SciELO - Scientific Electronic Library Online

 
vol.10 número1Evaluación de biomasa aérea acumulada y sostenibilidad ecológica en bosques amazónicos: estudio de caso comunidad CotococharRespuesta morfofisiológica de Ochroma pyramidale producida en viveros mediante tecnología biopot a la fertilización con N, P, K utilizando un diseño óptimo personalizado índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

  • No hay articulos citadosCitado por SciELO

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Cubana de Ciencias Forestales

versión On-line ISSN 2310-3469

Rev cubana ciencias forestales vol.10 no.1 Pinar del Río ene.-abr. 2022  Epub 02-Abr-2022

 

Original article

Floristic structure and carbon stored in the biomass of three strategic ecosystems of the Colombian Pacific

0000-0001-5163-4220Víctor Eleazar Mena Mosquera1  *  , 0000-0002-0503-837XJhon Jerley Torres Torres2  , 0000-0002-4215-6287Juan Carlos Ruiz Asprilla3 

1Universidad Tecnológica del Chocó, Facultad de Ingeniería, Grupo de Investigación Agroforestería del Trópico Húmedo Chocoano. Colombia.

2Universidad Tecnológica del Chocó, Facultad de Ingeniería, Grupo de Investigación Ciencia Animal y Recursos Agroforestales. Colombia.

3Grupo de Investigación Agroforestería del Trópico Húmedo Chocoano, Quibdó, Colombia.

ABSTRACT

Despite the wide diversity suggested for the Colombian Pacific, to date little has been documented about its flooded forests, which have not allowed management strategies to be undertaken according to the characteristics of the sites. In order to contribute to the knowledge of these ecosystems, the floristic structure was characterized and the carbon stored in the total biomass of three flooded forests (Mangrove, Sajal and Guandal) was estimated. Ten plots of 0.1 ha were established. Individuals with diameter (D1.30) > 5 cm and height in meters were measured. Aerial biomass was calculated using allometric equations developed for this type of ecosystem. The Importance Value Index was determined. A Principal Component Analysis was performed to compare the composition and structure of the three ecosystems. Data on number of individuals, basal area, biomass and carbon were compared using the Kruskal-Wallis non-parametric analysis of variance. A total of 1678 individuals were recorded, grouped into 92 species and 38 botanical families. On average, 29.5 MgC ha-1 were found stored in total biomass (below and above ground), distributed in Mangrove 37.7 MgC ha-1, Sajal 28.3 MgC ha-1 and Guandal 22.4 MgC ha-1. Mangrove presents a greater number of individuals than Guandal and Sajal. Two groups were found: the first dominated by one species and the second with more than three dominant species.

Key words: Biomass; Flooded forests; Biogeographic Chocó; Mangrove; Colombian.

INTRODUCTION

The Colombian Pacific coast included in the biogeographic Chocó is recognized for its floristic attributes and its wide biological diversity (Klínger 2011, Álvarez et al., 2016; Mena-Mosquera et al., 2020; Torres-Torres et al., 2022), due to its geographic extension, ecological complexity and high amount of endemism. These characteristics have led the region to be considered a conservation hotspot(Myers et al., 2000; Galeano 2001; Quinto and Moreno 2014; Álvarez et al., 2016).

Regional-scale studies have described the main floristic characteristics of the tropical rainforest and humid ecosystems of the Colombian Chocó. These investigations have contributed to the explanation of structural and diversity changes through factors such as forest age (Torres-Torres et al., 2016), precipitation (Galeano et al., 1998; Galeano 2001; Quinto and Moreno 2016) and edaphic conditions of the area (Quinto and Moreno, 2014). On the other hand, the carbon storage capacity of these ecosystems has been investigated (Torres-Torres et al., 2017) and the need to carry out this type of studies for community conservation initiatives has been highlighted (Álvarez et al., 2016; Mena-Mosquera et al., 2020).

