SciELO - Scientific Electronic Library Online

 
vol.33Health intervention with SOBERANA®02 and SOBERANA®Plus vaccines in workers: a successful response in confronting the COVID-19 pandemicEvaluation of a prepared combined inactivated vaccine against hemorrhagic disease virus 2 and Clostridium perfringens type A infections in rabbit author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Vaccimonitor

On-line version ISSN 1025-0298

Abstract

REGALADO-FONSECA, Ivis; HERNANDEZ-DE LA ROSA, Lourdes; CASTRO-FIGUEROA, Martha R.  and  ZUMALACARREGUI-DE CARDENAS, Lourdes M.. Processability of nanofilters used in the purification of the recombinant receptor-binding domain protein of severe acute respiratory syndrome type 2 coronavirus. Vaccimonitor [online]. 2024, vol.33  Epub Dec 01, 2024. ISSN 1025-0298.

The active pharmaceutical ingredient and the biological raw material, used for the formulation of the SOBERANA® vaccines, are produced at the Molecular Immunology Center. The antigen of these vaccines is the receptor-binding domain protein of the severe acute respiratory syndrome type 2 coronavirus. The production of this recombinant protein is based on the culture of Chinese hamster ovary cells in stirred tank bioreactors. The technological process on an industrial scale consists of several stages: preparation of culture media and solutions, fermentation, clarification of supernatant and purification. In biotechnological processes derived from cell lines of animal origin, endogenous or adventitious viral contamination is a potential risk. For this reason, a specific step for viral removal by nanofiltration is used in the purification process. The nanofilters used are disposable materials that significantly influence the cost of the process. The processing capacity of the nanofilters in the purification process in question is currently unknown, being the objective of the present investigation with a view to reducing production costs. The processing capacity of the Virosart CPV filters was determined to be 239.74 g/m2 (71.67% saturation) and 1,259 g/m2 (67.82% saturation) for the dimer species and the mixture, respectively. The decrease in the production cost of the nanofiltration stage was determined, representing a 54.85% decrease in the filtration cost for the dimer species and a 25% decrease for the mixture.

Keywords : filters; membrane filtration; nanopores; vaccines.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )