SciELO - Scientific Electronic Library Online

 
vol.11 issue1Algorithm for the identification of the posterior capsule opacity in images from PENTACAMDetection of Regions of Interest in Images of the Papanicolaou Test author indexsubject indexarticles search
Home Pagealphabetic serial listing  

My SciELO

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Cubana de Ciencias Informáticas

On-line version ISSN 2227-1899

Rev cuba cienc informat vol.11 no.1 La Habana Jan.-Mar. 2017

 

ARTÍCULO ORIGINAL

 

Usando TIC para enseñar Matemática en preescolar: El Circo Matemático

 

Using ICT to teach preschool Mathematics: the Mathematical Circus

 

 

Mateo Lezcano Brito1*, Luz Mary Benítez2, Alix Adriana Cuevas Martínez3

1 Universidad Cooperativa de Colombia. Calle 11 # 1G-31, Neiva Colombia. mateo.lezcanob@camousucc.edu.co
2 Institución Educativa Distrital José Joaquín Castro Martínez. Calle 31D Bis sur # 2-24 este, Bogotá, Colombia. luzmaes7@gmail.com
3 Institución Educativa Distrital José Joaquín Castro Martínez. Calle 71B # 100 A- 23, Torre 3 Int. 1 Apto. 411, Bogotá, Colombia. alixacumar@gmail.com

*Autor para la correspondencia: mateo.lezcanob@camousucc.edu.co

 

 


RESUMEN

La Matemática es una asignatura fundamental en la vida de cualquier estudiante y tradicionalmente se le ha considerado difícil, sin embargo, ese calificativo no es totalmente justo. Para transformar ese pensamiento negativo deben adoptarse nuevas estrategias de enseñanza-aprendizaje desde que se inicie la formación del individuo. Las tecnologías informáticas pueden ayudar en esa labor, en este trabajo se presentó el sistema multimedia “El Circo de las Matemáticas” que se concibió específicamente para enseñar los números naturales del 1 al 5. La herramienta despliega un ambiente, ameno e interactivo que utiliza un lenguaje adecuado a las edades de los niños a los que va destinado. El experimento se realizó en una institución de la ciudad de Bogotá y se validó con una prueba de tipo prePrueba-PostPrueba que arrojó una mejora significativa en la calidad del aprendizaje. Se usó un diseño de investigación quasi-experimental.

Palabras clave: Preescolar, Matemática, TIC, Enseñanza de los números


ABSTRACT

Mathematics is a fundamental subject in the life of any student and traditionally has been considered as a difficult subject, but that description is not entirely fair. To transform this negative thinking new teaching and learning strategies should be adopted since the formation of the individual begins. Computer technologies can help in this task, in this work the multimedia system "The Circus of Mathematics", which was specifically designed to teach natural numbers from 1 to 5 was presented. The tool displays an interactive environment that uses an appropriate language to the age of children for whom it is intended. The experiment was conducted at an institution located in Bogota and was validated with a type test pretTest-postTest showing significant improvements in the quality of learning. It was used a quasi-experimental research design.

Key words: Preschool, Math, TIC, Teaching numbers.


 

 

INTRODUCCIÓN

Muchos estudios reconocen la importancia del grado preescolar en la formación futura de los alumnos (Gómez, 2012), mientras otros han dedicado esfuerzos para analizar la influencia que tiene el cuidado de los menores en el desarrollo cognitivo de los niños (Cuervo, 2010).

Como un ejemplo de la influencia que tienen los conocimientos matemáticos previos en el pensamiento matemático futuro de los educandos, se puede citar un estudio realizado con niños finlandeses, que abarcó la etapa desde preescolar hasta el segundo grado (Aunola, Leskinen, Lerkkanen y Nurmi, 2004). El análisis realizado arrojó resultados que deben tomarse en cuenta cuando se hagan estudios acerca de esta etapa del proceso de enseñanza-aprendizaje.