Despite advances in the knowledge of floristic attributes and on the carbon storage capacity of the low altitude tropical rainforests of the Colombian Pacific coast, to date little has been documented on the variability in composition, structure, diversity and carbon stored in the biomass of the vegetation of the Mangrove, Sajal and Guandal ecosystems of this strategic region of the world, which has not allowed management strategies to be undertaken according to the characteristics of the sites (Álvarez et al., 2016).

In order to contribute to the understanding of the composition and floristic diversity of coastal forests of Bajo Baudó in the Colombian Pacific and the amount of carbon stored in the biomass of woody vegetation of three strategic ecosystems, this research was carried out with the objective of evaluating the structural differences and carbon content of the Mangrove, Sajal and Guandal ecosystems in the municipality of Bajo Baudó, Chocó, Colombia.

MATERIALS AND METHODS

Study area

This research was conducted in natural forests of the Sivirú Community Council in the municipality of Bajo Baudó, Chocó. Geographically it is located between the coordinates 4°57' North latitude and 77°22' West longitude, with an average temperature of 28°C. The specific sampling sites were: Estero Playa Nueva, Rio Sivirú, Rio Dotenedo, Estero las Contras, Estero el Coco, Estero Caimán, Estero el Secadero and Estero el Guamo (Figure 1).

Fig. 1.  - Location of the sampling units established in Mangrove, Sajal and Guandal ecosystems of Bajo Baudó, Colombian Pacific 

Sampling units

Ten 20 x 50 m (0.1 ha) plots were established, two in the Sajal ecosystem, two in the Guandal ecosystem and six in the Mangrove ecosystem (Álvarez et al., 2016; Torres-Torres et al., 2022). All species with diameter at 1.30 m from the ground (D1.30) ≥ 5 cm were considered. All individuals were measured for DBH in centimeters (cm) with a diametric tape and height in meters (m) with a 15 m long graduated wooden stick (Figueredo et al., 2017).

Botanical identification

All individuals were identified in the field, indicating the species, genus and/or botanical family. In the case of recorded species whose identification was unknown or doubtful, three botanical samples were collected for plants without flowers and fruits and five for those that did contain these organs. Each sample was annotated with its respective collection number (Torres-Torres et al., 2016; Mena-Mosquera et al., 2020). The botanical samples were transported to the herbarium of the Universidad Tecnológica del Chocó "Diego Luis Córdoba", Quibdó, Colombia, where they were compared with the existing material and identified using the keys of Gentry (1993). After this, the validity of the scientific name and family were verified in Colombia (Universidad Nacional de Colombia) (http://www.biovirtual.unal.edu.co/ICN/), New York Botanical Garden (https://sciweb.nybg.org/science2/VirtualHerbarium2.asp.html), Trópicos (https://www.tropicos.org/home) and The International Plant Names Index (https://www.ipni.org/).

Biomass and carbon estimation

For the calculation of aboveground biomass, wood density values were assigned to the species recorded in the census. This value was extracted from the Global Wood Density Database (GWDB) (Zanne et al., 2009), which contains information on 2004 species from tropical America. For common species between the inventories of the present study and the BGDM, the Dm value was assigned at the specific level; for uncommon species, the average Dm at the genus level was used, and finally for genera not recorded in the BGDM, the average Dm at the family level was used (Álvarez et al., 2016; Torres-Torres et al., 2017). Finally, biomass was estimated using the equation of Álvarez et al., (2012) developed for tropical rainforest ecosystems (Equation 1).

Where:

D

= Diameter

Al

= Total height

Dm

= Density of wood

Statistical analysis of data

The basal area (AB) was calculated with the data obtained (Torres-Torres et al., 2022). In addition, the methodology of Lozada (2010) was followed to determine absolute (Aa) and relative (Ar) abundances, absolute (Fa) and relative (Fr) frequencies, and absolute (Da) and relative (Dr) dominances. The Importance Value Index (IVI) was determined, which is the arithmetic sum of the values of Ar, Fr and Dr (Curtis and McIntosh 1951, Figueredo et al., 2017). A Principal Component Analysis (PCA) was performed to compare the composition of the three ecosystems (beta b diversity) and identify sites that shared a combination of structural characteristics, number of individuals/plot, number of species/plot and basal area/plot (Torres-Torres et al., 2022).

