 4 y 8 fue similar (P>0.05) a 7, pero fue significativamente (P<0.05 ) inferior a los tratamientos 1, 2, 5 y 6. La vitamina C y PHFE redujeron de forma independiente (P<0.05) la concentración de creatinina sérica. Por consiguiente, la concentración de creatinina más baja registrada en los tratamientos 3, 4, 7 y 8 reportada, aunque similar a los tratamientos 5 y 6, fue significativamente mayor (P<0.05) que en los tratamientos 1 y 2. La suplementación con PHFE redujo (P<0.05) la concentración de colesterol sérico. Así, el nivel de colesterol sérico fue significativamente (P<0.05) más bajo en los tratamientos 5, 6, 7 y 8, en comparación con el resto de los tratamientos. La suplementación con vitamina C aumentó la concentración sérica de proteína total y albúmina. El PHFE mejoró (P<0.05) la concentración de globulina, por lo que la mayor concentración de globulina (P<0.05) se registró en los tratamientos 5, 6, 7 y 8, en comparación con los tratamientos 1, 2, 3 y 4.

Table 4 Serum biochemical profiles of different breeds of broiler chicken fed Ficus exasperata leaf powder and Vitamin C supplemented diets 

TRT BRD VC, mg/kg FELP, % AST, (IU/L) ALT, (IU/L) CREA, (µmol/L) CHOL, (mmol/L) TP, (g/L) ALB, (g/L) GLB, (g/L)
1 AB 0 0 160.03a 22.80 82.91ab 4.14a 53.30 23.03 30.27c
2 CO 0 0 155.24ab 21.94 84.38a 3.95a 54.57 23.27 31.30c
3 AB 200 0 115.65d 20.74 68.37c 3.69a 64.23 31.65 32.58bc
4 CO 200 0 114.80d 21.83 68.26c 3.94a 64.86 34.05 30.81c
5 AB 0 1 140.80bc 19.21 73.07bc 2.51b 62.45 26.19 36.26a
6 CO 0 1 138.80c 20.51 73.41bc 2.65b 58.72 24.14 34.57ab
7 AB 200 1 126.93cd 20.15 65.92c 2.94b 67.31 31.53 35.78a
8 CO 200 1 116.75d 20.51 66.23c 2.67b 69.42 34.66 34.75ab
SEM 3.8 0.62 1.71 0.14 1.57 1.41 0.51
P-value 0.01 0.92 0.01 0.01 0.06 0.12 0.01
AB 135.85 20.72 72.57 3.32 61.82 28.10 33.72
CO 131.40 21.20 73.07 3.30 61.89 29.03 32.86
SEM 2.55 0.98 1.65 0.08 1.85 1.75 0.38
P-value 0.23 0.73 0.83 0.87 0.97 0.71 0.13
0 148.72a 21.11 78.44a 3.31 57.26b 24.16b 33.10
200 118.53b 20.80 67.19b 3.31 66.45a 32.97a 33.48
SEM 2.55 0.98 1.65 0.08 1.85 1.75 0.38
P value 0.01 0.82 0.01 0.99 0.01 0.01 0.49
0 136.43 21.82 75.98a 3.93a 59.24 28.00 31.24b
1 130.82 20.09 69.65b 2.69b 64.47 29.13 35.34a
SEM 2.55 0.98 1.65 0.08 1.85 1.75 0.38
P value 0.13 0.23 0.01 0.01 0.06 0.65 0.01
Interactions P-value
BRD x VC 0.77 0.85 0.86 0.95 0.62 0.47 0.33
BRD x FELP 0.65 0.80 0.94 0.68 0.74 0.87 0.34
VC x FELP 0.01 0.58 0.10 0.07 0.59 0.72 0.34
BRD x VC x FELP 0.41 0.60 0.87 0.08 0.54 0.76 0.13

Means with a different superscript in the same column are significantly (P<0.05) different; TRT: Treatments; BRD: Breeds; AB: Arbor acre; CO: Cobb 500; VC: Vitamin C; FELP: Ficus exasperata leaf powder; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; CREA: Creatine; CHOL: Cholesterol; TP: Total Protein; ALB: Albumin; GLB: Globulin; SEM: Standard error of the means.

Discusión

Cuando las aves se crían fuera de la zona termoneutral (18 ºC -24 ºC), se desempeñan mal, por lo que reorganizan sus suministros de energía y proteínas para hacer frente al estrés caloríco, pero a costa de una menor eficiencia reproductiva y crecimiento ( Parque y Kim 2017). La variación observada en la respuesta de las características de rendimiento de los pollos de engorde a los tratamientos dietéticos en la fase de inicio y finalización de la producción podría deberse a diferencias en el manejo, estado fisiológico y factores nutricionales entre la fase de inicio y finalización (Oloruntola et al. 2018). La GPC mejorada en la raza CO alimentados con las dietas no suplementadas (tratamiento 2) y con una dieta suplementada con 200 mg/kg de vitamina C (tratamiento 4) en este estudio durante las fases final y general, muestran los efectos de la raza con la suplementación de PHFE y vitamina C en la ganancia de peso corporal de los pollos de engorde. El comportamiento del crecimiento mejorado en pollos de engorde se ha atribuido a la genética y las prácticas de reproducción, nutrición y manejo (Tavarez y Solis de los Santos, 2016).