Por otra parte, algunos estudios han mostrado que existe una relación entre el desarrollo cognitivo-emocional de los niños en función de los cuidados que se tengan con ellos desde la etapa preescolar (edades de cuatro a ocho años). Como un ejemplo de esos análisis se puede citar un trabajo realizado por Peisner y su equipo en el cual se evidenció que existe un efecto modesto en los patrones de desarrollo cognitivo y socio-emocional de los niños que influye en la etapa del jardín de infancia y que puede llegar hasta el segundo grado (Peisner, Clifford, Howes y Yazejian, 2001).

Muchos países realizan esfuerzos significativos para mejorar la calidad de la enseñanza, con ese propósito el Ministerio de Educación de Colombia establece un examen de estado denominado Prueba Saber Pro (Ministerio de Educación de Colombia, 2009). Las pruebas realizadas en los grados tercero y quinto de primaria, en los últimos años, han detectado falencias en el campo de las matemáticas, muchas de las cuales se deben a deficiencias en la formación básica de los educandos, por ejemplo, se aprecian dificultades en el concepto de número y en la forma de escribirlos, lo cual se corrobora a lo largo de toda la primaria.

En este trabajo se presentan las características generales de un software educativo concebido especialmente para la enseñanza de la matemática en el grado preescolar. El sistema informático forma parte de las diversas estrategias que deben seguir los docentes para mejorar el aprendizaje y la experiencia se llevó a cabo en el colegio José Joaquín Castro Martínez (JJCM en lo adelante) de la ciudad de Bogotá (Colombia). La efectividad de la estrategia seguida se avala por medio de pruebas estadísticas realizadas con el paquete SPSS (McCormick, Salcedo y Poh, 2015).

El circo de las Matemáticas

Según Ackermann (2015), los educadores necesitan establecer alternativas para que “ellos mismos y sus alumnos abandonen los senderos trillados de forma segura y exitosa”, sin embargo, muchos docentes se resisten al cambio y persisten en usar los métodos que se han utilizado por siglos. Es por eso que investigaciones como la que se presenta en este artículo pueden ayudar a romper barreras, de manera que la tecnología entre el aula desde edades tempranas, teniendo en mente que debe respetarse el lenguaje de los educandos.

El Circo de las Matemáticas (Autoras, 2015) es un software educativo especialmente concebido para la enseñanza de los números del 1 al 5 en el grado preescolar (niños de cinco años) y está implementado en forma de multimedia. La presentación del sistema comienza con la aparición de un asistente, denominado el Mago JJ, que les da la bienvenida a los educandos y los invita a repasar los números (parte izquierda de la figura 1).

La varita mágica del mago es un botón que conduce a la animación siguiente en la cual los educandos encontrarán el personaje Martina (parte derecha de la figura 1) que les explica a los estudiantes cómo usar los cinco botones de navegación. Cada botón está asociado a una unidad temática.

En el grado preescolar se fortalece la integración de diferentes saberes y experiencias, que se trabajan por dimensiones, de esa manera los docentes propician espacios y actividades que tienen el propósito de desarrollar cada una de las inteligencias: cognitiva, afectiva y de la praxis. La figura 2 muestra los procesos que se tuvieron en cuenta.

f02

El software plantea una propuesta didáctica interactiva que debe usarse, como recurso, dentro de una estrategia de aprendizaje para el repaso de los números del 1 al 5, apoyándose en escenarios didácticos en el aula. La estrategia de aprendizaje se traza la meta de que los estudiantes puedan visualizar e interiorizar la noción de número a través de diversas actividades. En cada unidad se proponen tres tipos de actividades: centrales, prácticas y evaluativas.

En las actividades centrales el docente propone una estrategia didáctica para que el estudiante interactúe con el Circo de las Matemáticas, aunque también se desarrollan otras actividades complementarias. Todas las acciones que se realizan tienen el propósito de que el alumno siga un conjunto de pasos que le permita apropiarse del concepto de número a la vez que interacciona con el sistema informático.