Data on number of individuals, basal area, biomass and carbon were compared using the Kruskal-Wallis (K-W) nonparametric analysis of variance and a significant difference multiple range test (LSD). The analyses were performed with PAST software version 3.1 (Hammer et al., 2001).

RESULTS

Floristic structure. A total of 1678 individuals were recorded, grouped into 92 species and 38 botanical families. The highest abundance was found in the Guandal ecosystem, which is statistically different from Mangrove and Sajal (Figure 2).

Means with a common letter are not significantly different (P < 0.05)

Fig. 2.  - Kruskal-Wallis analysis with 95 % confidence to compare structure variables in three strategic ecosystems of the Colombian Pacific  

On average, 272 individuals 0.1 ha-1 were found in the Guandal ecosystem, 145 individuals 0.1 ha-1 in the Mangrove and 136 individuals 0.1 ha-1 in Sajal (Figure 2).

The floristic information found in the Mangrove and Guandal ecosystems suggests a tendency towards heterogeneity. For the first ecosystem, Rhizophora racemosa G. Mey. (IVI= 63.93) and Pelliciera rhizophorae Planch. & Triana. (IVI= 60.95) as the most abundant; while for the second one, Euterpe oleracea Mart. (IVI= 14.48) and Carapa guianensis Aubl. (IVI= 13.62) in the Guandal. In the Sajal, on the other hand, a homogeneous ecosystem dominated by Campnosperma panamensis Standl. (known locally as Sajo - IVI=58.29). In the Sajal there were also species with mature individuals, which explains the high dominance of some floristic groups (Figure 3).

Fig. 3.  - Importance Value Index - IVI for the dominant species of the Mangrove (A), Guandal (B) and Sajal (C) ecosystems of Bajo Baudó, Colombian Pacific 

Principal component analysis (PCA) explains 71 % of the structural variability of the ecosystems studied (Figure 4). Of this total, component 2, with 38 %, separates the 0.1 ha plots of the Sajal ecosystem from the rest of the established plots, with the lowest basal area found at this site. A similar but less important effect is observed between the Mangrove and Guandal, highlighting a similarity in the number of individuals, species and families (Figure 4).

AB: Basal Area, Ni: Number of individuals

Fig. 4.  - Principal Component Analysis PCA for the identification of structural types of three strategic ecosystems of Bajo Baudó, Colombian Pacific  

Carbon stored in total biomass. An average carbon of 29.5 MgC ha-1 was found for the three ecosystems. Mangrove forests presented a total carbon (mean ± SD) of 37.7 ± 0.54 MgC ha-1, followed by Sajal with 28.3 ± 1.04 MgC ha -1 and Guandal with 22.4 ± 0.78 MgC ha-1(Table 1). The biomass and carbon content obtained in the Mangrove is different from that obtained in the other two ecosystems (Figure 2).

Table 1.  - Carbon stored in the aboveground and belowground biomass of three strategic ecosystems of the Bajo Baudó, Colombian Pacific 

A similarity was observed in the biomass and carbon content of the Sajal and Guandal ecosystems (Figure 2). On the other hand, subway carbon found is similar in the three sites sampled, while for the carbon stored in the aerial biomass there were differences (P = 0.0010).

DISCUSSION

Floristic structure. The results of this research (92 species in 1 ha) corroborate that Chocó is one of the richest regions in plant species (Galeano 2001), these results being superior to those reported in studies conducted for this region (Quinto and Moreno 2014; Torres-Torres et al., 2016; Álvarez et al., 2016; Mena-Mosquera et al., 2020).

For the structural variables studied, better responses were found for the Mangrove and Guandal ecosystems, which contrasts with the theory that ecosystems that are not in flood zones have a greater number of individuals and abundance of species, due to the fact that in these environments there is greater water drainage and a microclimate is created for the development of a variety of species (Duivenvoorden 1996; Grauel, 2004; Álvarez et al., 2016).