Durante las etapas final y general de este estudio, la GPC superior informada en la raza CO en comparación con la raza AB muestra la variación en la mejora incremental por selección genética para la tasa de crecimiento en las dos razas de pollos de engorde. Este resultado demuestra que la genética es uno de los factores más importantes que influyen en el crecimiento de los pollos de engorde (Rance et al. 2002 y Tavarez y Solis de los Santos 2016). Además, la GPC mejorada por la suplementación con vitamina C respalda lo anteriormente expuesto por Al-Masad (2012), quien registró mayor peso corporal en pollos de engorde alimentados con dietas suplementadas con vitamina C y criados a temperatura ambiente alta, en comparación con aquellos alimentados sin dietas suplementadas.

La exposición al calor produce estrés oxidativo en los pollos de engorde, lo que reduce su rendimiento de crecimiento (Shakeri et al. 2019), las posibles causas de la mejor GPC documentado en las aves experimentales podrían ser la actividad de la vitamina C como antioxidante que puede inhibir la disminución del comportamiento de crecimiento debido al estrés calórico (Al-Masad 2012). En los sistemas biológicos, el ácido ascórbico actúa como buscador y reductor de radicales libres, eliminando los radicales oxidados libres oxidantes y las especies nocivas derivadas del oxígeno, como el peróxido de hidrógeno, los radicales hidroxilo y el oxígeno “singlete” (Hacışevki 2009). La GPC más baja en las aves experimentales debido a la suplementación con PHFE en este estudio sugiere un posible equilibrio de la calidad nutritiva y un deterioro de la aceptabilidad del alimento por parte de las aves, porque algunos fitoquímicos y fitogénicos pueden interferir con la biodisponibilidad de nutrientes en las aves, especialmente cuando están presentes en niveles superiores a la concentración tolerable en sus dietas (Dhama et al. 2014 y Oloruntola, 2021).

Múltiples estudios han demostrado una disminución en el consumo de alimento debido al alto nivel de inclusión (>1500 mg/kg) de suplementos alimenticios fitoquímicos y las propiedades inherentes de algunos compuestos, como un fuerte sabor y olor (Yan et al. 2011, Oloruntola et al. 2016 a, b y Valenzuela-Grijalva et al. 2017). Aunque el PHFE no se consumió a un nivel alto en la dieta en este ensayo, sus componentes bioactivos pueden haber contribuido a la reducción del consumo de alimento en la fase inicial al activar la liberación de la hormona de la saciedad (colecistoquinina) por las células del intestino delgado superior, lo que retrasa el vaciamiento del estómago y aumenta la sensación de saciedad y anorexia (Tucci 2010). Además, el uso de suplementos alimenticios puede afectar la disposición de un animal a comer un alimento determinado (Valenzuela-Grijalva et al. 2017). Esto está en conjunto con los efectos interactivos de la raza con PHFE (en la fase de finalización) y la vitamina C con PHFE (en la fase general) en este estudio. Estudios previos reportaron un CA mejorado en pollos de engorde como resultado de la interacción entre el tomillo y la canela (Al-Kassier 2009) y CrPic y la vitamina C (Adebayo et al. 2022). Sin embargo, durante los períodos de finalización y general de las aves experimentales, el CA fue constante en todos los grupos de tratamiento. Esta observación sugiere que la capacidad de ingesta de las aves cambia o mejora e la medida que envejecen y es consistente con el aumento del CA en pollos de engorde el día 22 en comparación con el día 14, informado por Babatunde et al. (2019). La reducción en el CA registrado en los grupos tratados con PHFE (5, 6, 7 y 8) y el efecto significativo de la suplementación con PHFE en este estudio sugieren los efectos negativos del PHFE en la aceptabilidad y el consumo de alimento por parte de las aves durante la primera etapa de su vida (la fase inicial). El reducido CA en los grupos de tratamiento afectados podría deberse a los fitoconstituyentes del PHFE. Por ejemplo, el tanino, cuando está presente en niveles altos en las dietas, reduce el consumo voluntario del alimento y la digestibilidad de los nutrientes (Hassan et al. 2020 y Osowe et al. 2021).

La tasa de conversión alimenticia (TCR) es un indicador de la eficiencia en términos de rendimiento y muestra la cantidad de alimento necesaria para ganar una unidad de peso corporal en un ave viva durante un período determinado. Como se reveló en este estudio, la raza, la vitamina C y la suplementación con PHFE tienen efectos notables variables en la TCA de los pollos de engorde. Los efectos de la interacción de la vitamina C y PHFE en la TCA en este estudio coincidieron con estudios anteriores de que una mezcla de suplementos alimenticios podría crear sinergias y complementarse entre sí para producir efectos notables en las características de comportmiento como la TCA (Al-Kassier 2009 y Adebayo et al. 2022).

La TCA mejorada registrada en la raza CO sobre la raza AB durante la fase inicial (1-3 semanas) de este estudio muestra que la genética y la reproducción mejoradas se encuentran entre los factores detrás del comportmiento mejorado y, en particular, la eficiencia alimentaria en la producción de pollos de engorde ( Tavarez y Solis de Los Santos 2016). En realidad, el comportmiento de la producción de pollos de engorde siempre cambia en función de la genética y la crianza (Zuidhof et al. 2014). Además, la TCA mejorada registrada en los pollos de engorde como resultado de la suplementación con vitamina C en este estudio niega el informe anterior de Abudabos et al. (2018), quienes registraron una TCA similar en pollos de engorde alimentados con dietas de control y suplementadas con vitamina C. Sin embargo, se ha demostrado que la adición de 250 mg/kg de vitamina C al alimento para pollos de engorde mejora la ganancia de peso corporal y la eficiencia alimentaria. El aumento del rendimiento, como la TCA, puede atribuirse a la actividad de la tiroides y al aumento del consumo de oxígeno en presencia de ácido ascórbico, especialmente cuando la temperatura ambiente es alta (Kassim y Norziha 1995 y Khan et al. (2012a). Los efectos negativos del PHFE en la TCA en este estudio sugieren que los fitógenos tienen algunos fitoquímicos en concentraciones por encima del nivel tolerable para las aves (Valenzuela-Grijalva et al. 2017).

Las medidas hematológicas se pueden utilizar para identificar el estado patogénico, fisiológico y nutricional de un animal (Adeyeye et al. 2020). La sangre tiene una función importante en la termorregulación de las aves en un clima tropical típico. Las barbas, la cresta y los vasos sanguíneos de la piel se dilatan para transportar el calor corporal interno a la superficie de la piel, lo que provoca la pérdida de calor por convección, radiación y conducción (Kpomasse et al. 2021). El hecho de que factores como la vitamina C, PHFE y raza y las interacciones: raza x vitamina C; vitamina C x PHFE y raza x vitamina C x PHFE aumentó el VCE, GR y CH en este estudio sugiere que estos nutrientes son importantes para aumentar la proporción de masa total de eritrocitos con respecto al volumen total de sangre, el número de eritrocitos y la concentración de moléculas de proteína en los glóbulos rojos que transportan oxígeno a los pulmones.

Por lo tanto, considerando estos resultados, los pollos de engorde con anemia pueden ser tratados adicionándole vitamina C y PHFE a sus dietas, separada o combinada. El VCE, los GB y CH mejorado con vitamina C, PHFE, raza x vitamina C x PHFE pudiera ser la actividad antioxidante o propiedades de estos suplementos combinándolos con el factor raza (Yadav et al. 2016 and Osowe et al. 2021).Además la contribución de PHFE al perfil mineral esencial de los pollos de engorde (Osowe et al. 2021), así como el posible rol complementario del suplemento vitamina C ayudando a la descomposición de aminoácidos y a la absorción de minerales , específicamente el hierro, manteniedolos en un reducido estado ferroso, pudiera ser responsable de un heritrograma mejorado causado por esos suplementos (Yadav et al. 2016). EL conteo de los GR en la raza AB compardo con la raza CO sugiere que las variables genéticas pueden influenciar en el conteo de eritrocitos. Investigaciones anteriores han demostrado que las variables genéticas influyen en los indicadores hematológicos como el VCE, GR,CH, concentración de células de hemoglobina y concentración media de hemoglobina, entre otros (Chineke et al. 2006 and Etim et al. 2014). Los valores de VCE, GR y CH en este estudio están todos dentro del rango normal (VCE: 22-35 %, GR: 2.5-3.5 x 106/L, y CH: 7-13 g/dL) reportado por Bounous and Stedman (2000).

La interacción de vitamina C y PHFE produciendo reducción de VCM y HCM indica la presencia de anemia microcitica, la cual es frecuentemente asociada al déficit de hierro. Además, el aumento de los niveles de VCM y HCM en las razas CO indican anemia macrocitica, la cual se define por el excesivo aumento de los glóbulos rojos e implica que los estos son pocos y transportan menos hemoglobina, significando que la sangre no está tan oxigenada como debería (Aslinia et al. 2006). Sin embargo, los niveles observados en este estudio están dentro del rango normal (VCM: 90 - 140 fl; HCM: 33-47 pg/cel) como lo reportado por (Bounous and Stedman 2000); por lo tanto los valores elevados de VCM inducidos por las razas o los valores reducidos de VCM producidos por la suplemrntación de vitamina C no deben ser de interés para la salud (Bounous and Stedman 2000).