Para lograr el objetivo propuesto en las actividades generales deben seguirse los procesos siguientes: identificar el símbolo numérico, realizar actividades de conteo, observar el trazo del número, trazar el número, asociar el símbolo numérico con una cantidad de objetos.

Actividades prácticas. Permiten afianzar el concepto de número; articulan e involucran las dimensiones que se desarrollan y potencian en la educación preescolar, contribuyendo a la formación integral que es fundamental en el desarrollo de los niños. Las dimensiones son: corporal, estética, cognitiva, comunicativa y socio afectiva, ellas se trabajan de manera secuencial.

f03

En la figura 3 se aprecia una actividad práctica que articula más de una dimensión, en este caso particular son: corporal, comunicativa y cognitiva. Las demás actividades articulan otras dimensiones que afianzan el desarrollo integral de los niños.

f04

Actividades de evaluación (figura 4). Permiten que el estudiante pueda auto evaluarse, poniendo en manos del alumno la validación de su proceso de aprendizaje. Se pudo observar que la auto evaluación resulta estimulante para los niños, aunque no se realizaron pruebas que corroborarán esas observaciones que fueron hechas por los docentes directamente en el aula.

El sistema tiene diversas propuestas de evaluación, algunas están hechas con el software Hot Potatoes (Bogdanov, 2013) y otras son sitios web. Reconociendo la importancia que tiene el juego para los niños (Fernández Oliveras, Molina Correa y Oliveras, 2016), todas las evaluaciones se realizan con actividades lúdicas.

f05

En la actividad de la figura 5 se articulan las dimensiones: corporal, comunicativa y cognitiva, en ella se propone al estudiante que aprenda una canción y realice los movimientos sugeridos, lo que permite al niño interiorizar el concepto de número desde lo corporal y lo comunicativo.

El propósito de cada una de las actividades es motivar a los estudiantes a experimentar con los conceptos básicos, para así lograr un aprendizaje significativo (Ausubel, Novak y Hanesian, 1978), el cual se interpreta como aquel que adquiere una persona uniendo, consciente y explícitamente, los nuevos conocimientos con conceptos o proposiciones importantes que adquirió previamente (Novak, Gowin y Johansen, 1983; Hurtubise y Roman, 2014).

Los procesos para la enseñanza de la matemática se inician en la edad preescolar y contribuyen al desarrollo integral de los infantes, al ser un área contenida en la dimensión cognitiva; que permite el fortalecimiento y el desarrollo de diversas operaciones y procesos mentales que resultan importantes, tales como: observar, clasificar, contar, asociar, definir, enumerar, nombrar, seleccionar, diferenciar, ordenar, transformar, calcular y descomponer, entre otros. Esos procesos son la base del aprendizaje de la matemática en preescolar.

El trabajo realizado por los estudiantes se lleva a cabo de manera individual y guiada, la navegación por las unidades de enseñanza se auxilia de diferentes botones (de navegación y temáticos), todos diseñados teniendo en cuenta la edad de los educandos.

¿Por qué el Circo de las Matemáticas?

Es importante diseñar nuevos recursos que respondan a los estudiantes de cada época. Los niños de hoy han nacido en un mundo caracterizado por la diversidad de tecnologías y aprenden a manejarla de manera natural, muchas veces sin siquiera recibir instrucciones, por eso se sienten motivados cuando se les presenta alguna actividad de enseñanza que utiliza esos recursos.

Existen diversos estudios que analizan la influencia que tiene el uso de las tecnologías de la información y las comunicaciones (TIC) en los procesos educativos, por ejemplo, Coll y sus colaboradores realizaron un análisis que trata de dilucidar cuál es el impacto real del uso de esas técnicas, frente al impacto esperado por los docentes que las aplican (Coll, Mauri y Onrubia, 2008). El estudio se justifica porque muchos docentes, en su empeño para mejorar los procesos de aprendizaje, piensan equivocadamente que el solo uso de estas facilidades garantiza el éxito.