The Sajal ecosystem presents a marked homogeneity, characterized by the predominance of one species (C. panamensis), the presence of few species and with mature individuals that are adapted to the swampy environment. This result coincides with that documented by Álvarez et al., (2016), who found these same characteristics in flooded ecosystems of Bajo Calima, on the Colombian Pacific coast.

The differences observed in the PCA analysis (Figure 4) can be explained by the flooding characteristics of the Sajal ecosystem, which determines the development of the dominant populations of sajo (C. panamensis), which is defined by Gentry (1993) as a riparian swamp tree, endemic to the biogeographic Chocó and also adapted to the environment offered by this strategic ecosystem (Del Valle 2000). In terms of the number of individuals and basal area, this forest is similar to that suggested for the delta of the Patía and San Juan rivers on the Colombian Pacific coast, but different from the characteristics described by Del Valle (1996) in the Guandal ecosystems of the Patía river in the Colombian Pacific.

Similarly, what is presented in Figure 4, suggests a structural difference of the Saljal with respect to the Mangrove and Guandal, which may be related to the lower level of salinity presented by this ecosystem (Herrera et al., 2016; Agraz-Hernández et al., 2020), which leads to the need to consider this variable in future research.

Carbon stored in the total biomass. The total carbon obtained for the three ecosystems (Guandal = 22.4 Mg C ha-1, Sajal = 28.3 Mg C-1 ha and Mangrove = 37.7 Mg C ha-1), is in the range suggested for this type of ecosystem (Clark et al., 2001). However, the average carbon for the three sites analyzed (29.5 Mg C ha-1) is higher than the value reported by Luyssaert et al., (2007) (17.28 Mg C ha-1) for 29 tropical moist and flooded forests worldwide.

The mangrove contains more carbon stored in biomass than the Sajal and Guandal (Table 1). This result may be related to structural differences in the sampled areas, especially the number of individuals present per site (Mena-Mosquera et al., 2020). In this regard, Álvarez et al., (2012) and Fauset et al. (2015) have indicated that in natural ecosystems, the more individuals there are, the greater the carbon contained in the ecosystem, which tends to increase as the diameter or age of the individuals increases (Torres-Torres et al., 2017).

Malhi et al., (2009) and Aragão et al., (2009) have suggested that the opening of forest clearings by natural or anthropogenic actions favors the significant growth of some trees, which favors the storage and fixation of carbon in strategic ecosystems. The latter may also explain the biomass and carbon content of the Mangrove ecosystem, in which it was observed that despite containing fewer individuals than the Sajal, it contains more carbon. From this it can be inferred that diversity and site conditions influence carbon storage and fixation in the sites sampled (Quinto and Moreno 2017).

Similarly, the result of carbon stored in the mangrove ecosystem is in the range suggested for mangroves in Asia (Kauffman et al., 2013) and below that documented for the Americas (Bernal and Mitsch, 2008; Valdés-Velarde et al., 2011; Marín-Muñiz et al., 2014). These differences may be related to the environmental conditions of the sites (De la Peña et al., 2010).

CONCLUSIONS

The Guandal contains a greater number of individuals than the Mangrove and Sajal. At the floristic level, these ecosystems show a tendency towards homogeneity, where there are 1 to 4 dominant species, which generally contain a large number of mature individuals. Similarly, two structural groups are identified in the study area: the first is Sajal, which are an ecosystem dominated by Sajo (C. panamensis) and the second is made up of Mangrove and Guandal, where there is no clearly dominant species. Likewise, it is evident that the ecosystems studied by means of their carbon storage figures make an important contribution to the mitigation and/or adaptation of global climate change; therefore, they provide the opportunity to implement projects that can contribute to the reduction of deforestation and changes in land use. In this way, the territories where the research was carried out could receive economic and environmental benefits for their conservation.

ACKNOWLEDGMENTS

This research was carried out within the framework of the project "Management of strategic ecosystems in the municipality of Bajo Baudó", executed by the Regional Autonomous Corporation for the Sustainable Development of Chocó (CODECHOCO) and the Agroforestry Research Group of the Chocó Humid Tropics (AGROTROPICO) of the Technological University of Chocó. The authors would like to thank the Vice-Rectory of Research of the Universidad Tecnológica del Chocó for funding the second author and the members of the communities for their collaboration in the field data collection.