El cuerpo está protegido por los leucocitos y sus diferenciales desde dañino o infiltración de organismos externos, así como la producción de anticuerpos y dispersión (Oloruntola et al. 2016a). Además, algunos fitógenos tienen propiedase inmunomodulatorias (Dashputre and Naikwade 2010 and Oloruntola et al. 2016 a,b). Esto explica el incremento del conteo de GB como resultado de la suplementación de PHFE, comparado con el control en este estudio. Las propiedades inmunomodulatorias de los fitogénos pueden estar unidas a las sustancias alimenticias como los fitoestrógenos, los cuales, cuando son ingeridos, pueden imitar los efectos de la hormona estrógeno. (Cady et al. 2020); el estrógeno controla la respuesta immune eliminando la selección negativa de células B autoreactivas de alta afinidad, influenciando la función de la célula B, y provocando la respuesta de Th2 (Taneja 2018).El incremento del conteo de linfocitos observados en este estudio como resultado de las interacciones (raza x vitamina C x PHFE), suplementación de vitamina C, y suplementación de PHFE realzó el potencial del impacto de la vitamina C (Shojadoost et al. 2021), PHFE (Dashputre and Naikwade 2010 and Oloruntola et al. 2016 a,b) y sus interacciones con el factor raza (Zahoor et al. 2018) en las condiciones inmunológicas de las aves.Además, el alto conteo de linfocitos en la raza AB comparado con la raza CO en este estudio sugiere una diferencia en la respuesta de la capacidades inmunológicas de las aves y el impacto de la estructura genética en la respuesta inmunológica experimental de las aves (Zahoor et al. 2018).

La enzima transaminasa, la aspartato aminotransferasa (AST) catalizan la transformación de aspartato y alfa-cetoclutarato en oxalacetato y glutamate.Excepto para los huesos, AST se puede detectar en todos los tejidos, con el mayor contenido en los músculos esqueléticos y el hígado. La concentración de dicha enzima aumenta después de procesos dañinos, daños tisulares, necrosis , neoplasmas, o infecciones del hígado y los músculos (Washington and Van Hoosier, 2012). Por lo tanto, la reducción de concentración de suero de la AST sérica por la interacción (vitamina C x PHFE) y la concentración de vitamina C en este estudio muestra la propiedades antioxidantes y el papel protector de la vitamina C y los efectos de la interacción de vitamina C con el suplemento fitogénico (PHFE) contra el hígado o los daños musculares. La vitamina C protege a las proteínas de la alquilación mediente los productos de la peroxidación electrófilica lipídica, estress oxidativo inducido por daños celulares de las especies reactivas del oxígeno y vitamina E dependiente de la neutralización los radicales hidroperóxidos de lípidos (Traber and Stevens, 2011). Además, la vitamina C ayuda a las funciones endothelial de óxido nítrico sintetiza (eNOS) a través del reciclaje del cofactor de eNOS de tetrahidrobiocterina, la cual es importante para la elasticidad arterial y el manejo de la presión sanguínea (Miranda et al. 2009, Chavez et al. 2010 and Traber and Stevens 2011).

La creatinina es un residuo del nitrogéno que no se basa en las proteínas, y sus mediciones pueden ser usadas para evaluar la función renal (Salazar 2014). La reducción de la concentración de la creatinina sérica por la suplementación de vitamina C y PHFE registrada en este estudio permite además los beneficios para la salud de la suplementación de la vitamina C y PHFE en preservar las funciones fisiológicas y anátomicas del riñón, lo cual se debe a la propiedades antioxidantes de la vitamina C (Traber and Stevens 2011) y el PHFE (Osowe et al. 2021).

El colesterol sérico se produce en el hígado y es derivado a partir de la dieta. Un nivel alto de colesterol es signo de enfermedades del corazón. Niveles reducidos de colesterol sérico pueden ser causados por dietas bajas en grasas, disminución de ingestión de colesterol, o mala absorción intestinal (Adegbeye et al. 2020). En este estudio, las capacidades hipocolesterolemicas de los fitogénos son mostradas por los reducidos niveles de colesterol en sangre de los pollos de engorde después de haber sido alimentados con dietas suplementadas con PHFE. El efecto hipocolesterolémico puede ser debido a los fitosteroles en el PHFE limitando la absorción de colesterol en el intestino debido a la similitud estructural del colesterol y el firosterol(Adegbeye et al. 2020 and Ayodele et al. 2021). Además, uno de los fitoquímicos en el PHFE, saponinas, es conocido como modulador de los lípidos en sangre (Osowe et al. 2021).

La hemo-concentración, la alta producción de globulina, lipaemia y la hemotolisis son las causas más comunes del elevado total de proteínas séricas. Sim embargo, el incremento del total de proteínas séricas y albumina observado, debido a la suplementación de vitamina C no debe ser patológico porque, el nivel de proteínas séricas total (53.30-69.42 g/L) y el nivel de albumina (23.03-34.05 g/L) registrado en este estudio están dentro del rango normal para proteínas totales (52-69 g/L) y albumina (21 - 34.5 g/L) informado por Mitruka and Rawnsley (1977) and Oloruntola et al. (2016a) para pollos. La suplementación de vitamina C aumenta los niveles de proteína en la sangrem(Karakilcik et al. 2004 and Nayila 2020). La globulinas son una diversa colección de un gran grupo de proteínas séricas que no incluye la albumina (Odunitan-Wayas et al. 2018). Además de las variables antes mencionadas que pueden causar incremento en las proteínas totales, incremento en alfa, beta, y ganma globulina que pueden causar incremento en la glubulina sérica. En consecuencia, el incremeto de la concentración de globulina observado en este estudio debido a la suplementación de PHFE sugiere que los fitógenos incrementan la estimulación de producción de globulina en el suero. Esto concuerda con Ghazalah and Ali (2008), quienes registraron incremento en la proteína sérica y la concentración de globulina en pollos de engorde alimentados con 5g/kg de hojas de romero suplemntados en la dieta. Los fitógenos puedes estimular las paredes intestinales, incrementando la secresión de enzimas digestivas así como mejorar la absorción de más nutrients, teniendo como resultado, un mejor perfil de proteínas (Abudabos et al. 2016).