Debe destacarse que el factor clave del proceso de enseñanza-aprendizaje que se desarrolle en cualquier aula se basa en tres elementos interactivos que conforman un triángulo, destacándose la relación que se establece entre sus tres vértices:

  • El contenido que se enseña o sea el objeto de enseñanza-aprendizaje que, en este caso, va acompañado del fortalecimiento del desarrollo motriz en cuanto a las habilidades de trazo (escritura correcta del número) y las habilidades de pensamiento lógico-matemático (orden, secuencia, antes y después).

  • La actividad que realiza el profesor.

  • La actividad de los educandos.

Tomando en cuenta lo señalado anteriormente, el estudio que se presenta se hizo en el aula de clases. Durante la etapa de puesta a punto del experimento se realizaron diversas actividades de enseñanza que se auxiliaron del Circo de las Matemáticas. El objetivo de esas actividades es fortalecer las siguientes competencias: nivel de percepción, atención y memoria en el procesamiento del contenido de los números, auto suficiencia, auto formación y retroalimentación.

Descripción del experimento

Se usa un diseño de investigación cuasi experimental (Hernández Sampieri, Fernández Collado y Baptista, 2014) debido a que los investigadores no manipulan deliberadamente las variables independientes y solo se limitan a observar y analizar el proceso de enseñanza-aprendizaje que se lleva a cabo mediado por las TIC. Los grupos de estudiantes no se formaron explícitamente para este estudio y existían desde el momento de la matrícula.

A la población objeto del estudio inicial se le aplicó una prePrueba conformada por diez preguntas, en la cual participaron los dos grupos de preescolar de la escuela JJCM, que en total eran 38 estudiantes. El objetivo de esta primera prueba fue determinar cuáles alumnos tenían las mayores dificultades.

La prePrueba (figura 6) permitió identificar un subgrupo de trece estudiantes que afrontaban muchas dificultades en pre-matemática (interiorización del concepto de números del 1 al 5) por eso la población inicial se redujo a ese pequeño subgrupo.

Posteriormente se usó una estrategia pedagógica, apoyada en el software El Circo de las Matemáticas, para estudiar la influencia que tendría el uso de la estrategia basada en TIC en la mejora del aprendizaje de la población escogida, o sea los trece estudiantes con mayores dificultades.

Los modelos de la pre y la post prueba tienen la misma estructura. Algunas preguntas de la prueba postPrueba tienen igual presentación y orden que la prePrueba, lo que se hizo para medir la capacidad de retención de información que tienen los estudiantes, a la vez que sirven como ejes de comparación puntual dentro del análisis final de los resultados alcanzados por cada educando.

Las preguntas de la prePrueba y la postPrueba tienen sólo dos posibles calificaciones, 0 y 1; donde 1 representa acierto en la respuesta y 0 significa fallo, de manera que la nota máxima que puede alcanzar un individuo es de 10 puntos (acierto en todas las respuestas) y la más baja es de 0 puntos (fallo en todas las respuestas).

Las pruebas (pre y post) tomaron en cuenta diversos aspectos que el docente de preescolar no puede omitir cuando enseña el concepto de número, los cuales son: conteo, secuencia, identificación del número, trazo, asociación, clasificación y agrupación; tales procesos son esenciales y el software usado enfatiza sobre ese aspecto.

 

RESULTADOS Y DISCUSIÓN

La tabla 1, muestra el comportamiento global del grupo reducido de trece estudiantes con relación a los dos tipos de pruebas en cada una de las diez preguntas.

Una simple observación a la tabla 1, permite apreciar que la pregunta que se contestó con mayor acierto en la prePrueba fue la P9 (diez éxitos), mientras la P5 fue la de mayor desacierto (once fracasos). Existe una mejoría notable en las respuestas a todas las preguntas después de haber realizado el experimento, excepto en la pregunta P9 que se mantiene en el mismo nivel de aciertos-desaciertos (10-3).

La figura 7 muestra un gráfico de barras con la cantidad de aciertos de cada pregunta en las pruebas pre y post. Obsérvese que de manera general hay más aciertos en la post prueba, mostrando así la utilidad de la multimedia.