REFERENCIAS BIBLIOGRÁFICAS

AGRAZ-HERNÁNDEZ, C.M., CHAN-KEB, C.A., CHÁVEZ-BARRERA, J., OSTI-SÁENZ, J., EXPÓSITO-DÍAZ, G., ALONSO-CAMPOS, V.A. y RIVERA-ARRIAGA, E., 2020. Reserva de carbón en un ecosistema de manglar al norte de México: cambios ambientales durante 35 años. Revista Mexicana de Biodiversidad [en línea], vol. 91, no. 0, pp. 912-910. [Consulta: 04/03/2021]. ISSN 2007-8706. DOI 10.22201/ib.20078706e.2020.91.2910. Disponible en: Disponible en: http://revista.ib.unam.mx/index.php/bio/article/view/2910 . [ Links ]

ÁLVAREZ, E., DUQUE, A., SALDARRIAGA, J., CABRERA, K., DE LAS SALAS, G., DEL VALLE, I., y RODRÍGUEZ, L., 2012. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management [en línea], vol. 267, pp. 297-308. [Consulta: 06/03/2021]. ISSN 0378-1127. DOI 10.1016/j.foreco.2011.12.013. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/pii/S0378112711007444 . [ Links ]

ÁLVAREZ, E., JARAMILLO, G.C., COGOLLO, C.C., MARTÍNEZ, H., ROJAS, E. y FERNÁNDEZ, F., 2016. Structure and diversity of the three plant associations in the San Juan river delta, Chocó, Colombia. Revista Ávore [en línea]. vol. 40, no. 5, pp. 833-843. [Consulta: 04/03/2021]. ISSN: 1806-9088. DOI: https://doi.org/10.1590/0100-67622016000500007. Disponible en: Disponible en: https://www.scielo.br/j/rarv/a/rCkQCJNgprdWYJSM3Qttnrw/?lang=enLinks ]

ARAGÃO, L.E.O.C., MALHI, Y., METCALFE, D.B., SILVA-ESPEJO, J.E., JIMÉNEZ, E., NAVARRETE, D. A., y VÁSQUEZ, R., 2009. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences [en línea]. no. 6, pp. 2759-2778. [Consulta: 05/04/2021]. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0925857408001997?via%3DihubLinks ]

BERNAL, B. y MITSCH, W.J., 2008. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecological Engineering [en línea], no. 34, pp. 311-323. [Consulta: 12/03/2021]. ISSN: 0925-8574. DOI: https://doi.org/10.1016/j.ecoleng.2008.09.005. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0925857408001997?via%3DihubLinks ]

CLARK, D.A., BROWN, S., KICKLIGHTER, D.W., CHAMBERS, J.Q., THOMLINSON, J.R., NI, J. y HOLLAND, E.A., 2001. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications [en línea], no. 11, pp. 371-384. [Consulta: 10/02/2021]. ISSN: 1939-5582. Disponible en: Disponible en: https://esajournals.onlinelibrary.wiley.com/doi/10.1890/1051-0761%282001%29011%5B0371%3ANPPITF%5D2.0.CO%3B2Links ]

CURTIS, J.T. y MCINTOSH, R.P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology [en línea]. no. 32, pp. 476-496. [Consulta: 15/03/2021]. Disponible en: Disponible en: http://vmpincel.ou.edu/rice_and_penfound/1931725.pdfLinks ]

DE LA PEÑA, A., ROJAS, C.A. y DE LA PEÑA, M., 2010. Valoración económica del manglar por el almacenamiento de carbono, Ciénaga Grande de Santa Marta. Clío América [en línea]. vol. 4 no. 7, pp. 133-150. [Consulta: 15/03/2021]. DOI: https://doi.org/10.21676/23897848.400. Disponible en: Disponible en: https://aquadocs.org/handle/1834/8298Links ]