Conclusiones

En conclusión, para lograr una ganancia de peso corporal óptima en pollos de engorde, se recomienda la selección de raza (CO) y la suplementación con 200 mg/kg de vitamina C, especialmente en un ambiente tropical típico. Sin embargo, para una mejor inmunidad e hipocolesterolemia en las aves, está indicada la suplementación dietética con PHFE al 1 %. Como suplemento nutricional, el 1 % de PHFE podría combinarse con 200 mg/kg de vitamina C para mejorar el consumo de alimento, el conteo de glóbulos rojos, el volumen de células concentradas y la concentración de hemoglobina; para prevenir daños en el hígado y los tejidos y proteger las células renales del daño en pollos de engorde.

References

Abudabos, A.M., Al-Owaimer, A.N., Hussein, E.O.S. & Ali, M.H. 2018. "Effect of natural Vitamin C on performance and certain haemato-biochemical values on broiler chickens exposed to heat stress". Pakistan Journal of Zoology, 50(3): 951-955, ISSN: 0030-9923. [ Links ]

Abudabos, A.M., Alyemni, A.H., Dafallah, Y.M. & Khan, R.U. 2016. "The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium". Environmental Science and Pollution Research, 23: 24151-24157, ISSN: 1614-7499. https://doi.org/10.1007/s11356-016-7665-2. [ Links ]

Adebayo, F.A., Adu, O.A., Chineke, C.A., Oloruntola, O.D., Omoleye, O.S., Adeyeye, S.A. & Ayodele S.O. 2020. "The performance and haematological indices of broiler chickens fed Chromium picolinate, and Vitamin C supplemented diets". Asian Journal of Research in Animal and Veterinary Sciences, 6(4): 54-61. [ Links ]

Adebayo, F.A., Adu, O.A., Chineke, C.A., Oloruntola, O.D., Omoleye, O.S., Adeyeye, S.A. & Ayodele S.O. 2022. "The performance, antioxidant status, blood chemistry analysis and tissue histology of broiler birds fed a diet containing Chromium picolinate and vitamin C". Iranian Journal of Applied Animal Science, 12(1): 129-142, ISSN: 2251-631X. [ Links ]

Adegbeye, M.J., Oloruntola, O.D., Asaniyan, E.K., Agunbiade, B., Oisagah, E.A. & Ayodele, S.O 2020. "Pawpaw, black cumin, and mustard seed meal dietary supplementation in broiler chickens: Effect on performance, gut microflora, and gut morphology". Journal of Agricultural Science and Technology, 22(5): 1235-1246, ISSN: 2345-3737. [ Links ]

Adeyeye, S.A., Oloruntola, O.D., Ayodele, S.O., Falowo, A.B. & Agbede J.O. 2020. "Wild sunflower and goat weed composite-mix supplementation in broiler chicken: effects on performance, health status and meat". Acta Fytotechnica et Zootechnica, 23(4): 205-212, ISSN: 1336-9245. https://doi.org/10.15414/afz.2020.23.04.205-212. [ Links ]

Ahmed, F., Mueen, Ahmed. K.K., Abedin, M.Z., & Karim, A.A. 2012. "Traditional uses and pharmacological potential of Ficus exasperata vahl". Systematic Reviews in Pharmacy, 3(1): 15-23, ISSN: 0976-2779. [ Links ]

Al-Kassie, G.A. 2009. "Influence of two plant extracts derived from thyme and cinnamon on broiler performance". Pakistan Veterinary Journal, 29: 169-173, ISSN: 2074-7764. [ Links ]

Al-Masad, M. 2012. "Effects of Vitamin C and zinc on broilers performance of immunocompetence under heat stress". Asian Journal of Animal Science, 6(2): 76-84, ISSN: 0976-8963. https://doi.org/10.3923/ajas.2012.76.84. [ Links ]

AOAC (2016). Association of Official Analytical Chemistry. Official methods of analysis of AOAC. International (20th ed.). Rockville, MD: AOAC International. [ Links ]

Aslinia, F., Mazza, J. J. & Yale, S. H. 2006. "Megaloblastic anemia and other causes of macrocytosis". Clinical Medicine and Research, 4(3): 236-241, ISSN: 1554-6179. https://doi.org/10.3121/cmr.4.3.236. [ Links ]

Ayodele S.O., Oloruntola O.D., Ayeyeye S.A., Jimoh O.A., Falowo A.B. & Omoniyi I.S. 2021. "Supplementation value of Mucuna seed powder on performance, antioxidant enzymes, meat cholesterol and peroxidation, and serum metabolites of broiler chickens". Malaysian Journal of Animal Science, 24(1): 11-22, ISSN: 2550-2123. [ Links ]