Se utilizó la prueba no paramétrica de McNemar (Pértega y Fernández, 2004) para cuantificar las diferencias de los aciertos-fallos prePrueba – postPrueba de las preguntas P1 a la P10 (tabla 2). Esta prueba se utiliza para decidir si puede o no aceptarse que un determinado tratamiento induce un cambio en la respuesta de los participantes. Se aplica a los diseños del tipo antes – después en lo que cada elemento actúa como su propio control y cuando las variables son binarias (acierto-fallo en este caso).

En todos los casos se creó la tabla cruzada y se calculó la significación o el p-valor de la prueba exacta de McNemar. La fila marcada en negrita, de la tabla 2, contiene la información de los p-valores. Se resaltan en rojo los que tuvieron diferencias significativas, sus valores son menores que el nivel de significación del 5% (α = 0.05).

Para cuantificar las diferencias de los aciertos-fallos prePrueba – postPrueba, en general se utilizó la prueba no paramétrica de Wilcoxon (tabla 3 y tabla 4), que es la prueba no paramétrica más potente cuando se tratan variables medibles en por lo menos una escala ordinal (Castillo Díaz, 2009).

t03

 

t04

La hipótesis nula enuncia que las muestras proceden de poblaciones con la misma distribución de probabilidad; la hipótesis alternativa establece que hay diferencias respecto a la tendencia central de las poblaciones.

El contraste se basa en el comportamiento de las diferencias entre las puntuaciones de los elementos de cada par asociado, teniendo en cuenta no sólo el signo, sino también la magnitud de la diferencia.

Los gráficos de máximo, mínimo y cierre crean una barra donde el valor inferior es el mínimo de los datos, el superior su máximo y el cierre algún estadístico descriptivo interesante, como por ejemplo el promedio de los valores. El valor de la significación según Wilcoxon es 0.000 < 0.05 por lo que las diferencias son significativas entre la prePrueba y la   postPrueba. La tabla 3 muestra trece rangos positivos, lo que significa que todos los niños mejoraron sus calificaciones en la postPrueba comparada con la prePrueba.

La figura 8 muestra el gráfico de máximo, mínimo y cierre (media) para comparar visualmente los resultados de las pruebas pre y post. Como puede apreciarse, la barra correspondiente a la postPrueba muestra resultados superiores, lo cual es consistente con las pruebas de Wilcoxon aplicadas.

f08

 

CONCLUSIONES

El estudio llevado a cabo mostró una importante mejoría en el aprendizaje de los alumnos con mayores dificultades, lo que permite afirmar que resulta adecuado el uso de herramientas de software, como El Circo de las Matemáticas, para apoyar la enseñanza en el grado preescolar.

Una herramienta de software que apoye la enseñanza debe caracterizarse por utilizar un lenguaje apropiado a las edades de los educandos, por ese motivo resulta imprescindible que en su elaboración participen profesores de vasta experiencia en el nivel escolar al que se dirige la aplicación.

Sería conveniente realizar este mismo estudio con una población mayor, pero para hacerlo habría que coordinar con varias instituciones educativas y los investigadores desean dejar abierta esa preocupación para que otros profesores de preescolar se animen a hacerlo.

 

AGRADECIMIENTOS

Esta investigación se realizó dentro del programa de la Maestría de Informática Aplicada a la Educación de la Universidad Cooperativa de Colombia (sede Bogotá), con el acompañamiento y permiso de la institución educativa distrital José Joaquín Castro Martínez IED y su comunidad educativa, perteneciente a la Secretaria de Educación Distrital de la ciudad de Bogotá. Queremos expresar nuestro agradecimiento a esas instituciones, a los maestros que nos ayudaron y al personal de apoyo.

Un agradecimiento muy especial para los niños y niñas del grado preescolar, ellos son nuestra razón de ser y nuestra inspiración y demostraron un destacado entusiasmo con las tareas emanadas del proceso investigativo, lo cual nos alienta a seguir realizando investigaciones de este tipo en aras de contribuir a su formación integral.