DEL VALLE, I., 1996. Los bosques de guandal del delta del Río Patía colombiano. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales. [en línea]. vol. 20, no. 78, pp. 475-489. [Consulta: 12/03/2021]. Disponible en: Disponible en: https://www.accefyn.com/revista/Vol_20/78/475-489.pdfLinks ]

DEL VALLE, I., 2000. Consideraciones estructurales de los bosques de guandal del pacifico sur colombiano. Revista Facultad Nacional de Agronomía [en línea]. vol. 53no. 2, pp. 1011-1042. ISSN: 0370-3908. [Consulta: 12/03/2021]. Disponible en: Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/24123Links ]

DUIVENVOORDEN, J.F. 1996. Patterns of tree species in rain forests of the middle Caquetá area, Colombia, NW Amazonia. Biotropica [en línea]. vol. 28 no. 2, pp. 142-158. [Consulta: 12/03/2021]. ISSN 1744-7429. Disponible en: Disponible en: https://www.jstor.org/stable/2389070Links ]

FAUSET, S., JOHNSON, M.O., GLOOR, M., BAKER, T.R., MONTEAGUDO M., A., BRIENEN, R.J.W., y PHILLIPS, O.L., 2015. Hyperdominance in Amazonian forest carbon cycling. En: Bandiera_abtest: aCc_license_type: cc_byCg_type: Nature Research Journalsnumber: 1Primary_atype: Researchpublisher: Nature Publishing GroupSubject_term: Forestry;Plant physiologySubject_term_id: forestry;plant-physiology, Nature Communications [en línea], vol. 6, no. 1, pp. 68-57. [Consulta: 12/03/2021]. ISSN 2041-1723. DOI 10.1038/ncomms7857. Disponible en: Disponible en: https://www.nature.com/articles/ncomms7857 . [ Links ]

FIGUEREDO, L.M., ACOSTA, F. y BLANCO, J., 2017. Composición florística y estructura horizontal del bosque semideciduo micrófilo de la reserva ecológica Siboney-Juticí, Cuba. Rodriguésia [en línea]. vol. 68, no. 2, pp. 315-324. [Consulta: 12/03/2021]. DOI: http://doi.org/10.1590/2175-7860201768203. Disponible en: Disponible en: https://www.scielo.br/j/rod/a/7gyz6ZXLtRRMp3btcKnPZMd/?lang=es&format=pdfLinks ]

LOZADA, J.R., 1971. Consideraciones metodológicas sobre los estudios de comunidades forestales. Revista Forestal Venezolana [en línea]. vol. 54, no. 1, pp. 77-88. [Consulta: 12/03/2021]. Disponible en: Disponible en: http://www.saber.ula.ve/bitstream/handle/123456789/31647 /ensayo2.pdf;jsessionid=D788B39F1D94F7D4EDBA6748D2D87C19?sequence=1Links ]

GALEANO, G., SUÁREZ, S. y BALSLEV, H., 1998. Vascular plant species count in a wet forest in Chocó area con the Pacific coast of Colombia. Biodiversidad y Conservación [en línea]. no. 7, pp. 1563-1575. [Consulta: 12/03/2021]. Disponible en: Disponible en: https://link.springer.com/article/10.1023/A:1008802624275Links ]

GALEANO, G., 2001. Estructura, riqueza y composición de plantas leñosas en el golfo de Tribugá, Chocó-Colombia. Caldasia [en línea]. vol. 23, no. 11, pp. 2-11. [Consulta: 09/05/2021]. ISSN: 0366-5232. Disponible en: Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/17667Links ]

GENTRY, A.H., 1993. A field guide to the femilies and genera of woody plants of Northwest South America (Colombia, Ecuador, Perú) with supplementary notes on herbaceous taxa. London: University of Chicago Press. ISBN-978-1881173014. https://searchworks.stanford.edu/view/2935992Links ]

GRAUEL, W.T., 2004. Structure, composition, and dynamics of Prioria copaifera-dominated swamp forests in Darien, Panama. In: Ecology and managementofwetland forests dominated by Prioria copaifera in Darien, Panama. [en línea]. Disponible en: http://etd.fcla.edu/UF/UFE0004366/grauel_w.pdfLinks ]