Babatunde, O.O., Cowieson, A.J., Wilson, J.W. & Adeola, O. 2019. "The impact of age and feeding length on phytase efficacy during the starter phase of broiler chickens". Poultry Science, 98(12): 6742-6750, ISSN: 1525-3171. https://doi.org/10.3382/ps/pez390. [ Links ]

Bafor, E.E. & Igbinuwen, O. 2009. "Acute toxicity studies of the leaf extract of Ficus exasperata on haematological parameters, body weight and body temperature". Journal of Ethnopharmacology, 123(2): 302-307, ISSN: 1872-7573. https://doi.org/10.1016/j.jep.2009.03.001. [ Links ]

Bounous, D. & Stedman, N. 2000. Normal avian hematology: chicken and turkey. In: Feldman BF, Zinkl JG, Jain NC, editors. Schalm’s veterinary hematology. New York: Wiley; 2000. p.1147-1154. [ Links ]

Cady, N., Peterson, S.T., Freedman, S.N. & Mangalam, A.K. 2020. "Beyond metabolism: The complex interplay between dietary phytoestrogens, gut bacteria, and cells of nervous and immune systems". Frontier in Neurology, 11: 1-15, ISSN: 1664-2295. https://doi.org/10.3389/fneur.2020.00150. [ Links ]

Chavez, J., Chung, W.G., Miranda, C.L., Singhal, M., Stevens, J.F. & Maier, C.S. 2010. "Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acid". Chemical Research in Toxicology, 23(1): 37-47, ISSN: 1520-5010. https://doi.org/10.1021/tx9002462. [ Links ]

Cheesbrough, M. 2000. District Laboratory Practice in Tropical Countries (1st ed.). Cambridge University Press, UK. [ Links ]

Chineke, C. A., Ologun, A. G. & Ikeobi, C. O. N. 2006. "Haematological parameters in rabbit breeds and crosses in humid tropics". Pakistan Journal of Biological Sciences, 9(11): 2102-2106, ISSN: 1812-5735. https://doi.org/10.3923/PJBS.2006.2102.2106. [ Links ]

Dashputre, N. L., & Naikwade, N. S. 2010. "Preliminary Immunomodulatory activity of aqueous and ethanolic leaves extract of O. basilicum Linn in mice". International Journal of PharmTechn Research, 2(2): 1342-1349, ISSN: 2455-9563. [ Links ]

Dhama, K., Tiwari, R., Khan, R. U., Chakraborty, S., Gopi, M., Karthik, K., Saminathan, M., Desingu, P. A. & Sunkara, L. T. 2014. "Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: The trends and advances- A Review". International Journal of Pharmacology, 10(3): 129-159, ISSN: 1812-5700. https://doi.org/10.3923/ijp.2014.129.159. [ Links ]

Etim, N. N., Williams, M. E., Akpabio, U. & Offiong, E.A. 2014. "Haematological parameters and factors affecting their values". Agricultural Science, 2(1): 37-47, ISSN: 2690-4799. https://doi.org/10.12735/as.v2i1p37. [ Links ]

Gadde, U., Kim, W.H., Oh, S.T. & Lillehoj, H.S. 2017. "Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review". Animal Health Research Reviews, 18(1): 26-45, ISSN: 1475-2654. https://doi.org/10.1017/S1466252316000207. [ Links ]

Ghazalah, A. A. & Ali, A.M. 2008. "Rosemary leaves as a dietary supplement for growth in broiler chickens". International Journal of Poultry Science, 7: 234-239, ISSN: 1994-7992 . [ Links ]

Hacışevki, A. 2009. "An overview of ascorbic acid biochemistry". Journal of Faculty of Pharmacy of Ankara University, 38(3): 233-255, ISSN: 2564-6524. https://doi.org/10.1501/Eczfak_0000000528. [ Links ]

Hashemi, S. R. & Davoodi, H. 2011. "Herbal plants and their derivatives as growth and health promoters in animal nutrition". Veterinary Research Communications, 35(3): 169-180, ISSN: 1573-7446. https://doi.org/10.1007/s11259-010-9458-2. [ Links ]

Hassan, Z. M., Manyelo, T. R., Salaledi, L. & Mabelebele, M. 2020. "The effects of tannins in monogastric animals with special reference to alternative feed ingredients". Molecules, 25(20): 4680, ISSN: 1420-3049. https://dx.doi.org/10.3390/molecules25204680. [ Links ]

Karakilcik, A. Z., Zerinm. K., Arslanm, B., Nazligul, L. & Vural, F. 2004. "Effects of vitamin C and E on liver enzymes and biochemical parameters of rabbits exposed to aflatoxin B1". Veterinary and Human Toxicology, 46(4): 190-192, ISSN: 0145-6296. [ Links ]

Kassim, H. & Norziha, I., 1995. "Effects of ascorbic acid (Vitamin C) supplementation in layer and broiler diets in the tropics". Asian-Australasian Journal of Animal Science, 8(6): 607-610, ISSN: 1976-5517. https://doi.org/10.5713/ajas.1995.607. [ Links ]