REFERENCIAS BIBLIOGRÁFICAS

ACKERMANN, E. Give me a place to stand and I will move the world! Life-long learning in the digital age. Infancia y Aprendizaje Journal for the Study of Education and Development, 2015, 38 (4): p. 689–717.

AUNOLA, K.; LESKINEN, E.; LERKKANEN, M. K.; NURMI, J. E. Developmental dynamics of Math performance from preschool to Grade 2. Journal of Educational Psychology, 2004, 96 (4): p. 699-713.

AUSUBEL, D.; NOVAK, J.; HANESIAN, H. Educational Psychology: A Cognitive View (2da Ed.). Michigan, Holt Rinehart and Winston, 1978. 733 p.

AUTORAS. Uso del “Circo Matemático” como estrategia pedagógica para la enseñanza de los números 1 al 5 en el grado preescolar del José Joaquín Castro Martínez. Tesis de Maestría, Universidad Cooperativa de Colombia, Bogotá, 2015.

BOGDANOV, S. Hacking Hot Potatoes. The Cookbook. Sofia, New Bulgarian University, 2013. 100 p.

CASTILLO-DÍAZ, M. Utilidad de los métodos de preTest para la evaluación de los cuestionarios en la investigación mediante encuesta. Tesis de doctorado, Universidad de Granada, Granada, 2009.

COLL, C.; MAURI MAJÓS, M.; ONRUBIA GOÑI, J. Análisis de los usos reales de las TIC en contextos educativos formales: una aproximación socio-cultural. Revista Electrónica de Investigación Educativa, 2008, 10 (1): p. 1-18.

CUERVO MARTÍNEZ, A. Pautas de crianza y desarrollo socioafectivo en la infancia. Revista diversitas. Perspectivas en psicología, 2010, 6 (1): p. 111-121.

FERNÁNDEZ OLIVERAS A.; MOLINA CORREA V.; OLIVERAS, M. L. Estudio de una propuesta lúdica para la educación científica y matemática globalizada en infantil. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 2016, 13 (2): p. 373-383.

GÓMEZ NARANJO, M. E. Didáctica de la matemática basada en el diseño curricular de educación inicial nivel preescolar. Tesis de doctorado, Universidad de León, León, 2012.

HERNÁNDEZ SAMPIERI, R.; FERNÁNDEZ COLLADO, C.; BAPTISTA LUCIO, P. Metodología de la investigación (6ta. ed.), Ciudad México, McGraw-Hill, 2014. 632 p.

HURTUBISE, L.; ROMAN, B. Competency based curricular design to encourage significant learning. Current Problems in Pediatric and Adolescent Health Care, 2014, 44(6): p. 164-169.

MCCORMICK, K.; SALCEDO, J.; POH, A. SPSS Statistics for dummies (3rd ed.), Hoboken, John Wiley & Sons Inc. 2015. 384 p.

MINISTERIO DE EDUCACIÓN DE COLOMBIA. Ley 1324. [En línea]. 2009,  Consultado el: 6 de julio de 2015]. Disponible en: http://mineducacion.gov.co/1621/article-210697.html 

NOVAK, J.; GOWIN, D.; JOHANSEN, G. The use of concept mapping and knowledge vee mapping with junior high school science students. Science Education, 1983, 67 (5): p. 625–645.

PEISNER FEINBERG, E.; CLIFFORD, R.; HOWES, C.; YAZEJIAN, N. The Relation of preschool child care quality to children's cognitive and social developmental trajectories through Second Grade. Child Development, 2001, 72 (5): p. 1534-1553.

PÉRTEGA DÍAZ, S., FERNÁNDEZ, S. Asociación de variables cualitativas. El test exacto de Fisher y el test de McNemar. Cadernos de atención primaria, 2004, 11 (5): p. 304-308.

 

 

Recibido: 03/09/2016
Aceptado: 20/12/2016

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License