HAMMER, Ø., HARPER, D.A.T. y RYAN, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica [en línea]. vol. 4, no. 1, pp. 9. [Consulta: 12/04/2021]. Disponible en Disponible en https://palaeo-electronica.org/2001_1/past/past.pdfLinks ]

HERRERA, J.A., CAMACHO, A., PECH, E., PECH, M., RAMÍREZ, J. y TEUTLI, C., 2016. Dinámica del carbono (almacenes y flujos) en manglares de México. Terra Latinoamericana [en línea]. vol. 34, no. 1, pp. 61-72. [Consulta: 18/05/2021]. ISSN 2395-8030. Disponible en: Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000100061Links ]

KAUFFMAN, J.B., DONATO, D.C., y ADAME, M.F., 2013. Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. [en línea]. Bogor, Indonesia: Center For International Forestry Research. Disponible en: https://www.cifor.org/publications/pdf_files/WPapers/WP117Kauffman.pdfLinks ]

KLÍNGER, B.W. 2011. Presentación sobre la importancia estratégica del Chocó biogeográfico para América Latina. En: KLÍNGER BW, RAMÍREZ MG, GUERRA GJ (eds.). Aportes al conocimiento de los ecosistemas estratégicos y las especies de interés especial del Chocó biogeográfico. Parte I. Quibdó: Instituto de Investigaciones Ambientales del Pacífico (IIAP). pp. 158. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=1071Links ]

LUYSSAERT, S., INGLIMA, I., JUNG, M., RICHARDSON, A.D., REICHSTEIN, M., PAPALE, D. y JANSSENS, I.A., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology [en línea], vol. 13, no. 12, pp. 2509-2537. [Consulta: 19/08/2021]. ISSN 1365-2486. DOI 10.1111/j.1365-2486.2007.01439.x. Disponible en: Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2007.01439.x . [ Links ]

MALHI, Y., ARAGÃO, L.E.O.C., METCALFE, D.B., PAIVA, R., QUESADA, C.A., ALMEIDA, S. y TEIXEIRA, L.M., 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology [en línea], vol. 15, no. 5, pp. 1255-1274. [Consulta: 19/08/2021]. ISSN 1365-2486. DOI 10.1111/j.1365-2486.2008.01780.x. Disponible en: Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2008.01780.x . [ Links ]

MARÍN-MUÑIZ, J., HERNÁNDEZ, M.E. y MORENO-CASASOLA, P., 2014. Comparing soil carbon sequestration in coastal freshwater wetlands with various geomorphic features and plant communities in Veracruz, México. Plant and Soil [en línea]. no. 378, pp. 189-203. [Consulta: 23/05/2021]. ISSN: 1573-5036. DOI: https://doi.org/10.1007/s11104-013-2011-7. Disponible en: Disponible en: https://link.springer.com/article/10.1007%2Fs11104-013-2011-7Links ]

MENA-MOSQUERA, V.E., C, H.J.A. y TORRES-TORRES, J.J., 2020. Composición florística, estructura y diversidad del bosque pluvial tropical de la subcuenca del río Munguidó, Quibdó, Chocó, Colombia. Entramado [en línea], vol. 16, no. 1, pp. 204-215. [Consulta: 19/08/2021]. ISSN 2539-0279. DOI 10.18041/1900-3803/entramado.1.6109. Disponible en: Disponible en: https://revistas.unilibre.edu.co/index.php/entramado/article/view/6109 . [ Links ]

MYERS, N., MITTERMEIER, R.A., MITTERMEIER, C.G., DA FONSECA, G.A.B. y KENT, J., 2000. Biodiversity hotspots for conservation priorities. En: Bandiera_abtest: aCg_type: Nature Research Journalsnumber: 6772Primary_atype: Researchpublisher: Nature Publishing Group, Nature [en línea], vol. 403, no. 6772, pp. 853-858. [Consulta: 19/08/2021]. ISSN 1476-4687. DOI 10.1038/35002501. Disponible en: Disponible en: https://www.nature.com/articles/35002501 . [ Links ]