Khan, R.U., Naz, S., Nikousefat, Z., Selvaggi, M., Laudadio, V. & Tufarelli, V., 2012a. "Effect of ascorbic acid in heat-stressed poultry". World’s Poultry Science Journal, 68(3): 477- 490, ISSN: 1743-4777. https://doi.org/10.1017/S004393391200058X. [ Links ]

Khan, R.U., Naz, S., Nikousefat, Z., Tufarelli, V. & Laudadio, V. 2012b. "Thymus vulgaris: alternative to antibiotics in poultry feed". World’s Poultry Science Journal, 68(3): 401- 408, ISSN: 1743-4777. https://doi.org/10.1017/S0043933912000517. [ Links ]

Kpomasse, C.C., Oke, O.E., Houndonougbo, F.M. & Tona, K. 2021. "Broiler production challenges in the tropics: A review". Veterinary Medicine and Science, 7(3): 831-842, ISSN: 2053-1095. https://doi.org/10.1002/vms3.435. [ Links ]

Miranda, C. L., Reed, R. L., Kuiper, H.C., Alber, S. & Stevens, J. F. 2009. "Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells". Chemical Research in Toxicology, 22(5): 863-874, ISSN: 1520-5010. https://doi.org/10.1021/tx900042u. [ Links ]

Mitruka, B. M. & Rawnsley, H. M 1977. Clinical biochemical and hematological reference values in normal experimental animals. Masson Publishing USA, Inc. pp. 134-139. [ Links ]

Nayila, I. 2020. "Effect of Vitamin C supplementation on serum ascorbic acid level and liver function profile in healthy individuals". Asian Journal of Medicine and Health, 18(9): 28-39, ISSN: 2456-8414. https://doi.org/10.9734/ajmah/2020/v18i930235. [ Links ]

Odunitan-Wayas, P., Kolanisi, U., & Chimonyo M. 2018. "Haematological and serum biochemical responses of Ovambo chickens fed Provitamin A Biofortified maize". Brazilian Journal of Poultry Science, 20(3): 425-433, ISSN: 1806-9061 http://dx.doi.org/10.1590/1806-9061-2016-0444. [ Links ]

Olanrewaju, H. A., Purswell, J. L., Collier, S. D. & Branto, S. L. 2010. "Effect of ambient temperature and light intensity on physiological reactions of heavy broiler chickens". Poultry Science, 89: 2668- 2677, ISSN: 1525-3171. https://doi.org/10.3382/ps.2010-00806. [ Links ]

Oloruntola, O.D., Adu, O.A., Gbore, F.A., Falowo, A.B. & Olarotimi, O.J. 2021. "Performance of broiler chicken fed diets supplemented with Irvingia gabonensis kernel powder and Ocimum gratissimum leaf powder". Slovakia Journal of Animal Science, 54(1): 7-20, ISSN: 1338-0095. [ Links ]

Oloruntola, O.D., Agbede, J.O., Ayodele, S.O. & Oloruntola, D.A. 2018. "Neem, pawpaw, and bamboo leaf meal dietary supplementation in broiler chickens: Effect on performance and health status". Journal of Food Biochemistry, 43(2): e12723, ISSN: 1745-4514. https://doi.org/10.1111/jfbc.12723. [ Links ]

Oloruntola, O.D., Ayodele, S.O., Adeyeye, S.A., Jimoh, A.O., Oloruntola, D.A. & Omoniyi, S.I. 2020. "Pawpaw leaf and seed meals composite mix dietary supplementation: effects on broiler chicken’s performance, caecum microflora, and blood analysis". Agroforestry Systems, 94: 555-564, ISSN: 1572-9680. https://doi.org/10.1007/s10457-019-00424-1. [ Links ]

Oloruntola, O.D., Ayodele S.O., Agbede J.O. & Oloruntola, D.A. 2016b. "Effect of feeding broiler chicken with diets containing Alchornea cordifolia leaf meal and enzyme supplementation". Archivos de Zootecnia, 65(252): 489-498, ISSN: 0004-0592. [ Links ]

Oloruntola, O.D., Ayodele, S.O., Agbede, J.O, Oloruntola, D.A, Ogunsipe, M.H. & Omoniyi, I.S. 2016a. "Effect of Alchornea cordifolia leaf meal and enzyme supplementation on growth, haematological, immunostimulatory and serum biochemical response of rabbits". Asian Journal of Biological and Life Sciences, 5(2): 190-195, ISSN: 2278-5957. [ Links ]

Osowe, C.O., Olowu, O.P.A., Adu, O.A., Oloruntola, O.D. & Chineke, C.A. 2021. "Proximate and mineral composition, phytochemical analysis, and antioxidant activity of fig trees (Ficus spp.) leaf powder". Asian Journal of Biochemistry, Genetics and Molecular Biology, 9(1): 19-29, ISSN: 2582-3698. https://doi.org/10.9734/ajbgmb/2021/v9i130206. [ Links ]

Park, S.O. & Kim, W.K. 2017. "Effects of betaine on biological functions in meat-type ducks exposed to heat stress". Poultry Science, 96(5): 1212-1218, ISSN: 1525-3171. https://doi.org/10.3382/ps/pew359. [ Links ]

Rance, K., McEntee, G. & McDevitt, R. 2002. "Genetic and phenotypic relationships between and within support and demand tissues in a single line of broiler chicken". British Poultry Science, 43(4): 518-527, ISSN: 1466-1799. https://doi.org/10.1080/0007166022000004426. [ Links ]

Sahin, K. M., Onderci, M., Sahin, N., Gursu, M. F. & Kucuk, O. 2003. "Dietary Vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail". Journal of Nutrition, 133(6): 1882-1886, ISSN: 1541-6100. https://doi.org/10.1093/jn/133.6.1882. [ Links ]

Salazar, J.H. 2014. "Overview of Urea and Creatinine". Laboratory Medicine, 45(1): e19-e20, ISSN: 0007-5027. https://doi.org/10.1309/LM920SBNZPJRJGUT. [ Links ]

Shakeri, M., Cottrell, J. J., Wilkinson, S., Le, H. H., Suleria, H. A. R., Warner, R. D., & Dunshea, F. R. 2019. "Growth Performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress". Antioxidants, 8(9): 336, ISSN: 2076-3921. https://doi.org/10.3390/antiox8090336. [ Links ]

Shojadoost, B., Yitbarek, A., Alizadeh, M., Kulkarni, T. T., Astill, J., Boodhoo, N. & Sharif S. 2021. "Centennial Review: Effects of vitamins A, D, E, and C on the chicken immune system". Poultry Science, 100 (4): 1-17, ISSN: 1525-3171. https://doi.org/10.1016/j.psj.2020.12.027. [ Links ]

Suganya, T., Senthilkumar, S., Deepa, K. & Amutha, R. 2015. "Nutritional management to alleviate heat stress in broilers". International Journal of Science, Environment and Technology, 4(3): 661- 666, ISSN: 2278-3687. [ Links ]

Taneja V. 2018. "Sex Hormones Determine Immune Response". Frontiers in Immunology, 9: 1931, ISSN: 1664-3224. https://doi.org/10.3389/fimmu.2018.01931Links ]

Tavarez, M.A. & Solis de los Santos, F. 2016. "Impact of genetics and breeding on broiler production performance: a look into the past, present, and future of the industry". Animal Frontiers, 6(4): 37-41, ISSN: 1424-8247. https://doi.org/10.2527/af.2016-0042. [ Links ]

Tucci, S. A. 2010. "Phytochemicals in the Control of Human Appetite and Body Weight". Pharmaceuticals (Basel), 3(3): 748-763, ISSN: 1424-8247https://doi.org/10.3390/ph3030748. [ Links ]

Traber, M. G. & Stevens, J. F. 2011. "Vitamins C and E: beneficial effects from a mechanistic perspective". Free Radical Biology and Medicine, 51(5): 1000-1013, ISSN: 1873-4596. https://doi.org/10.1016/j.freeradbiomed.2011.05.017. [ Links ]

Valenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D. & González-Ríos, H. 2017. "Dietary inclusion effects of phytochemicals as growth promoters in animal production". Journal of Animal Science and Technology, 59: 8, ISSN: 2055-0391. https://doi.org/10.1186/s40781-017-0133-9. [ Links ]

Washington, I. M. & Van Hoosier, G. 2012. Clinical Biochemistry and Hematology. In: The Laboratory rabbit, guinea pig, hamster, and other rodents. Edited by Mark A. Suckow, Karla A. Stevens and Ronald P. Wilson. Academic Press, USA. pp 1247-1268. https://doi.org/10.1016/C2009-0-30495-X. [ Links ]

Yadav, S.S., Kolluri, G., Gopi, M., Karthik, K., Malik, Y.S. & Dhama, K. 2016. "Exploring alternatives to antibiotics as health-promoting agents in poultry- A review". Journal of Experimental Biology and Agricultural Sciences, 4(3S): 368-383, ISSN: 2320-8694. http://dx.doi.org/10.18006/2016.4(3S).368.383. [ Links ]

Yan, L., Meng, Q. W. & Kim, I. H. 2011. "The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs". Livestock Science, 141: 143-147, ISSN: 1871-1413. http://dx.doi.org/10.1016/j.livsci.2011.05.011. [ Links ]

Zahoor, I., Ghayas, A. & Basheer, A. 2018. "Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review". Molecular Biology Reports, 45(1) 31-37, ISSN: 1573-4978. http://dx.doi.org/10.1007/s11033-017-4138-8. [ Links ]

Zuidhof, M.J., Schneider, B. L., Carney, V. L., Korver, D. R. & Robinson, F. E. 2014. "Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005". Poultry Science, 93: 2970-2982, ISSN: ISSN: 1525-3171. http://dx.doi.org/10.3382/ps.2014-04291. [ Links ]

Recibido: 02 de Abril de 2022; Aprobado: 29 de Junio de 2022

Creative Commons License