QUINTO, H. y MORENO, F.H., 2014. Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del chocó biogeográfico. Revista Árvore [en línea], vol. 38, pp. 1123-1132. [Consulta: 19/08/2021]. ISSN 0100-6762,. DOI 10.1590/S0100-67622014000600017. Disponible en: Disponible en: http://www.scielo.br/j/rarv/a/XZDCWDJgxH6nW8KrC8KnQNC/?lang=es . [ Links ]

QUINTO, H. y MORENO, F.H., 2016. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín [en línea], vol. 69, no. 1, pp. 7813-7823. [Consulta: 15/03/2021]. ISSN 2248-7026, 0304-2847. DOI 10.15446/rfna.v69n1.54749. Disponible en: Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/54749 . [ Links ]

QUINTO, H. y MORENO, F.H., 2017. Net Primary Productivity and Edaphic Fertility in Two Pluvial Tropical Forests in the Chocó Biogeographical Region of Colombia. PLOS ONE [en línea], vol. 12, no. 1, pp. e0168211. [Consulta: 19/08/2021]. ISSN 1932-6203. DOI 10.1371/journal.pone.0168211. Disponible en: Disponible en: https://journals.plos.org/plosone/article?id=10.1371 /journal.pone.0168211 . [ Links ]

TORRES-TORRES, J.J., MENA-MOSQUERA, V.E. y ÁLVAREZ, E., 2016. Composición y diversidad florística de tres bosques húmedos tropicales de edades diferentes, en El Jardín Botánico del Pacífico, municipio de Bahía Solano, Chocó, Colombia. Revista Biodiversidad Neotropical [en línea], vol. 6, no. 1, pp. 12-21. [Consulta: 19/08/2021]. ISSN 2027-8918, 2256-5426. Disponible en: Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5377881 . [ Links ]

TORRES-TORRES, J.J., MENA-MOSQUERA, V.E. y ÁLVAREZ, E., 2017. Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacifico, Chocó, Colombia. Entramado [en línea], vol. 13, no. 1, pp. 200-209. [Consulta: 19/08/2021]. Disponible en: Disponible en: https://www.redalyc.org/journal/2654/265452747015/html/ . [ Links ]

TORRES-TORRES, J.J., MENA-MOSQUERA, V.E. y Rueda-Sánchez, M.N., 2022. Influencia de la altitud sobre la estructura, composición florística y carbono de bosques del Chocó. UNED Research Journal [en línea], vol. 14, no. 1, pp. e3746. [Consulta: 15/01/2022]. ISSN 1659-441X. DOI https://doi.org/10.22458/urj.v14i1.3746. Disponible en: Disponible en: https://revistas.uned.ac.cr/index.php/cuadernos/article/view/3746/5178Links ]

VALDÉS-VELARDE, E., VALDEZ-HERNÁNDEZ, J.I., ORDAZ-CHAPARRO, V.M., GALLARDO-LANCHO, J.F., PÉREZ-NIETO, J., y AYALA-SÁNCHEZ, C. 2011. Evaluación del carbono orgánico en suelos de los manglares de Nayarit. Revista Mexicana de Ciencias Forestales [en línea]. no. 2, pp. 47-58. [Consulta: 12/05/2021]. ISSN: 2007-1132. Disponible en: Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322011000600005Links ]

ZANNE, A.E., LÓPEZ, G., COOMES, D.A., LLIC, J., JANSEN, S., LEWIS, S.L., MILLER, R.B., SWENSON, N.G., WEMANN, M.C. y CHAVE., J., 2009. Global wood density database [en línea]. 2009. S.l.: s.n. [Consulta: 12/08/2021]. Disponible en: Disponible en: http://datadryad.org/handle/10255/dryad.235 . [ Links ]

Received: August 09, 2021; Accepted: February 02, 2022

*Autor para la correspondencia: memovie@gmail.com

Los autores declaran no tener conflictos de intereses.

Los autores han participado en la redacción del trabajo y análisis de los documentos.

Creative Commons License